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Abstract
This paper presents a novel method for performing an

efficient cost aggregation in stereo matching. The cost ag-
gregation problem is re-formulated with a perspective of a
histogram, and it gives us a potential to reduce the com-
plexity of the cost aggregation significantly. Different from
the previous methods which have tried to reduce the com-
plexity in terms of the size of an image and a matching win-
dow, our approach focuses on reducing the computational
redundancy which exists among the search range, caused by
a repeated filtering for all disparity hypotheses. Moreover,
we also reduce the complexity of the window-based filtering
through an efficient sampling scheme inside the matching
window. The trade-off between accuracy and complexity
is extensively investigated into parameters used in the pro-
posed method. Experimental results show that the proposed
method provides high-quality disparity maps with low com-
plexity. This work provides new insights into complexity-
constrained stereo matching algorithm design.

1. Introduction
Depth estimation from a stereo image pair has been one

of the most important problems in the field of computer vi-
sion [1]. Generally, stereo matching methods can be classi-
fied into two approaches (global and local) according to the
strategies used for estimation. It has been generally known
that local approaches are much faster and more compati-
ble to a practical implementation than global approaches.
However, the complexity of the leading local approaches
which provide high-quality disparity maps is still huge. In
this paper, we explore the computational redundancy of cost
aggregation in the local approaches and propose a novel
method for performing an efficient cost aggregation.

Local approaches measure correlation between intensity
values inside a matching window N(p) of a reference pixel
p, based on the assumption that all the pixels in the match-
ing window have similar disparities. The performance
highly depends on how to find an optimal window for each

pixel. The general procedure of the local approaches is as
follows. For instance, when a truncated absolute difference
(TAD) is used to estimate a left disparity map, a per-pixel
cost e(p, d) for disparity hypothesis d is first calculated by
using the left and ‘d’-shifted right images. An aggregated
cost E(p, d) is then computed via an adaptive summation
of the per-pixel cost. This process, which causes a huge
complexity, is repeated for all the disparity hypotheses. The
Winner-Takes-All (WTA) technique is finally performed for
seeking the best one among all the disparity hypotheses as:

e(p, d) = min(|Il(x, y)− Ir(x− d, y)|, σ)

E(p, d) =

∑
q∈N(p)

w(p, q)e(q, d)∑
q∈N(p)

w(p, q)
(1)

d(p) = argmin
d∈[0,··· ,D−1]

E(p, d),

where Il and Ir are left and right color images, respectively.
The per-pixel cost is truncated with a threshold σ to limit
the influence of outliers to the dissimilarity measure. Note
that other dissimilarity measures such as Birchfield-Tomasi
dissimilarity [2], rank/census transform [3] or normalized
cross correlation (NCC) can also be used.

2. Previous work and motivation
For obtaining high-quality disparity maps, a number of

local stereo matching methods have been proposed by defin-
ing the weighting function w(p, q) which can implicitly
measure the similarity of disparity values between pixel p
and q. Yoon and Kweon [4] proposed an adaptive (soft)
weight approach which leverages the color and spatial sim-
ilarity measures with the corresponding color images, and
it can be interpreted as a variant of joint bilateral filter-
ing [10]. It is easy to implement and provides high accu-
racy, but has huge complexity due to its nonlinearity from
the computation of the weighting function. The color seg-
mentation based cost aggregation [5] was also presented
with the assumption that pixels inside the same segment
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are likely to have similar disparity values. Cross-based ap-
proaches [6][7] used a shape-adaptive window which con-
sists of multiple horizontal line segments spanning several
neighboring rows. The shape of the matching window N(p)
is estimated based on the color similarity and an implicit
connectivity constraint, and a hard weighting value (1 or 0)
is finally used.

