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Abstract

Techniques for dense semantic correspondence have pro-
vided limited ability to deal with the geometric variations
that commonly exist between semantically similar images.
While variations due to scale and rotation have been exam-
ined, there is a lack of practical solutions for more complex
deformations such as affine transformations because of the
tremendous size of the associated solution space. To ad-
dress this problem, we present a discrete-continuous trans-
formation matching (DCTM) framework where dense affine
transformation fields are inferred through a discrete label
optimization in which the labels are iteratively updated via
continuous regularization. In this way, our approach draws
solutions from the continuous space of affine transforma-
tions in a manner that can be computed efficiently through
constant-time edge-aware filtering and a proposed affine-
varying CNN-based descriptor. Experimental results show
that this model outperforms the state-of-the-art methods for
dense semantic correspondence on various benchmarks.

1. Introduction
Establishing dense correspondences across semantically

similar images is essential for numerous tasks such as non-
parametric scene parsing, scene recognition, image registra-
tion, semantic segmentation, and image editing [15, 33, 32].

Unlike traditional dense correspondence for estimating
depth [46] or optical flow [9, 51], semantic correspondence
estimation poses additional challenges due to intra-class
appearance and shape variations among object instances,
which can degrade matching by conventional approaches
[33, 59]. Recently, several methods have attempted to deal
with the appearance differences using convolutional neural
network (CNN) based descriptors because of their high in-
variance to appearance variations [34, 11, 61, 24]. However,
geometric variations are considered in just a limited manner
through constraint settings such as those used for depth or
optical flow. Some methods solve for geometric variations
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Figure 1. Visualization of our DCTM results: (a) source image, (b)
target image, (c), (d) ground truth correspondences, (e), (f), (g), (h)
warped images and correspondences after discrete and continuous
optimization, respectively. For images undergoing non-rigid de-
formations, our DCTM estimates reliable correspondences by it-
eratively optimizing the label space via continuous regularization.

such as scale or rotation [18, 41, 21], but they consider only
a discrete set of scales or rotations as possible solutions, and
do not capture the non-rigid geometric deformations that
commonly exist between semantically similar images.

It has been shown that these non-rigid image deforma-
tions can be locally well approximated by affine transfor-
mations [45, 30, 29]. To estimate dense affine transforma-
tion fields, a possible approach is to discretize the space of
affine transformations and find a labeling solution. How-
ever, the higher-dimensional search space for affine trans-
formations makes discrete global optimization algorithms
such as graph cut [6] and belief propagation [48, 52] com-
putationally infeasible. For more efficient optimization over
large label spaces, the PatchMatch Filter (PMF) [37] in-
tegrates constant-time edge-aware filtering (EAF) [43, 36]
with PatchMatch-based randomized search [2]. PMF is
leveraged for dense semantic correspondence in DAISY Fil-
ter Flow (DFF) [59], which finds labels for displacement
fields as well as for scale and rotation. Extending DFF to
affine transformations would be challenging though. One
reason is that its efficient technique for computing DAISY
features [54] at pre-determined scales and rotations cannot
be applied for affine transformations. Another reason is
that, as shown in [27, 21], the weak implicit smoothing em-
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bedded in PMF makes it more susceptible to erroneous local
minima, and this problem may be magnified in the higher-
dimensional affine transformation space. Explicit smooth-
ing models have been adopted to alleviate this problem in
the context of stereo matching [28, 3], but were designed
specifically for depth regularization.

In this paper, we introduce an effective method for esti-
mating dense affine transformation fields between semanti-
cally similar images, as shown in Fig. 1. The key idea is
to couple a discrete local labeling optimization with a con-
tinuous global regularization that updates the discrete can-
didate labels. An affine transformation field is efficiently
inferred in a filter-based discrete labeling scheme inspired
by PMF, and then the discrete affine transformation field is
globally regularized in a moving least squares (MLS) man-
ner [45]. These two steps are iterated in alternation un-
til convergence. Through the synergy of the discrete local
labeling and continuous global regularization, our method
yields continuous solutions from the space of affine trans-
formations, rather than selecting from a pre-defined, finite
set of discrete samples. We show that this continuous reg-
ularization additionally overcomes the aforementioned im-
plicit smoothness problem in PMF.

