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ABSTRACT

This paper proposes a novel method for handling occluded pixels in
stereo images based on a probabilistic voting framework that utilizes
a novel support-and-decision process. Occlusion handling aims to
assign a reasonable disparity value to occluded pixels in the disparity
maps. In an initial step, disparities and their corresponding supports
at the occluded pixels are calculated using a probabilistic voting
method using the disparities at visible pixels. In this way, the visible
pixel information is propagated when the disparities and supports at
the occluded pixels are computed. The final disparities for occluded
pixels are then computed through an iterative support-and-decision
process to propagate the information inside the occluded pixel re-
gion. An acceleration technique is also proposed to improve the
performance of the iterative support-and-decision process. Exper-
imental results show that the proposed occlusion handling method
works well for several challenging stereo images.

Index Terms— Stereo matching, occlusion handling, support-
and-decision process, probabilistic voting framework

1. INTRODUCTION

Occlusion is an important and challenging research issue in com-
puter vision and 3D image processing, especially with regards to cor-
respondence problems in stereo and motion analysis [1]. For stereo
images, occluded pixels are usually only visible in one image so it is
impossible to estimate the corresponding points in the other image.
However, reasonable disparity values need to be assigned to the oc-
cluded pixels to ensure high-quality image-based rendering and 3D
modeling.

To handle occlusions in stereo images, there exist various con-
straints that could be leveraged based on the 3D geometry. For in-
stance, dynamic programming has been used to estimate disparity
and occlusion maps by utilizing the ordering constraint [2]. This ap-
proach is very efficient but the ordering constraint is not valid when
an image has a thin object. Many approaches have been proposed
to estimate the disparity of the occluded pixels by combining the
uniqueness constraint into a global optimization method and assign-
ing predefined penalty to the occluded pixels [3, 4]. The disparities
of occluded pixels have also been estimated by extrapolation, where
the disparities of visible pixels are simply extended out into the oc-
cluded region. However, this method is not reliable since the geo-
metric order of occluded pixels may be not valid due to errors in the
disparity map.

There are also segmentation-based occlusion handling method
that assign the disparities to occluded pixels by performing a plane-
fitting with disparities of visible pixels in partly visible segments [5].
Min and Sohn combined the occlusion problem into the cost aggre-
gation scheme using a weighted least squares solution [6]. Only
the left disparity field is used to detect occluded pixels in this work.
However, for sequential occlusion handling, the geometric order of
occlusion is utilized. One drawback of this scheme is that the com-

putational complexity may be high since the method performs a se-
quential nonlinear filtering on each cost domain repeatedly.

In this paper, we propose a novel approach for handling occlu-
sions in stereo images. We define a support function for occluded
pixels in a probabilistic voting framework. This function represents
the likelihood that the occluded pixels have a specific disparity value,
which can be computed using the disparities of neighboring visible
pixels in a probabilistic voting framework.

The remainder of this paper is organized as follows. In Section
2, we introduce the support-and-decision process, and then explain
the acceleration method in Section 3. We present the experimental
results and conclusion in Section 4 and 5, respectively.

2. PROPOSED OCCLUSION HANDLING
2.1. Problem statement

Given left and right disparity maps, an occlusion map can be com-
puted using a cross-checking method. In this paper, our focus is on
the method to assign reasonable disparity values to the occluded pix-
els, i.e., occlusion detection is not specifically addressed. A number
of algorithms have been proposed to assign disparity values to the
occluded pixels, e.g., using global optimization or by applying ge-
ometric constraints that occluded pixels are likely to have similar
disparity values as visible pixels in the background. In this paper,
we define a support function for handling occlusion in a probabilis-
tic voting framework. This function represents the likelihood that an
occluded pixel has a specific disparity value. The proposed support
function S(m, d) is defined as follows:

S(m, d) ∝
∑

n∈N(m)

p(m,n)f(d, d(n))o(n) (1)

f(d, d(n)) =

{
1 if d = d(n)
0 otherwise

o(n) =

{
1 visible
0 otherwise

where p(m,n) represents the probability that pixels m and n have
the same disparity value. N is a set of neighboring pixels which are
used when computing the support function, and o(n) is a visibility
function. Note that the support function is calculated for occluded
pixels only, i.e., when o(m) = 0 in Eq. (1).