In general, the complexity of the cost aggregation can be
characterized as O(HWBD), where H and W are the size
of an image, and B and D represent the size of the matching
window and the search range, namely, the number of dispar-
ity hypotheses. In order to reduce the complexity of the cost
aggregation, many algorithms have been proposed in terms
of the size of the image HW and the matching window
B. Min and Sohn [8] proposed a new multiscale approach
for ensuring reliable cost aggregation. They tried to reduce
the complexity by using smaller matching windows on the
coarse image and cost domains. Richardt et al. [9] reduced
the complexity of the adaptive support weight approach [4]
by using an approximation of a bilateral filter [11]. The
complexity is independent of the size of the matching win-
dow, but a grey image used in the bilateral grid causes some
loss of quality, because it cannot preserve the discrimina-
tive power of color vectors completely when the weighting
function w(p, q) is computed.

In this paper, we extensively explore the principles be-
hind the cost aggregation and propose a novel approach for
performing the cost aggregation in an efficient manner. Dif-
ferent from the conventional approaches which have tried
to reduce the complexity in terms of the size of the image
and the matching window by using a multiscale scheme [8]
or a signal processing technique [9], our approach focuses
on reducing the redundancy which exists among the search
range D, caused by the repeated calculation of E(p, d) for
all the disparity hypotheses in Eq. (1). Moreover, the re-
dundancy which exists in the window-based filtering is ex-
ploited as well. We will show that the proposed spatial sam-
pling scheme inside the matching window N(p) can lead to
a significant reduction of the complexity. Finally, the trade-
off between accuracy and complexity is extensively investi-
gated over the parameters used in the proposed method.

3. Efficient cost aggregation
3.1. New formulation for cost aggregation

For local approaches, cost aggregation is the most impor-
tant yet time-consuming part. In this paper, we re-formulate
the cost aggregation problem of Eq. (1) as:

eh(p, d) = max(σ − |Il(x, y)− Ir(x− d, y)|, 0)

E
′
(p, d) =

∑
q∈N(p)

w(p, q)eh(q, d)∑
q∈N(p)

w(p, q)
(2)

d(p) = argmax
d∈[0,··· ,D−1]

E
′
(p, d) .

After applying the same procedure, the output disparity
value d(p) is estimated by seeking the maximum value of
E

′
(p, d), which is the same to the solution of Eq. (1). The

re-defined eh(p, d) is likely to have a large value as the dis-
parity hypothesis d approaches a true disparity value. In this
paper, we define eh(p, d) as a likelihood (evidence) func-
tion, since it represents a probability that the pixel p has
for a specific disparity hypothesis d. We further modify the
formulation of the cost aggregation by omitting the normal-
ization term

∑
w(p, q) in Eq. (2). This modification does

not affect the accuracy of the cost aggregation, since the dis-
parity value d(p) is estimated for each pixel independently
where this normalization term is fixed for all ds. The aggre-
gated likelihood Eh(p, d) is then defined as follows.

Eh(p, d) =
∑

q∈N(p)

w(p, q)eh(q, d) (3)

It has a similar formulation to a histogram which repre-
sents a probability distribution of continuous (or discrete)
values in a given data. In general, each bin of the histogram
can be calculated by counting the number of corresponding
observations in the set of data. Similarly, given the data set
of the neighboring pixels q, the dth bin of the reference pixel
p is computed by counting the bin with the corresponding
eh(q, d). Since a single pixel q is associated with a set of
multiple data (i.e. eh(q, d) for all bin ds), the aggregated
likelihood function Eh(p, d) can be referred to as a relaxed
histogram.

Another characteristic of the proposed histogram-based
aggregation is the use of the weighting function w(p, q). As
previously mentioned, the weighting function can play an
important role for gathering the information of neighboring
pixels where disparity values are likely to be similar. In this
paper, we use a similarity measure based on the color and
spatial distances as follows [4][8]:

w(p, q) = exp

(
−
√

(Ip − Iq)2/σI −
√
(p− q)2/σS

)
.

Since the color similarity is measured by using a corre-
sponding color image, it shares the similar principle to the
joint bilateral filtering [10], where the weight is computed
with a signal different from the signal to be filtered. This
characteristic enables the joint histogram to be extended
into a weighted filtering with the support of color discrimi-
native power. In the following section, we will describe two
methods for reducing the complexity of building the joint
histogram Eh(p, d).