Moreover, we model the effects of affine transformations
directly within the state-of-the-art fully convolutional self-
similarity (FCSS) descriptor [24], which leads to significant
improvements in processing speed over computing descrip-
tors on various affine transformations of the image. Exper-
imental results show that the presented model outperforms
the latest methods for dense semantic correspondence on
several benchmarks, including that of Taniai et al. [53], Pro-
posal Flow [16], and PASCAL [10].

2. Related Work
Dense Semantic Flow Most conventional techniques for
dense semantic correspondence have employed handcrafted
features such as SIFT [35] or DAISY [54]. To improve
matching quality, they have focused on optimization. Liu et
al. [33] pioneered the idea of dense correspondence across
different scenes, and proposed SIFT Flow which is based
on hierarchical dual-layer belief propagation. Inspired by
this, Kim et al. [23] proposed the deformable spatial pyra-
mid (DSP) which performs multi-scale regularization with
a hierarchical graph. Among other methods are those that
take an exemplar-LDA approach [7], employ joint image set
alignment [62], or jointly solve for cosegmentation [53].

Recently, CNN-based descriptors have been used to es-
tablish dense semantic correspondences. Zhou et al. [61]
proposed a deep network that exploits cycle-consistency
with a 3D CAD model [40] as a supervisory signal. Choy
et al. [11] proposed the universal correspondence network
(UCN) based on fully convolutional feature learning. Most
recently, Kim et al. [24] proposed the FCSS descriptor that

formulates local self-similarity (LSS) [47] within a fully
convolutional network. Because of its LSS-based struc-
ture, FCSS is inherently insensitive to intra-class appear-
ance variations while maintaining precise localization abil-
ity. However, none of these methods is able to handle non-
rigid geometric variations.

Several methods aim to alleviate geometric variations
through extensions of SIFT Flow, including scale-less SIFT
Flow (SLS) [18], scale-space SIFT Flow (SSF) [41], and
generalized DSP (GDSP) [21]. However, these techniques
have a critical practical limitation that their computation in-
creases linearly with the search space size. A generalized
PatchMatch algorithm [2] was proposed for efficient match-
ing that leverages a randomized search scheme. This was
utilized by HaCohen et al. [15] in a non-rigid dense corre-
spondence (NRDC) algorithm, but employs weak match-
ing evidence that cannot guarantee reliable performance.
Geometric invariance to scale and rotation is provided by
DFF [59], but its implicit smoothing model which relies
on randomized sampling and propagation of good estimates
in the direct neighborhood often induces mismatches. A
segmentation-aware approach [56] was proposed to provide
geometric robustness for descriptors, but can have a neg-
ative effect on the discriminative power of the descriptor.
Recently, Ham et al. [16] presented the Proposal Flow (PF)
algorithm to estimate correspondences using object propos-
als. While these aforementioned techniques provide some
amount of geometric invariance, none of them can deal with
affine transformations across images, which are a frequent
occurrence in dense semantic correspondence.

Image Manipulation A possible approach for estimating
dense affine transformation fields is to interpolate sparsely
matched points using a method, including thin plate splines
(TPS) [4], motion coherence [60], coherence point drift
[39], or smoothly varying affine stitching [30]. MLS is also
a scattered point interpolation technique first introduced in
[26] to reconstruct a continuous function from a set of point
samples by incorporating spatially-weighted least squares.
MLS has been successfully used in applications such as im-
age deformation [45], surface reconstruction [13], image
super-resolution and denoising [5], and color transfer [22].
Inspired by the MLS concept, our method utilizes it to reg-
ularize estimated affine fields, but with a different weight
function and an efficient computational scheme.

More related to our work is the method of Lin et al.
[29], which jointly estimates correspondence and relative
patch orientation for descriptors. However, it is formu-
lated with pre-computed sparse correspondences and also
requires considerable computation to solve a complex non-
linear optimization. By contrast, our method adopts dense
descriptors that can be evaluated efficiently for any affine
transformation, and employs quadratic continuous opti-
mization to rapidly infer dense affine transformation fields.



