
COST AGGREGATION WITH ANISOTROPIC DIFFUSION IN FEATURE SPACE FOR 
HYBRID STEREO MATCHING  

 
Bumsub Ham1, Dongbo Min2, Kwanghoon Sohn1 

 
Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, Korea1 

Advance Digital Science Center, Singapore2 
khsohn@yonsei.ac.kr  

 
ABSTRACT 

 
In this paper, we present a cost aggregation using anisotropic 
diffusion on a feature space for hybrid stereo matching. Stereo 
matching can be classified into two categories: feature-based and 
area-based approaches. Feature-based approaches generate 
accurate but sparse disparity maps. On the other hand, area-based 
approaches generate dense but unreliable disparity maps, 
especially at depth discontinuities and homogeneous regions. We 
hence propose a stereo matching algorithm having advantages of 
both approaches. We study how to design a correspondence 
algorithm without modeling any depth cues except disparity. A 
procedure of depth perception is modeled via anisotropic diffusion 
on the feature space in terms of coherence. Based on the 
assumption that similar local feature space has similar disparity, 
we define the feature space and its similarity and then introduce 
feature confidences into the proposed model. Experimental results 
show that the performance of the proposed method is comparable 
to that of the state-of-the-art methods.  
 

Index Terms— Stereo matching, cost aggregation, feature 
based matching, anisotropic diffusion, feature space analysis. 

 
 

1. INTRODUCTION 
Stereo matching has been one of the most important problems in 
computer vision task. Many researchers in this field have studied a 
correspondence problem due to its numerous applications, e.g., 
image based rendering (IBR), 3D reconstruction, robot vision, 
surveillance and so on. Solving the problem is, however, still 
challenging due to matching ambiguities especially at 
homogeneous (or repeated patterns) and occlusion regions. Many 
algorithms have been proposed with several constraints in order to 
relax these ambiguities. A comprehensive review of 
correspondence algorithms can be found in [1].  

Correspondence algorithms generally can be classified into two 
categories (feature- and area-based approaches) according to the 
density of the disparity map [2]. In feature-based approaches, 
structural information such as edge, corner and texture is used. It 
produces reliable but sparse disparity maps. The performance 
largely depends on how many reliable features are detected. It is 
difficult to find distinct features and match their correspondences 
due to the outliers. Veksler proposed semi-dense stereo matching 
algorithm which matches the detected dense features [2]. However, 
it processes each scanline independently and produces sparse 
disparity maps. Jawahar and Narayanan proposed a generalized 

correlation framework which can combine the different image 
features [3].  

Area-based approaches produce dense but unreliable disparity 
maps. It can be classified into two categories according to 
modeling of the smoothness assumption: Local and global 
approaches. Global approaches explicitly leverage the smoothness 
assumption into the energy model. It defines an energy function 
which consists of fidelity and smoothness term, and solves it by an 
inference algorithm such as belief propagation and graph cuts. 
Local (or window-based) approaches implicitly make smoothness 
assumption at the cost aggregation step. That is, all pixels in a 
support window have similar disparities. Therefore, localization, 
i.e., adaptively selecting window sizes and shapes, is important to 
aggregate only appropriate costs. Moreover, the foreground 
fattening may occur in case that there exist multiple disparities in a 
window. To overcome this problem, Kanade and Okutomi used an 
adaptive window size in order to localize only relevant disparities 
[4]. However, this method cannot localize well at depth 
discontinuities due to its rectangular window shape. Recently, 
Yoon and Kweon proposed adaptive support-weight approach [5]. 
This method aggregated costs based on the similarity and 
proximity weight by modeling the gestalt principles in a fixed 
window. Although this approach can handle successfully at depth 
discontinuities, it cannot handle homogeneous regions. In addition, 
classification and evaluation of the cost aggregation method can be 
found in [6].  

In this paper, we propose a cost aggregation method using 
anisotropic diffusion on the feature space. It is worthy of note that 
the proposed method has advantages of both feature- and area-
based approaches. The organization of this paper is as follows: In 
section 2, we study how to design a correspondence algorithm 
without modeling any depth cues but disparity. Section 3 discusses 
the proposed cost aggregation with anisotropic diffusion by 
defining the feature space and its similarity. The experimental 
results are shown in section 4. Finally, in section 5, we conclude 
with a brief summary. 

 
2. DESIGN OF CORRESPONDENCE MATCHING 

There are a number of cues which can help human perceive depth. 
Among them, monocular and binocular cues have been widely 
used for designing a correspondence matching algorithm. It is, 
however, impossible to perfectly model several depth cues. We 
pose how to find corresponding points without modeling any depth 
cues except disparity. Fortunately, it was shown that depth can be 
perceived even in the absence of monocular cues and binocular 
cues, which was proved by a picture called ‘Random dot 
stereogram’ [7]. It showed that the correspondence matching is 
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based on simple process of finding connected clusters formed by 
neighboring points with similar brightness. This observation is 
applied to the cost aggregation in stereo matching. A set of these 
points is defined as a feature space in this paper. Based on the 
assumption that two points are more likely to have similar depth if 
two feature spaces are similar, we define a new metric for 
measuring similarity between feature spaces and then formulate 
the cost aggregation method based on this metric in the following 
section. 
 