3.2. First approximation: compact representation
of likelihood for search range

Recently, several methods have been proposed using a
compact representation of the data that consists of a com-
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Figure 1. Disparity candidate selection with local/global maxima.

plex form in stereo matching. Yu et al. [12] proposed a
novel envelope point transform (EPT) method by applying a
principal components analysis (PCA) to compress messages
used in belief propagation [15]. Wang et al. [13] estimated
the subset of disparity hypotheses for reliably matched pix-
els and then propagated them on MRF formulation for esti-
mating the subset of unreliable pixels. Yang et al. [14] pro-
posed the method for reducing the search range and applied
it into hierarchical belief propagation [16]. PCA or Gaus-
sian Mixture Model (GMM) can be used for the compact
representation, but the compression for all pixels is time-
consuming.

The weighting function w(p, q) based on the color and
spatial distances have been used to obtain accurate disparity
maps as in Eq. (2). The cost aggregation hence becomes a
non-linear filtering, whose complexity is very high. In this
paper, we propose a new approach for reducing the com-
plexity from a perspective of the relaxed joint histogram.
Our key idea is to find a compact representation of the
per-pixel likelihood eh(p, d), based on the assumption that
eh(p, d) with low values do not provide really informative
support on the histogram-based aggregation.

In this paper, we extract the subset of local maxima at the
per-pixel likelihood eh(p, d) for the compact representation.
The per-pixel likelihood for each pixel is pre-filtered with a
5×5 box window for suppressing noise. The pre-filtering is
done for all disparity hypotheses, but its complexity is triv-
ial in case of using a spatial sampling method, which will be
described in the next section. The local maximum points are
calculated by using the profile of the pre-filtered likelihood
function. They are then sorted in a descending order and a
pre-defined number of disparity candidates Dc(≪ D) are
finally selected. If the number of the local maxima is less
than Dc, the values corresponding to the 2nd, 3rd (and so
on) highest likelihood are selected. Fig. 1 shows an exam-
ple of the disparity candidate selection for ‘Teddy’ stereo
images, where the number of the disparity hypotheses is 60.
The new aggregated cost Eh(p, d) is defined with the subset
of disparity hypotheses only.

Eh(p, d) =
∑

q∈N(p)

w(p, q)eh1 (q, d)o(q, d)

o(q, d) =

{
1 d ∈ SC(q)
0 otherwise

, (4)

(a) Conventional cost aggregation
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(b) Proposed method

Figure 2. Cost aggregation: (a) conventional approaches perform
nonlinear filtering with (or without) a color image for all dispar-
ity hypotheses: O(HWBD). (b) Proposed method estimates the
subset of disparity hypotheses, whose size is Dc(≪ D), and then
performs joint histogram-based aggregation: O(HWBDc).

where SC(q) is a subset of disparity hypotheses whose
size is Dc. Note that SC(q) varies for all pixels. eh1
represents the prefiltered likelihood with 5 × 5 box win-
dow. Fig. 2 explains the difference between the conven-
tional cost aggregation and the proposed method. When
the size of the matching window is set to B, the conven-
tional method performs the non-linear filtering for all pixels
(HW ) and disparity hypotheses (D), so the complexity is
O(HWBD). In contrast, the proposed method votes the
subset of informative per-pixel likelihoods (whose size is
Dc) into Eh(p, d) with the complexity of O(HWBDc).
Moreover, since the normalization term

∑
w(p, q) is not

used in the joint histogram Eh(p, d), the complexity has
been further reduced. We will show in the experimental re-
sults that the compact representation by the subset of local
maxima is helpful for reducing the complexity while main-
taining the accuracy.

3.3. Second approximation: spatial sampling of
matching window

Another source for reducing the complexity is on the
spatial sampling inside the matching window. There is a
trade-off between the accuracy and the complexity accord-
ing to the size of the matching window. In general, using a
large matching window and a well-defined weighting func-
tion w(p, q) for obtaining a high quality disparity map leads
to high computational complexity [4][8]. In this paper, we
handle this problem with a spatial sampling scheme inside

1569



(a) (b)
Figure 3. Spatial sampling of matching window: (a) reference
pixel p-dependent, (b) reference pixel p-independent sampling.

the matching window, different from the previous work that
used the signal processing technique [9].