3. Method
3.1. Problem Formulation and Model

Given a pair of images I and I ′, the objective of dense
correspondence estimation is to establish a correspondence
i′ for each pixel i = [ix, iy]. Unlike conventional dense cor-
respondence settings for estimating depth [46], optical flow
[9, 51], or similarity transformations [59, 21], our objective
is to infer a field of affine transformations, each represented
by a 2× 3 matrix

Ti =

[
Ti,x

Ti,y

]
(1)

that maps pixel i to i′ = Tii, where i is pixel i represented
in homogeneous coordinates such that i = [i, 1]T .

In this work, we solve for affine transformations that may
lie anywhere in the continuous solution space. This is made
possible by formulating the inference of dense affine trans-
formation fields as a discrete optimization problem with
continuous regularization. This optimization seeks to mini-
mize an energy of the form

E(T) = Edata(T) + λEsmooth(T), (2)

consisting of a data term that accounts for matching evi-
dence between descriptors and a smoothness term that fa-
vors similar affine transformations among adjacent pixels
with a balancing parameter λ.

Our data term is defined as follows:

Edata(T) =
∑
i

∑
j∈Ni

ωIij min(‖Dj −D′j′(Ti)‖1, τ). (3)

It is designed to estimate the affine transformation Ti by ag-
gregating the matching costs of descriptors between neigh-
boring pixels j and transformed pixels j′ = Tij within
a local aggregation window Ni. A truncation threshold τ
is used to deal with outliers and occlusions. It should be
noted that aggregated data terms have been popularly used
in stereo [46] and optical flow [27]. For dense semantic cor-
respondence, several methods have employed aggregated
data terms; however, they often produce undesirable results
across object boundaries due to uniform weights that ignore
image structure [23, 21], or fail to deal with geometric dis-
tortions like affine transformations as they rely on a reg-
ular grid structure for local aggregation windows [59]. By
contrast, the proposed method adaptively aggregates match-
ing costs using edge-preserving bilateral weights ωIij as in
[55, 19] on a geometrically-variant grid structure in order
to produce spatially smooth yet discontinuity-preserving la-
beling results even under affine transformations.

Our smoothness term is defined as follows to regularize
affine transformation fields Ti within a local neighborhood:

Esmooth(T) =
∑
i

∑
j∈Mi

υIij‖Tij−Tjj‖2. (4)
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Figure 2. Illustration of (a) FCSS descriptor [24] and (b) affine-
FCSS descriptor. Within a support window, sampling patterns Wl

s

and Wl
t are transformed according to affine fields Ti.

When the affine transformation T is constrained to [I2×2,u]
with u = [ux, uy]T and Mi is the 4-neighborhood, this
smoothness term becomes the first order derivative of the
optical flow vector as in many conventional methods [33,
38]. However, non-rigid deformations occur with high fre-
quency in semantic correspondence, and such a basic con-
straint is inadequate for modeling the smoothness of affine
transformation fields. Our smoothness term is formulated
to address this by regularizing estimated affine transforma-
tions Ti in a moving least squares manner [45] within lo-
cal neighborhoodMi. We define the smoothness constraint
of affine transformation fields by fitting Ti based on the
affine flow fields of neighboring pixels Tjj. Unlike con-
ventional moving least square solvers [45], our smoothness
term incorporates edge-preserving bilateral weights υIij as
in [55, 19] for image structure-aware regularization.

Minimizing the energy in (2) is a non-convex optimiza-
tion problem defined over an infinite continuous solution
space. A similar issue exists for optical flow estimation
[8, 58, 42]. To minimize the non-convex energy function,
several techniques such as a hybrid method with descrip-
tor matching [8, 42] and a coarse-to-fine scheme [58] have
been used, but they are tailored to optical flow estimation
and have exhibited limited performance. We instead use a
penalty decomposition scheme to alternately solve for the
discrete and continuous affine transformation fields. An ef-
ficient filter-based discrete optimization technique is used to
locally estimate discrete affine transformations in a manner
similar to PMF [37]. The weakness of the implicit smooth-
ing in the discrete local optimization is overcome by regu-
larizing the affine transformation fields through global op-
timization in the continuous space. This alternating opti-
mization is repeated until convergence. Furthermore, to ac-
quire matching evidence for semantic correspondence un-
der spatially-varying affine fields, we extend the FCSS de-
scriptor [24] to model affine variations.

