DISPARITY SEARCH RANGE ESTIMATION: ENFORCING TEMPORAL CONSISTENCY
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ABSTRACT

This paper presents a new approach for estimating the dispar-
ity search range in stereo video that enforces temporal con-
sistency. Reliable search range estimation is very important
since an incorrect estimate causes most stereo matching meth-
ods to get trapped in local minima or produce unstable re-
sults over time. In this work, the search range is estimated
based on a disparity histogram that is generated with sparse
feature matching algorithms such as SURF. To achieve more
stable results over time, we further propose to enforce tempo-
ral consistency by calculating a weighted sum of temporally-
neighboring histograms, where the weights are determined by
the similarity of depth distribution between frames. Experi-
mental results show that this proposed method yields accurate
disparity search ranges for several challenging stereo videos
and is robust to various forms of noise, scene complexity and
camera configurations.

Index Terms— Disparity search range, temporal consis-
tency, disparity histogram, feature matching

1. INTRODUCTION

For decades, the correspondence problem has been one of the
most important issues in the field of computer vision. Various
stereo matching algorithms have been proposed to address
this problem and recent years have witnessed significant im-
provements in those algorithms including the ones with real-
time or near real-time performance [1][2].

Dense disparity maps acquired by stereo matching can be
used in many applications, including image-based rendering,
3-D scene reconstruction, robot vision, tracking, etc. Such
applications of the stereo matching method often presume the
knowledge of appropriate search range for disparity or sim-
ply use a fixed range. In practice, an appropriate search range
of a scene is needed to facilitate the use of any stereo match-
ing algorithm. The lack of a search range often implies the
need to search over a wider range of candidate disparity val-
ues, which generally requires more computation and mem-
ory. But more importantly, most stereo matching algorithms
are more likely to get trapped in local minima when given

an inappropriate search range, which might result in signifi-
cantly compromised quality of the disparity map. However,
the acquisition of appropriate disparity ranges is by no means
a trivial issue especially when, for example, the scene or cam-
era configuration changes over time.

Cyganek and Borgosz [3] proposed a way of estimating
the maximum disparity range based on statistical analysis of
the spatial correlation between stereo images, which they called
image variograms. However, this method assumes that there
are only positive disparities between stereo images. Another
disparity search range estimation approach was proposed based
on Confidently Stable Matching [4]. The disparity search
range was obtained by setting an initial search range to the
size of the whole image and then performing the proposed
matching in a hierarchical manner [5]. This method appears
to work well for several stereo images, but temporal aspects
are not considered. There are also depth estimation tech-
niques that directly impose temporal constraints as part of
the estimation process, for example [6], but without an ap-
propriate search range such techniques are still prone to false
matches and incorrect estimation results.

In this paper, we propose a novel approach for estimat-
ing the disparity search range in the stereo video. The search
range is estimated with a disparity histogram, which can be
generated by a sparse or dense feature matching algorithm.
We further propose a method to enforce temporal consistency
in the estimation of the disparity search range. The proposed
techniques produce a temporally-consistent estimate of the
disparity range that is robust to various forms of noise, scene
complexity and camera configurations.

The remainder of this paper is organized as follows. In
Section 2, we discuss the disparity search range estimation
based upon histograms. In Section 3, we describe a novel
method to improve the temporal consistency of the histogram-
based method. We present the experimental results in Section
4, and conclude the paper in Section 5.

2. DISPARITY SEARCH RANGE ESTIMATION

This work forms a disparity histogram to estimate the dispar-
ity search range for stereo video. The search range is com-
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Fig. 1. Problem in disparity search range estimation without
enforcing temporal consistency.

puted by thresholding the disparity histogram, which repre-
sents the distribution of depth information in a scene.

To generate the disparity histogram, an initial set of match-
ing points can be obtained by a sparse feature matching method

such as KLT (Kanade-Lucas-Tomasi) [7, 8] and SURF (Speeded

Up Robust Features) [9] trackers. These methods define a de-
scriptor for interest points and track the points using gradient
or nearest-neighborhood methods. Alternatively, any dense
matching method, e.g., based on graph cuts [10] or belief
propagation [11], can be used to build the histogram. To re-
duce computation, the disparity map is typically computed on
a sub-sampled version of the original input images [5].

In this work, SURF was used to generate the disparity his-
togram. SUREF is a scale and rotation invariant interest point
detector and descriptor. It relies on integral images for image
convolution and builds on the strengths of the existing detec-
tors and descriptors with a Hessian matrix-based measure and
a distribution-based descriptor [9].

Using the pairs of matched feature points, the disparity
histogram is computed as follows:
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where h/[i] is the histogram count for the 7* bin (M the total
num. of bins) and f(a,b) is set to 1 if a = b, 0 otherwise. By
quantizing each disparity value d; of a matching-points pair
(out of the N total pairs) with the bin-size B, a histogram bin
count with the closest representative value D(-) will be incre-
mented by one. Fig. 2 shows sample histograms computed
using the SURF matching points.

The disparity search range is then computed by threshold-
ing the histogram and removing outliers. Generally speaking,
points with positive disparity are more important than those
with negative disparity since the human visual system (HVS)
is more sensitive to near objects. Based on this assumption,
the threshold we use is defined as follows:
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Fig. 2. Histogram similarity when scene changes.