Many approaches have used a smoothness assumption
that disparities inside an object vary smoothly, except near
the boundaries. A large window is generally needed for re-
liable matching, but it does not mean that all the pixels in-
side the matching window, whose disparity values are likely
to be similar in case of being located in the same object,
should be used altogether.

This observation suggests that the spatial sampling in-
side the matching window can reduce the complexity of the
window-based filtering. More specifically, the sparse sam-
ples inside the matching window could be enough to gather
reliable information. Ideally, the pixels can be classified ac-
cording to their likelihoods. It is, however, impossible to
classify the pixels inside the matching window according
to their disparity values, which should be finally estimated.
Color segmentation may be a good choice for grouping the
pixels, but the segmentation is time-consuming and not fea-
sible for a practical implementation.

In this paper, a simple but powerful way for the spa-
tial sampling is proposed. The pixels inside the match-
ing window are regularly sampled, and then only the sam-
pled ones are used for the joint histogram-based aggrega-
tion in Eq. (4). The neighboring pixels which are close
to each other are likely to have similar disparity values, so
that the regularly-sampled data is sufficient for ensuring re-
liable matching so long as the pixels at a distance are used.
As shown in Fig. 3, there are two ways for spatial sam-
pling: reference pixel p-dependent and independent sam-
pling. The p-dependent sampling can be defined as follows:

Eh(p, d) =
∑

q∈N(p)

w(p, q)eh1 (q, d)o(q, d)s1(p, q)

s1(p, q) =

{
1 |p− q|%S = 0
0 otherwise

, (5)

where s1(p, q) is a binary function capturing the regularly-
sampled pixels inside the matching window for a sampling
ratio S. As previously mentioned, the prefiltering with 5×5
window is applied for suppressing noise in the disparity
candidate selection. Since the likelihood profile for all dis-
parity hypotheses is saved for estimating the local maxima,
a 3D volume of eh(p, d) should be constructed for perform-
ing the efficient prefiltering with the constant time box fil-

(a) (b)

Figure 4. Examples of the disparity maps estimated by two sam-
pling methods on the ‘Cone’ image when S = 3 and Dc = 6:
(a) p-dependent sampling, (b) p-independent sampling. The pro-
cessing times are 3.58s(= 3.01s+ 0.57s) and 0.91s(= 0.34s+
0.57s).

tering. However, it causes a huge amount of memory (for
a 3D volume). For instance, a pair of HD (1920 × 1080)
images with 300 disparity candidates need 4.8GB to store a
floating point 3D cost volume, which make it difficult to im-
plement the algorithm efficiently on a GPU or an embedded
system. We hence calculate the dissimilarity measure ev-
ery time, not saving the precalculated per-pixel likelihoods.
In other words, the constant time or separable box filtering
methods are not used. However, this leads to relatively high
complexity, compared to that of the joint histogram-based
aggregation. For instance, when S = 3 and Dc = 6 for
the ‘Cone’ image in Fig. 4 (a), the processing time (3.01s)
of the disparity candidate selection, which consists of dis-
similarity measure, box filtering, and local maxima estima-
tion/sorting, is much longer than that (0.57s) of the joint
histogram-based cost aggregation.

The reference pixel p-independent sampling can handle
this problem. As shown in Fig. 3 (b), our new sampling
scheme can be defined as follows:

Eh(p, d) =
∑

q∈N(p)

w(p, q)eh1 (q, d)o(q, d)s2(q)

s2(q) =

{
1 q%S = 0
0 otherwise

, (6)

where s2(q) is also a binary function which is similar to
s1(p, q), but does not depend on the reference pixel p. All
the reference pixels are supported by the same regularly-
sampled neighboring pixels, so that we can reduce the com-
plexity of the disparity candidate selection with a factor of
the sampling ratio S×S. The dissimilarity is first measured
and the subset of the disparity hypotheses are then estimated
for every S pixel. Note that the sampling ratio S is related to
the sampling of the neighboring pixels only. Table 1 shows
a pseudo code for the proposed method.