3.2. Affine-FCSS Descriptor

To estimate a matching cost, a dense descriptor Di is ex-
tracted over the local support window of each image point
Ii. For this we employ the state-of-the-art FCSS descriptor



[24] for dense semantic correspondence, which formulates
LSS [47] within a fully convolutional network in a manner
where the patch sampling patterns and self-similarity mea-
sure are both learned. Formally, FCSS can be described as
a vector of feature values Di =

⋃
lDli for l ∈ {1, ..., L}

with the maximum number of sampling patterns L, where
the feature values are computed as

Dli = exp(−S(i−Wl
s, i−Wl

t)/Wσ). (5)

S(·, ·) represents the self-similarity between two convolu-
tional activations taken from a sampling pattern around cen-
ter pixel i, and can be expressed as

S(i−Wl
s, i−Wl

t) = ‖F(Ai;W
l
s)−F(Ai;W

l
t)‖2, (6)

where F(Ai;W
l
s) = Ai−Wl

s
and F(Ai;W

l
t) = Ai−Wl

t
,

Wl
s = [W l

s,x,W
l
s,y] and Wl

t = [W l
t,x,W

l
t,y] compose the

l-th learned sampling pattern, and Ai is the convolutional
activation through feed-forward process F(Ii;Wc) for Ii
with network weights Wc. The network parameters Wc,
Ws, Wt, and Wσ are learned in an end-to-end manner to
provide optimal correspondence performance.

The FCSS descriptor provides high invariance to appear-
ance variations, but it inherently cannot deal with geomet-
ric variations due to its pre-defined sampling patterns for all
pixels in an image. Furthermore, although its computation
is efficient, FCSS cannot in practice be evaluated exhaus-
tively over all the affine candidates during optimization. To
alleviate these limitations, we extend the FCSS descriptor to
adapt to affine transformation fields. This is accomplished
by reformulating the sampling patterns so that they account
for the affine transformations. To expedite this computa-
tion, we first compute Ai over the entire image domain by
passing it through the network. An FCSS descriptorDi(Ti)
transformed under an affine field Ti can then be built by
computing self-similarity on transformed sampling patterns

‖F(Ai;Ti[W
l
s, 0]T )−F(Ai;Ti[W

l
t, 0]T )‖2. (7)

With this approach, repeated computation of convolutional
activations over different affine transformations of the im-
age can be avoided. The affine transformation is efficiently
inferred in a discrete optimization described in the follow-
ing section. Differences between the FCSS descriptor and
the affine-FCSS descriptor are illustrated in Fig. 2.

3.3. Solution

Since affine transformation fields are defined in an in-
finite label space, minimizing our energy function E(T)
directly is infeasible. Through fine-scale discretization of
this space, affine transformation fields could be estimated
through discrete global optimization, but at a tremendous
computational cost. To address this issue, we introduce an
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Figure 3. Our DCTM method consists of discrete optimization and
continuous optimization. Our DCTM method differs from the con-
ventional PMF [37] by alternately optimizing the discrete label
space and performing the continuous regularization.

auxiliary affine field L to decouple our data and regular-
ization terms, and approximate the original minimization
problem as the following auxiliary energy formulation:

Eaux(T,L) =
∑
i

∑
j∈Ni

ωIij min(‖Dj −D′j′(Ti)‖1, τ)

+ µ
∑
i

‖Li −Ti‖2 + λ
∑
i

∑
j∈Mi

υIij‖Lij−Tjj‖2.

(8)

Since this energy function is based on two affine trans-
formations, L and T, we employ alternating minimization
to solve for them and boost matching performance in a syn-
ergistic manner. We split the optimization of Eaux(L,T)
into two sub-problems, namely a discrete local optimiza-
tion problem with respect to T and a continuous global op-
timization problem with respect to L. Increasing µ through
the iterations drives the affine fields T and L together and
eventually results in limµ→∞Eaux ≈ E.