Fig. 1 shows the process that calculates the support at pixel m
using the disparities of the visible pixels and their probability values.
For each occluded pixel, neighboring visible pixels vote for the dis-
parity candidate which corresponds to their disparity values (d(n))
at the occluded pixel m proportional to the probability that the oc-
cluded and visible pixels have the same disparity value. In other
words, an occluded pixel with have a larger support when there are
more neighboring visible pixels with high probability.

The occlusion handling process can be divided into two parts as
shown in Fig. 2: initial and iterative support-and-decision processes.
In the initial step, the disparities and corresponding support of each
occluded pixel is computed using disparities of neighboring visible
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Fig. 1. Computation of support function in probabilistic framework.
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Fig. 2. Overall process of the proposed occlusion handling.

pixels according to Eq. (1). In this way, the visible pixel information
is propagated into the occluded region. Building from the disparities
and supports established in the initial step, the iterative support-and-
decision process is then performed to decide the final disparities and
corresponding support of each occluded pixel. Note that the subse-
quent iterative process is similar to the initial process, except that
it uses its own support for occluded pixels and performs a normal-
ization of the support value for each pixel. In this paper, since the
occlusion handling step is the same for the left and right disparity
maps, we describe the proposed method for only one image.

2.2. Initial support-and-decision process
In order to define the probability function p(m,n) between visible
and occluded pixels, we assume that depth discontinuities are likely
to correspond to color discontinuities, i.e., the neighboring pixels
with similar color usually have similar disparity values. This as-
sumption has been widely used in correspondence problems such as
stereo matching and motion estimation. Accordingly, we define a
weighting function w that is proportional to the probability function.

p(m,n) ∝ w(m,n) = exp

(
−D(m,n)

σ2
S

− D(Im, In)

σ2
I

)
(2)

w(m,n) is Gaussian distance function which consists of both geo-
metric and color distances. D(a, b) represents the squared Euclidean
distance, and Im is a 3-dimensional color vector with RGB compo-
nents. σ2

S and σ2
I are weighting constants for the geometric and color

distances, respectively. Using Eq. (2), the initial support function
SINI can be defined as follows:

SINI(m, d) =
∑

n∈N(m)

w(m,n)f(d, d(n))o(n) (3)

As previously mentioned, the initial support function SINI is
computed using the disparities of visible pixels. The weighting func-
tion w which is proportional to the probability function helps to lo-
calize discontinuities, similar to bilateral and anisotropic diffusion
filtering. For accurate occlusion handling, it is also required to gather
sufficient support from visible pixels, in order to decide an initial dis-
parity and support for each occluded pixel. Using the initial support
function SINI , the initial disparities and the corresponding supports
can be computed as follows:

d(m) = argmax
d

SINI(m, d)

S(m) = SINI(m, d(m))
(4)

The support function S represents the reliability of the initial
disparity computed at occluded pixel locations. Since the initial sup-
port function SINI is computed using the disparity of neighboring

(a) Ground truth with occlusion (b) Disparity after initial support
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Fig. 3. Disparity map and support values computed using initial
support process

visible pixels, the maximum value S of the initial support function
represents the likelihood that the occluded pixel m has disparity
d(m). Fig. 3 shows an initial disparity map and its support func-
tion. It is evident from this example that the support value of pixel
A is very large compared to that of pixel B. This implies that the
disparity value of pixel A is expected to be sufficiently reliable since
the occluded pixel A was supported by neighboring visible pixels
with high probability. The support values of occluded pixels deter-
mine the reliability of the initial disparities at occluded pixels. The
final disparity and the corresponding support values are then calcu-
lated by propagating the disparity and support values between the
occluded pixels in the iterative support-and-decision process.

2.3. Iterative support-and-decision process

The disparity and support values obtained in the initial support-and-
decision process are used to propagate information from the visible
pixels to the occluded pixels. Note that while the initial support-
and-decision process relies exclusively on disparities of the visible
pixels, the iterative support-and-decision process utilizes informa-
tion from within the occluded region as well. The iterative support-
and-decision process is similar to the initial process, except that a
normalization operation is applied at each iteration. The support and
normalization functions at the occluded pixels can be computed as
follows.