Fig. 4 shows disparity maps estimated by two sampling
methods on the ‘Cone’ image, when S = 3 and Dc = 6.
The post-processing such as median filtering or occlusion
handling was not used to evaluate the performance of two
sampling methods only. The results are similar, except that
Fig. 4 (a) contains some checkered patterns on the object
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Table 1. Pseudo code for efficient likelihood aggregation.

Parameter definition
HW : The size of an image I
B: The size of matching window N(p) (=M ×M )
SD: The set of disparity hypotheses whose size is D
SC : The subset of disparity hypotheses whose size is Dc

S: Sampling ratio inside a matching window
Algorithm: Efficient likelihood aggregation
DISPARITY CANDIDATE SELECTION
Complexity: O(25HWD/S2)
For all pixels p which satisfy p%S = 0 and p ∈ I

1: Initialize prefiltered likelihood function eh1 (p, d)
to 0 for all ds.

For all disparity candidates d ∈ SD(p)
For all neighboring pixels which satisfy |p− q|∞ ≤ 2

2: Compute per-pixel likelihood eh(q, d) and
eh1 (p, d)+ = eh(q, d) (5× 5 box filtering)

End
End
3: Estimate SC(p) with the local maxima on eh1 (p, d)

End

JOINT HISTOGRAM-BASED AGGREGATION
Complexity: O(HWBDc/S

2)
For all reference pixels p ∈ I

4: Initialize likelihood function Eh(p, d) to 0 for all ds.
For neighboring pixels which satisfy |q1|∞ ≤ M/2S

5: Compute weight w(p, q) with color and spatial
distances between two neighboring pixels
p and q = ((int)(p/S) + q1)× S.
(Reference pixel p-independent sampling)

For all disparity candidates dq ∈ SC(q)
6: Eh(p, dq)+ = w(p, q)× eh1 (q, dq)

End
End
7: d(p) = argmax

d∈[0,··· ,D−1]

Eh(p, d)

End

boundaries, while the processing times are 3.58s(= 3.01s+
0.57s) and 0.91s(= 0.34s+ 0.57s), respectively.

4. Comparative study
We have implemented the proposed method and com-

pared the performance with state-of-the-arts methods in
the Middlebury test bed: ‘Tsukuba,’ ‘Venus,’ ‘Teddy,’ and
‘Cone’ stereo images [19]. The estimated disparity maps
are evaluated by measuring the percent of bad matching
pixels (where the absolute disparity error is larger than 1
pixel) for three subsets of an image: nonocc (the pixels in
the nonoccluded region), all (all the pixels), and disc (the
visible pixels near the occluded regions).

The proposed method has been tested using the same pa-
rameters, except for two parameters: the number of dispar-

ity candidates Dc and the spatial sampling ratio S. We in-
vestigated the effects of these two parameters for the accu-
racy and the complexity. The CIELab color space is used for
calculating the weighting function w(p, q), where σI and
σS are 5.0 and 17.5, respectively. The size of the match-
ing window N(p) is set to 31 × 31, and the census trans-
form [3], which is robust against photometric distortion, is
used for measuring the per-pixel likelihood eh(p, d). Oc-
clusion is also handled to evaluate the overall accuracy of
the estimated disparity maps. The occluded pixels are de-
tected by a cross-checking technique and the disparity value
of background regions is then assigned to the occluded pix-
els.

Fig. 5 shows an objective evaluation according to the
number of depth candidate Dc and the spatial sampling ra-
tio S. The average percent (%) of bad matching pixels for
‘nonocc’, ‘all’ and ‘disc’ regions is shown for each sam-
pling ratio S. Note that when S is set to 1 and all disparity
hypotheses are used (e.g. Dc = 60 for ‘Teddy’), the pro-
posed method is equivalent to the conventional cost aggre-
gation, except that the joint histogram-based aggregation is
used. We could find that the bad matching percent does not
converge (or sometimes it increases) as the number of dis-
parity hypothesis Dc increases. It indicates that using the
information of all the disparity hypotheses does not neces-
sarily guarantee to obtain the accurate disparity maps. In
other words, unnecessary candidates with low likelihood
(evidence) values may contaminate the likelihood aggrega-
tion process. In terms of the spatial sampling ratio S, we
found that the quality of the disparity maps is gradually de-
generated as S increases, but the results of S = 1, 2, 3 are
similar.