3. HYBRID COST AGGREGATION 
 

3.1. Feature space  
 

A feature space is defined as a set of points having similar 
brightness [7]. It is not easy to measure a similarity between 
feature spaces since they have arbitrary shapes and sizes. 
Therefore, comparing a representative value only can be an 
alternative way of measuring the similarity. Local mode can be 
used as a representative value in feature space since it 
characterizes the property of the space well. In other words, the 
local maxima in local histogram of each space are used for 
measuring the similarity of feature space. From now on, it is called 
coherence which represents the similarity of feature space. Finding 
local modes has been an important issue in the field of early vision. 
It was shown that local mode filtering, robust estimation and mean 
shift are equivalent [8]. In this paper, we find the local modes by 
using mean-shift analysis [9] as follows.  

Let pI be a vector which represents generalized pixel in 5D 

spaces as follows: 

( , )= T T T
p pI p c                                       (1) 

where ( , )x y= Tp and ( , , )L a b= T
pc represent spatial and color 

information (CIE-Lab color), respectively. Local modes can be 
found by iteratively computing mean vectors, followed by the 
translation of the kernel by using the mean shift vector in Eq. (2).  
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g ( )p ⋅  and g ( )c ⋅  are the spatial and color kernels with bandwidth 

p  and c , respectively, and Np  represents the neighborhood of p . 

Let us denote ( , )= T T T
p pI p c   the convergence point with initial 

condition ( , )= T T T
p pI p c . A feature space can then be represented 

as follows. 

( , )= T T T
p pF p c                                        (3) 

 
3.2. Cost aggregation via anisotropic diffusion on feature space 
 

Prazdny showed that a disparity gradient is a function of feature 
similarity, i.e., more dissimilar features allows larger disparity 
gradients [10]:  

( )1 / h∇ ∝ ∇D F                                   (4) 

where D and F represents the depth and feature space, 
respectively. ⋅  represents the norm of vector. ( )xh  is a 

monotonically decreasing function which satisfy ( ) 0xh → as 

x → ∞ . It coincides with our assumption as discussed in section 2, 
i.e., the similarity of the feature space is closely related to the 
similarity of the depth. The role of the function ( )xh  is the same 

as the “edge-stopping” function in anisotropic diffusion [11], 
which enables anisotropic diffusion to be applied to the cost 
aggregation for stereo matching.  

First, we calculate initial matching cost volume by shifting the 
target image further to the opposite direction of the reference 
image and then subtracting it from the reference image. We 
describe the cost aggregation via anisotropic diffusion as in Eq. (5). 
Let E be 2D cost plane which is a section of initial 3D cost volume.  

( ) ( )( )R Tg gf ft

∂ = ∇ ⋅ ∇ ∇ ∇
∂
E

F F E                  (5) 

The superscripts R and T represent reference and target images, 
respectively. ( )g f ⋅  is a monotonically decreasing function on 

feature space with bandwidth f . This function satisfies 

( )g 0f x → as x → ∞  in order to stop diffusion across different 

feature space.  

We call ( )Rg f ∇F  and ( )Tg f ∇F  as intra-coherence of the 

reference and target image, respectively. It represents coherence 
within an image. That is, a value of function is high if two points 
have similar feature spaces, which means that they belong to 
similar depth spaces as in Eq. (4). Inter-coherence is defined as a 
product of intra-coherence of the reference and target images.  
Therefore, two points are likely to have similar depth spaces as 
both intra-coherences are high. It also means that they belong to 
the similar feature space in both images. We discretize Eq. (5) 

using forward Euler approximation with initial condition 0E as in 
Eq. (6).  
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(a)                                              (b)                                             (c)                                              (d) 

Fig. 1.  Results of aggregated cost in ‘Venus’ for (a) initial matching cost, (b) anisotropic diffusion [14], (c) Adaptive weight [5], (d) 
proposed method when disparity is 0.  
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where = +p dq and = +s dr  with ( , 0)d= Td  in the target 

images are the corresponding points of p and s  in the reference 

image, respectively. λ is a time step which controls the rate of 

diffusion, t  is evolution parameter. Np  represents the 

neighborhood of p . Note that the neighborhood is extended in 
order to aggregate appropriate costs more reliably in contrast to 
conventional anisotropic diffusion, so that the gradient is 
approximated to the difference between pixels as follows [12]: 

( , )∇ ≈ − ∇≡s pF F F F s p                           (7) 

 
3.3. Feature confidence 
 

F  can be referred to as sets of diffused local mode in a feature 

space, so that a point ( , )= = T T T

p p p
I F p c which is inherently 

located at local mode is more reliable. That is, these points can be 
thought of as distinct features. We hence introduce the feature 
confidence term into Eq. (6). The final equation is shown in Eq. 
(8): 
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where cR  and  cT  are feature confidence of the reference and the 

target image as shown in Eq. (9) and Eq. (10), respectively. 