Discrete Optimization To infer the discrete affine trans-
formation field Tt with Lt−1 being fixed at the t-th itera-
tion, we first discretize the continuous parameter space and
then solve the problem through filter-based label inference.
For discrete affine transformation candidates T ∈ L, the
matching cost between FCSS descriptors Dj and D′j′(T) is
first measured as

Cj(T) = min(‖Dj −D′j′(T)‖1, τ), (9)

where D′j′(T) is the affine-FCSS descriptor with respect
to T. This yields an affine-invariant matching cost. Fur-
thermore, since j′ varies according to affine fields such that
j′ = Tj, affine-varying regular grids can be used when ag-
gregating matching costs, thus enabling affine-invariant cost
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Figure 4. DCTM convergence: (a) Source image; (b) Target image; Iterative evolution of warped images (c), (e), (g) after discrete opti-
mization and (d), (f), (h) after continuous optimization. Our DCTM optimizes the label space with continuous regularization during the
iterations, which facilitates convergence and boosts matching performance.

aggregation. To aggregate the raw matching costs, we apply
EAF on Ci(T) such that

C̄i(T) =
∑

j∈Ni

ωIijCj(T), (10)

where ωIij is the normalized adaptive weight of a support
pixel j, which can be defined in various ways with respect
to the structures of the image I [55, 14, 19].

In determining the affine field T, the matching costs are
also augmented by the previously estimated affine transfor-
mation field Lt−1i such that

Gi(T) = µ‖T− Lt−1i ‖
2 + λ

∑
j∈Mi

υIij‖Tj− Lt−1i j‖2.

(11)
Since ‖Tj − Lt−1i j‖2 = ‖(T − Lt−1i )j‖2 and T − Lt−1i

is independent to pixel j within the support window, Gi(T)
can be efficiently computed by using constant-time EAF, as
described in detail in the supplementary material.

The resultant label at the t-th iteration is determined with
a winner-takes-all (WTA) scheme:

Tt
i = argminT∈L{C̄i(T) +Gi(T)}. (12)

Continuous Optimization To solve the continuous affine
transformation field Lt with Tt being fixed, we formulate
the problem as an image warping minimization:

∑
i

µ‖Li −Tt
i‖2 + λ

∑
j∈Mi

υIij‖Lij−Tt
jj‖2

 . (13)

Since this involves solving spatially-varying weighted
least squares at each pixel i, the computational burden in-
evitably increases when considering non-local neighbor-
hoodsMi. To expedite this, existing MLS solvers adopted
grid-based sampling [45] at the cost of quantization errors
or parallel processing [22] with additional hardware. In
contrast, our method optimizes the objective with a sparse
matrix solver, yielding a substantial runtime gain. Since the
Lij term can be formulated in the x- and y-directions sep-
aratively, [Li,xj,Li,yj]

T , we decompose the objective into

Algorithm 1: DCTM Framework
Input: images I , I ′, FCSS network parameter W
Output: dense affine transformation fields T
Parameters: number of segments K, pyramid levels F

/∗ Initialization ∗/
1 : Partition I into a set of disjoint K segments {Sk}
2 : Initialize affine fields as Ti = [I2×2,02×1]

for f = 1 : F do
3 : Build convolution activations Af , A′f for If , I ′f

4 : Initialize affine fields Tf
i = Lf−1i when f > 2

while not converged do
/∗ Discrete Optimization ∗/

5 : Initialize affine fields Tt
i = Lt−1i

for k = 1 : K do
/∗ Propagation ∗/

6 : For Sk, construct affine candidates
T ∈ Lp from neighboring segments

7 : Build cost volumes C̄i(T) and Gi(T)
8 : Determine Tt

i using (12)
/∗ Random Search ∗/

9 : Construct affine candidates T ∈ Lr
from randomly sampled affine fields

10 : Determine Tt
i by Step 7-8

end for
/∗ Continuous Optimization ∗/

11 : Estimate affine fields Lti from Tt
i using (15)

end while
end for

two separable energy functions. For the x-direction, the en-
ergy function can be represented as

∑
i

µ‖Li,x −Tt
i,x‖2 + λ

∑
j∈Mi

υIij‖Li,xj−Tt
j,xj‖2

 .