Next, we investigated the trade-off between the accuracy
and the complexity by comparing processing times in Fig. 6.
Due to the lack of space, we showed the results of ‘Tsukuba’
and ‘Teddy’ only. Note that the proposed method was im-
plemented on the CPU only, but it is easy to implement
on the GPU or FPGA thanks to its efficient memory uti-
lization and compatibility to parallel processing. The pro-
cessing time was measured for the calculation of a single
(left or right) disparity map and did not include the occlu-
sion detection/handling in order to compare the complexity
of the likelihood aggregation only. As expected, the pro-
cessing time is proportional to the number of disparity hy-
potheses Dc and the sampling ratio S × S. Interestingly,
when the number of disparity hypotheses Dc is small (e.g.
Dc = 1 ∼ 10 for ‘Teddy’ or ‘Cone’), the processing times
for S = 3 and 4 are almost similar. The trade-off in Fig. 6
(b) and (d) shows that the accuracy is not monotonically
increasing as the processing time (Dc) increases.

Fig. 7 shows the accuracy of the disparity candidate se-
lection in ‘nonocc’ regions of ‘Teddy’ image according to
the number of disparity hypotheses Dc. It was calculated
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Figure 5. Objective evaluation: average percent (%) of bad matching pixels for ‘nonocc’, ‘all’ and ‘disc’ regions according to Dc and S.
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(d) Trade-off on Teddy (S = 3)

Figure 6. Processing times (a,c) and trade-off (b,d) of the proposed method according to Dc and S. The results of ‘Tsukuba’ and ‘Teddy’
images only are shown due to the lack of space. One can find that the accuracy is not monotonically increasing as the processing time (Dc)
increases.

by counting the number of pixels whose subsets actually
include a ground truth disparity value. When Dc = 60,
namely the same to the original size, the subsets of all pix-
els include the ground truth disparity value. Interestingly,
when Dc = 6, only 89.5% pixels contain the ground truth
disparity values in their subsets, but the accuracy of the es-
timated disparity map (91.69%) is almost similar to these of
the best one (91.75%, when Dc = 11) or the disparity map
estimated with all the disparity hypotheses (91.67%, when
Dc = 60). This shows that the joint histogram based ag-
gregation can reliably handle errors of the initial candidate
selection by gathering the information appropriately from
the subsets of the neighboring pixels.

Fig. 8 shows the examples of the disparity maps esti-
mated by the proposed method when the number of dispar-
ity hypotheses Dc is 10% of the original search range and
the spatial sampling ratio S is fixed to 3. Namely, Dc is
set to 2 for ‘Tsukuba’, 2 for ‘Venus’, 6 for ‘Teddy’, and 6
for ‘Cone’, respectively. One could find that the proposed
method provides high-quality disparity maps, even though
a small number of disparity hypotheses are used. The pro-
cessing times including the occlusion detection/handling
are 0.34s for ‘Tsukuba’, 0.54s for ‘Venus’, 0.98s for
‘Teddy’, and 1.01s for ‘Cone’, respectively.

The objective evaluation is shown in Table 2 by report-
ing a comparison with other state-of-the-art methods. The
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(a) (b) (c) (d)

Figure 8. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cone’ image pairs: (a) original images, (b) ground truth maps,
(c) our results, (d) error maps. The number of disparity hypotheses Dc is set to 10% of the original search range and the spatial sampling
ratio S is set to 3.

���������	�
���
���	
������
����
����

����	�������
������
�������

� � �� �� �� �� 	� 	� 
� 
� �� �����
�������������
�������������������������������
�����������������������������������������������
Figure 7. Accuracy of the disparity candidate selection and the
finally estimated disparity map in ‘nonocc’ regions of ‘Teddy’ ac-
cording to Dc.

methods were sorted with APBP (Average Percent Bad Pix-
els). ‘Proposed method 1’ represents an objective evalua-
tion of Fig. 8. ‘Proposed method 2’ is the result when the
parameters (S and Dc) that provide the disparity maps with
the best accuracy are used.