St+1
INT (m, d) =

∑
n∈N(m)

w(m,n)St(n)f(d, d(n))(1− o(n))

W (m, d) =
∑

n∈N(m)

w(m,n)f(d, d(n))(1− o(n))
(5)

where St(n) represents the support function at the tth iteration, and
we initialize S0(n) using S(n). St+1

INT (m, d) is the intermediate
(not normalized) support function, which is similar to the initial sup-
port function in Eq. (3). The occluded pixels vote for the disparity
candidate of the occluded pixels by using support values to represent
the reliability of the occluded pixels. In other words, since occluded
pixels that have a larger support value are more likely to have reli-
able disparity information, they carry higher weight in determining
the disparity and support values in the iterative stage. Therefore, the
disparity and the support functions are computed as follows.



dt+1(m) = argmax
d

St+1
INT (m, d)

St+1(m) = St+1
INT (m, dt+1(m))/W (m, dt+1(m))

(6)

The final support St+1(m) at the (t + 1)th iteration is normal-
ized by W . The normalization process is needed to preserve the sum
of support values while the iterative support-and-decision process
is in progress. The total sum of support values that are computed
in the initial support-and-decision process should be maintained in
the iterative filtering process, similar to the edge-preserving filtering
methods such as bilateral filtering and non-local means filtering.

2.4. Complexity analysis

In order to evaluate the computational complexity of the proposed
method, we compare it with the sequential occlusion handling method
in [6]. The complexity of the sequential occlusion handling method
is O(L ·W ·D), where L is the number of the occluded pixels in an
image, and W and D are the window size of the nonlinear filter and
search range, respectively. The computational complexity depends
on the search range since the method does the sequential nonlinear
filtering on each cost domain repeatedly. On the contrary, the com-
plexity of the proposed method is O(L · W ) and is independent of
the search range. Moreover, the occlusion handling process can be
done hierarchically as described in the following section, which ef-
fectively enables the proposed method to operate with a relatively
smaller window. The processing time of both methods will be de-
scribed in the experimental results.

3. ACCELERATION TECHNIQUES

The proposed method can be accelerated with numerical methods in-
cluding Gauss-Seidel acceleration and through a hierarchical scheme.
For Gauss-Seidel acceleration, the updated supports in each occluded
pixel are used immediately after they are computed in the iterative
support-and-decision process. This makes the iterative scheme more
efficient [6]. We divide a set of neighbor pixels N(m) into the causal
part Nc(m) and the noncausal part Nn(m). Using these two parts of
N(m), the support function in Eq. (5) can be described as follows.

St+1
INT (m, d) =∑

n∈Nc(m)

w(m,n)St+1(n)f(d, d(n))(1− o(n)) +∑
n∈Nn(m)

w(m,n)St(n)f(d, d(n))(1− o(n))
(7)

Another means to accelerate the proposed scheme is to apply
the method hierarchically. Since it is sometimes necessary to gather
support information at a large distance to ensure reliable occlusion
handling, the hierarchical scheme can efficiently propagate support
information between occluded pixels. In this scheme, the value that
is close to the optimal support at each level is initialized by using
the final value in the coarser level. In the first phase, the support
function at the coarsest level is initialized using S(m) in Eq. (4); the
stereo images are also subsampled in order to compute weighting
function w at each level. The iterative support-and-decision process
is then performed at each level. After T iterations, the resulting
disparity and support functions are used to initialize the disparity
and support functions in the finer level. Note that in this scheme
the upsampling step for the disparity and support functions is not
performed since it is impossible to perform the upsampling step with
the support function of occluded pixels having different disparity
values.

(a) Sequential handling (b) Proposed method

Fig. 4. Occlusion handling for ground truth disparity map with oc-
clusion in ‘Teddy’: Processing times are (a) 3.85s and (b) 0.41s.

(a) (b) (c) (d)

Fig. 5. Results of occlusion handling for ‘Teddy’ and ‘Cone’ images:
(a) left image, (b) occlusion, (c) sequential occlusion handling (d)
proposed occlusion handling

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method and com-
pared it with other methods using the Middlebury test set [7, 8] and
stereo video sequences ‘Heidelberg’ (1280 × 720) and ‘Rhineval-
ley’ (720 × 576), which are available online [9]. The stereo video
sequences ‘Heidelberg’ and ‘Rhinevalley’ were rectified using [10]
and the disparity search range was calculated using a temporally-
consistent range estimation method [11].

The proposed method is tested using the same parameters for all
test images, except the window size for computing an initial support
in Eq. (3). The weighting parameters are σs = 12.0 and σI = 7.0.
In the iterative process, the hierarchical scheme is set to two levels
and the number of iterations is 2 for all scales. The window sizes for
computing initial support are 11×11 for the Middlebury images, and
23×23 for the ‘Heidelberg’ and ‘Rhinevalley’ images, respectively.
The window sizes in the iterative step are 7 × 7 in the hierarchical
scheme (for all scales), and 11× 11 in the non-hierarchical scheme.