( ) ( )R Rg gp cc = − −R s ss s c c                        (9) 

( ) ( )T Tg gcpc = − −T r rr r c c                     (10) 

Finally, disparities are chosen by applying the winner-take-all 
method (WTA) in 3D cost volume of Eq. (8).  

Cost aggregation in the feature space has the following 
advantages: 1) Similar features are grouped together, which makes 
costs (or energy) vary smoothly within a same depth level. 2) It 
enables that different weights are adaptively imposed according to 
the relative importance of the features, and it provides better 
discriminative power for different depth levels. 3) A window can 
move dynamically in constructing the feature space, although it is 
fixed at cost aggregation step. This dynamic property helps the 
proposed method propagate the information into neighborhood 
very well. Consequently, homogeneous regions can be 
successfully handled with a relatively small window only. 

 
4. EXPERIMENTAL RESUTLS 

In this section, we present comparative results of the proposed 
method with other cost aggregation methods in Middlebury test 
bed [13]. The proposed method is tested using the same parameters 

for all the test images. The initial matching costs are calculated 
using truncated absolute error (TAD) with threshold value, 60. We 
use the following kernel function in all experiments for the sake of 
simplicity with bandwidths k .   

2 2( / )( ) exp x k
kg x −=                               (11) 

The bandwidths ( p , c  and f ) is fixed to 4.0. Time step ( λ ) is 

set to 0.5, and the number of iteration ( t ) is 100. The size of the 
neighborhood ( N ) is set to 11. Stereo matching algorithms in [5] 
[14] are implemented with the same parameters used in the papers. 
Note that we only compare the proposed method to the cost 
aggregation with anisotropic diffusion in [14], not the cost 
aggregation with weighted least square in [14].  

Fig. 1 shows the initial matching and aggregated cost plane 
when disparity is 0. Since we process stereo matching in the 
feature space, the proposed method localizes the same depth levels 
only, i.e., it diffuses pixels inside same depth levels while 
preventing pixels from being diffused across different depth levels. 
Therefore, distinct discrimination is observed across the different 
depth levels. As shown in Fig. 1, the results of the proposed 
method are superior to these of [5], although relatively small 
neighborhood is used. Note that the original ‘Adaptive weight’ 
results in [5] were not mentioned in the paper, since they used the 
additional handling for improving the accuracy of the stereo 
matching. Fig. 2 shows the estimated disparity maps with the 
proposed method. The occlusion handling methods or post-
processing are not used for fair evaluation of the cost aggregation 
only. The disparity maps are sharp at depth discontinuities, and 
smooth well enough at homogeneous regions. We use the results of 
[6] for quantitative comparison with other cost aggregation 
methods as shown in Table. 1. The symbol ‘*’ indicates the results 
of Fig. 2. (b). We present the results of NonOcc (all points except 
for occlude areas) and Disc (only points along depth 
discontinuities, not including occluded areas) only. We could find 
that the proposed method obtained the comparable performance 
with several cost aggregation methods. Especially, the 
performances of the ‘Tsukuba’ and ‘Venus’ are the best among all 
cost aggregation methods. 

 
5. CONCLUSION 

This paper has proposed new cost aggregation method for stereo 
matching. We have studied how to design a correspondence 
algorithm without modeling depth cues but disparity. In order to 
model disparity cues, we have defined a feature space and its 
similarity.  The proposed approach has been formulated via 
anisotropic diffusion in terms of intra- and inter-coherence. The 
proposed anisotropic diffusion on feature space can be referred to 
as a dense feature matching in the viewpoint of cost aggregation, 

Table 1 OBJECT EVALUATION FOR THE PROPOSED METHOD 

Algorithm 
Tsukuba Venus Teddy Cone 

NonOcc Disc NonOcc Disc NonOcc Disc NonOcc Disc 
Segment support 2.28 7.5 1.21 5.88 10.99 22.01 5.42 11.83 
Proposed method 1.8 7.27 1.13 4.92 11.2 23.2 5.6 12.4 
Adaptive weight [5] 4.66 8.25 4.61 13.3 12.7 22.4 5.5 11.9 
Adaptive weight* [5] 5.4 8.78 6.62 13.2 15.5 25.1 10.8 18.3 
VariableWindows 4.1 10.79 10.66 9.94 13.93 25.53 7.24 13.86 
Reliability 5.14 18.31 3.86 11.51 16.96 30.62 13.52 21.55 
ShiftableWindows 6.53 21.8 6.6 13.54 16.16 30.19 9.55 22.99 
Sgementat.based 8.18 18.77 8.06 20.85 15.78 29.66 13.22 24.55 
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so that it can be thought of as the hybrid approach which utilizes 
the advantages of feature- and area-based approaches together. We 
also have introduced the feature confidence into the proposed 
method so that the reliability is adaptively imposed into features. 
We have verified the performance of the proposed method 
qualitatively and quantitatively. We will extend this algorithm into 
occlusion handling. Furthermore, other applications will be also 
investigated with the proposed diffusion equation. 
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 (a)                                        (b)                                     (c)                                       (d)                                          (e) 

Fig. 2. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cone’. (a) reference images, (b) adaptive weight [5], (c) 
proposed method, (d) ground truth maps, (e) error maps. 
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