_ 2B if d<0
T = { [B/2] +1 otherwise @
The disparity search range R is then determined by:
R={k|D(i)—B/2<k<D(i)+B/2, hl[i]>Tn} 3

Fig. 1 plots the minimum and maximum disparity for a se-
quence of stereo images using this scheme. The correspond-
ing synthesized views based on an estimated disparity map at
select instances of time are also shown. We can see that the
estimated search range is unstable even though the consecu-
tive frames have very similar depth distributions. The visual
artifacts in the synthesized views are also apparent.

3. ENFORCING TEMPORAL CONSISTENCY

If the search range R has unnecessary disparities or misses

significant ones, the stereo matching process can get trapped

in local minima more easily. The threshold-based range de-

tection method described in the previous section tends to be

sensitive to false matching due to noise, color mismatches,

repetitive patterns, etc. Even a few false matches can yield

different disparity ranges in the temporally-neighboring frames
with similar depth distributions, since consistency among con-

secutive frames is not considered.

In order to address this problem, one might attempt to
build a temporally more consistent feature matching algo-
rithm, but it is outside the scope of this paper. Instead, we
consider enhancing the temporal consistency among the dis-
parity histograms of consecutive frames so that we can lever-
age any decent feature-matching method in a temporally con-
sistent manner. The new histogram is obtained by calculating
weighted sums of temporally-neighboring histograms using



the weights determined by the similarity of depth distribu-
tions between frames. The depth distribution of a scene de-
pends on scene or camera configuration change, and it can be
represented by the disparity histogram. Therefore, the sim-
ilarity of disparity histograms can be used to identify scene
or camera configuration change as well as to reduce the ef-
fects of outliers. The similarity of disparity histogram can be
computed with the weighting factor w as follows:

M
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where w;, ,, represents the similarity measure between the n'"
and p'" histograms. og is the weighting constant for distance
between histograms. Note the normalized histogram hJ'°"
should be used in Eq. (4), since the total numbers of matching
points vary among consecutive frames. Since the distance is
calculated with the normalized histograms, it ranges from 0
to 2. Fig. 2 shows the histogram and its similarity measure
when a scene change occurs. The similarity value between
the 15¢ and the 274 histogram was 0.149, while it was 1.719
between the 2" and the 3"% ones. We empirically determined
o tobe 0.4. The new histogram can be computed by calculat-
ing the weighted sum of temporally-neighboring histograms
as follows:

he(i) = > wnpha(i) (5)
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where A, is the p'" weighted histogram, and N (p) represents
the set of neighboring frames for the p** frame. In this work,
only the temporally causal neighboring frames were included
in N(p). Also each weighted histogram h;) is used only to
estimate the disparity search range, but is not used to replace
the original histogram since it may cause error propagation.

4. EXPERIMENTAL RESULTS

To validate the performance of the proposed method, we per-
formed experiments with the stereo video sequences ‘Heidel-
berg’ and ‘RhineValley’, available at [12], whose sizes are
1280 x 720 and 720 x 576, respectively. For both sequences,
the bin size B was set to 7 and the number of temporally-

neighboring frames was 12. The input images were sub-sampled

by a factor of 2 prior to applying the sparse feature matching
by SUREF; this tended to improve the performance.

Fig. 3 and 4 show the estimated disparity search ranges for
‘Heidelberg’ and ‘Rhine Valley’, respectively. Both stereo se-
quences include two segments with a scene change between
them. Our results confirm that the proposed method provides
more reliable disparity search ranges and is robust to the scene
change. Next, we demonstrate the effect of a more accurate
search range on the estimated disparity maps and synthesis

50 —— Minimum disparity
—=— Maximum disparity

(a) without temporal consistency

o —e— Minimum disparity
5
—=— Maximum disparity

” ] b U] |
0

e om—
oo 720 || 7a0| 760 o0 820 840 | 860 0
S
-20 N
\
-30 Scene change

(b) with temporal consistency

Fig. 3. Range estimation results for ‘Heidelberg’ video
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Fig. 4. Range estimation results for ‘Rhine Valley’ video

results. Figs. 5 and 6 show sample disparity maps obtained
with and without temporal consistency in the search range es-
timation for both sequences. The dense disparity maps were
computed based on the estimated search ranges and a hierar-
chical cost aggregation method [13]. The corresponding view
synthesis results are also shown, where a novel view is synthe-
sized at 30% of the original baseline distance. As shown by
these results, incorrect disparity search ranges without tem-
poral consistency often lead to incorrect disparity maps and
visual artifacts in the synthesized views. The temporal con-
sistency ensures a more reliable search range, which improves
the estimated disparity maps and view synthesis.



(a) without temporal consistency

(b) with temporal consistency

(c) synthesized frame using (a) (d) synthesized frame using (b)
Fig. 5. Disparity maps by search ranges without/with tempo-
ral consistency, 7 20" frame, Heidelberg

5. CONCLUSION

In this paper, we proposed a temporally-consistent method
for estimating the disparity search range for a stereo video.
The weighted sum of temporally-neighboring histograms is
formed taking the histogram similarity into account in order
to make the disparity search range estimation more consis-
tent over time and robust to scene or camera configuration
changes. The experimental results show that the proposed
method works well for challenging stereo video sequences. In
the future, Kullback-Leibler divergence [14, 15], which rep-
resents the similarity of two probability distributions, might
be used to compute the histogram similarity. Since the his-
togram is normalized to calculate the weighting factor w, it
could be also regarded as a propability distribution function.
Furthermore, an extension of the proposed method to multi-
view video might be considered. In contrast to stereo video,
multiple histograms exist in the multiview video case and it
would be necessary to estimate a consistent search range from
the multiple histograms.
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