Fig. 4 shows the results of the occlusion handling for the ‘Teddy’
stereo image. The sequential occlusion handling [6] and proposed
methods were applied to a ground truth disparity map with occlusion
in order to compare the performance of occlusion handling. They
yielded similar results, but the processing time of the sequential oc-
clusion handling is nearly 9 times more than that of the proposed
method.

Fig. 5 and Table 1 show the results and objective evaluation of
the occlusion handling for the disparity map estimated using hierar-
chical belief propagation [12]. Due to lack of space, only the results
of ‘Teddy’ and ‘Cone’ are shown. The occluded pixels were esti-
mated using the cross-checking method with left and right disparity
maps. The proposed method is tested with both the non-hierarchical
and hierarchical schemes. Similar results for both the sequential oc-
clusion handling and the proposed methods are shown, however, as
shown in Table 2 the processing times of the sequential occlusion
handling is several times of that of the proposed method, especially



Table 1. Error rate (%) for all pixels in Middlebury test images
Images Tsukuba Venus Teddy Cone

Before Occ. Han. 4.42 2.59 14.8 13.9
Seq. Handling 2.61 1.73 14.2 7.96

Proposed (Non-Hier) 2.55 1.72 13.4 10.3
Proposed (Hier) 2.50 1.66 13.1 8.13

Table 2. Processing times (s) in Middlebury test images
Images Tsukuba Venus Teddy Cone

Seq. Handling 0.35s 0.65s 3.7s 3.9s
Proposed (Non-Hier) 0.22s 0.27s 0.4s 0.42s

Proposed (Hier) 0.25s 0.31s 0.38s 0.41s

in the ‘Teddy’ and ‘Cone’ stereo images whose search range is large
(0, 60). The reason for this is that the sequential handling method
does not scale well to large search ranges since it performs nonlin-
ear filtering for all the disparity candidates repeatedly, as discussed
in Section 2.4. The comparison between ‘Non-Hier’ and ‘Hier’ re-
sults show only minor improvements with the hierarchical scheme.
While the hierarchical scheme can use a reduced search range, there
are some additional operations such as image resampling and itera-
tive filtering at the coarser levels that must be accounted for. It may
be possible to optimize these processes further to achieve the full
benefits of the hierarchical scheme.

Figs. 6 and 7 show the occlusion handling results for ‘Rhineval-
ley’ and ‘Heidelberg’, respectively. The estimated disparity search
ranges are (−10, 38) for ‘Rhinevalley’ and (−4, 52) for ‘Heidel-
berg’ [11], and the disparity maps were estimated using the simpli-
fied method of [6]. We found that occluded pixels were generated
on both sides of the foreground objects due to errors in the stereo
matching methods. As shown in Figs. 6(c) and 7(b), such errors
cause problems in occlusion handling schemes based on extrapo-
lation since the processing order is based on the geometry order.
The results of the proposed method were based on the hierarchical
scheme and demonstrate clear improvements in accuracy compared
to the sequential occlusion handling method.

5. CONCLUSION

In this paper, we proposed a novel method for handling occlusion
using a support-and-decision framework. The proposed method as-
signs disparity values to the occluded pixels using support function
that represents the likelihood of having a specific disparity value.
Acceleration techniques are also proposed to propagate the support
information between occluded pixels efficiently. The experimental

(a) Left image (b) Occlusion

(c) Extrapolation (d) Sequential handling (e) Proposed method

Fig. 6. Results of occlusion handling for ‘Rhinevalley’ image: Pro-
cessing times are (c) 0.15s, (d) 33.8s and (e) 1.7s.

(a) Left image (b) Extrapolation

(c) Sequential handling (d) Proposed method

Fig. 7. Results of occlusion handling for ‘Heidelberg’ image: Pro-
cessing times are (b) 0.34s, (c) 44.7s and (d) 3.05s.

results shows that the proposed method works well for several stereo
images including Middlebury test data, and its computational com-
plexity is independent on the search range. In further research, we
plan to investigate the robustness of the occlusion handling algo-
rithm to errors in the occlusion detection. A method for temporally-
consistent occlusion handling may also be considered.
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