For the comparison of the complexity, we referred to
the results reported in the previous work. The process-

ing time of the ‘AdaptWeight’ method [4] is 60s for
‘Tsukuba’, in contrast to 0.34s of the proposed method.
According to [17], the processing time of ‘FastBilateral’
method is 32s for ‘Teddy’, while that of the proposed
method is only 0.98s. Note that the processing time of
the proposed method also includes the occlusion detec-
tion/handling, while the previous works consider the cost
aggregation only.

One interesting fact is that two methods for reducing the
complexity of the joint histogram-based aggregation can be
combined with other cost aggregation methods as well. A
number of local approaches have been proposed by defining
the weighting function w(p, q) with hard or soft values. Af-
ter re-formulating these methods into the histogram-based
scheme, the compact representation of per-pixel likelihoods
and the spatial sampling of the matching window can be
used for an efficient implementation. Moreover, the trade-
off between the accuracy and the complexity presented here
can be taken into account in the complexity-constrained al-
gorithm design.
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Table 2. Objective evaluation for the proposed method with the Middlebury test bed [19]

Algorithm Tsukuba Venus Teddy Cone APBP (%)
nocc all disc nocc all disc nocc all disc nocc all disc

CostAggr+occ [8] 1.38 1.96 7.14 0.44 1.13 4.87 6.80 11.9 17.3 3.60 8.57 9.36 6.20
AdaptWeight [4] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

Proposed method 2 2.37 2.67 10.4 0.72 0.94 2.59 7.97 13.4 20.2 2.91 8.10 8.10 6.69
FastBilateral [17] 2.38 2.80 10.4 0.34 0.92 4.55 9.83 15.3 20.3 3.10 9.31 8.59 7.31

Proposed method 1 2.47 2.71 11.1 0.74 0.97 3.28 8.31 13.8 21.0 3.86 9.47 10.4 7.33
VariableCross [6] 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

ESAW [18] 1.92 2.45 9.66 1.03 1.65 6.89 8.48 14.2 18.7 6.56 12.7 14.4 8.21
FastAggreg 1.16 2.11 6.06 4.03 4.75 6.43 9.04 15.2 20.2 5.37 12.6 11.9 8.24

AdaptPolygon 2.29 2.88 8.94 0.80 1.11 3.41 10.5 15.9 21.3 6.13 13.2 13.3 8.32
DCBGrid [9] 5.9 7.26 21.0 1.35 1.91 11.2 10.5 17.2 22.2 5.34 11.9 14.9 10.9

SSD+MF 5.23 7.07 24.1 3.74 5.16 11.9 16.5 24.8 32.9 10.6 19.8 26.3 15.7

5. Conclusion
In this paper, we have presented a novel approach for

the efficient cost aggregation in stereo matching. We re-
formulated the problem in the perspective of the relaxed
joint histogram, given the per-pixel likelihood (evidence)
function. Some algorithms were then proposed for reduc-
ing the complexity of the joint histogram-based aggrega-
tion. Different from the conventional local approaches, we
could reduce the complexity in terms of the search range
by estimating a subset of informative disparity hypotheses.
The experimental results showed that the reliable dispar-
ity maps were obtained even when the number of dispar-
ity hypotheses Dc was less than 10% of the original search
range. Moreover, the complexity of the window-based pro-
cessing was dramatically reduced while keeping a similar
accuracy through the reference pixel-independent sampling
of the matching window. In further research, we will in-
vestigate more elaborate algorithms for selecting the subset
of disparity hypotheses. As shown in Fig. 5, the optimal
number of disparity hypotheses is dependent on the charac-
teristics of input images and the spatial sampling ratio S,
even though the proposed method can provide excellent re-
sults with a fixed number of disparity hypotheses (e.g. 10%
of the original search range). We plan to devise an efficient
method for estimating the optimal number Dc adaptively
for different input images.
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