(14)

By setting the gradient of this objective with respect to Lx,i

to zero, the minimizer Lti,x is obtained by solving a linear
system based on a large sparse matrix:

(µ/λI + U)Ltx = (µ/λI + K)Tt
x, (15)



where I denotes a 3N×3N identity matrix withN denoting
the number of pixels in image I . Ltx and Tt

x denote 3N ×1
column vectors containing Lti,x and Tt

i,x, respectively. U
and K denote matrices defined as

U =

 ψ(VX2) ψ(VXY ) ψ(VX)
ψ(VXY ) ψ(VY 2) ψ(VY )
ψ(VX) ψ(VY ) IN×N

 , (16)

and

K =

 Vψ(X) 0 0
0 Vψ(Y ) 0
0 0 V

 , (17)

where V is anN×N kernel matrix whose nonzero elements
are given by the weights υIij , ψ(·) denotes a diagonalizaition
operator, X and Y denoteN ×1 column vectors containing
ix and iy, respectively. X2 = X ◦ X , Y 2 = Y ◦ Y , and
XY = X ◦ Y , where ◦ denotes the Hadamard product.

Since υIij is a normalized bilateral weight, the matrices
U and K can be efficiently computed using recent EAF al-
gorithms [14, 19]. Furthermore, since µ/λI+U is a block-
diagonal matrix, Ltx can be estimated efficiently using a fast
sparse matrix solver [25]. After optimizing Lty in a similar
manner, we then have the continuous affine fields Lt.

Iterative Inference In our filter-based discrete optimiza-
tion, exhaustively evaluating the raw and aggregated costs
for every labelL is still prohibitively time-consuming. Thus
we utilize the PMF [37] which jointly leverages label cost
filtering and fast randomized PatchMatch search in a high
dimensional label space. Our discrete optimization differs
from the PMF by optimizing the discrete label space with
continuous regularization during the iterations, which facil-
itates convergence and boosts matching performance.

We first decompose an image I into a set of K disjoint
segments I = {Sk, k = 1, ...,K} and build its set of spa-
tially adjacent segment neighbors. Then for each segment
Sk, two sets of label candidates from the propagation and
random search steps are evaluated for each graph node in
scan order. In the propagation step, for each segment Sk,
a candidate pixel i is randomly sampled from each neigh-
boring segment, and a set of current best labels Lp for i is
defined by {Ti}. For these Lp, EAF-based cost aggrega-
tion is then performed for the segment Sk. In the random
search step, a center-biased random search as done in Patch-
Match [2] is performed for the current segment Sk, where
a sequence of random labels Lr sampled around the current
best label is evaluated. After an iteration of the propagation
and random search steps for all segments, we apply con-
tinuous optimization as described in the preceding section
to regularize the discrete affine transformation fields. After
each iteration, we enlarge µ such that µ ← cµ with a con-
stant value 1 < c ≤ 2 to accelerate convergence. Fig. 3
summarizes our DCTM method, consisting of discrete and
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Figure 6. Average flow accuracy with respect to endpoint error
threshold on the Taniai benchmark [53].

continuous optimization, and Fig. 4 illustrates the conver-
gence of our DCTM method.

To boost matching performance and convergence of our
algorithm, we apply our method in a coarse-to-fine manner,
where images If are constructed at F image pyramid levels
f = {1, ..., F} and affine transform fields Tf are predicted
at level f . Coarser scale results are then used as initializa-
tion for the finer levels. Algorithm 1 provides a summary of
the overall procedure of our DCTM method.

4. Experimental Results

4.1. Experimental Settings

For our experiments, we used the FCSS descriptor pro-
vided by authors, which is learned on Caltech-101 dataset
[12]. For EAF for ωIij and υIij , we utilized the guided fil-
ter [20], where the radius and smoothness parameters are
set to {16, 0.01}. The weights in energy function were ini-
tially set to {λ, µ} = {0.01, 0.1} by cross-validation, but
µ increases as evolving iterations with c = 1.8. The SLIC
[1] segment number K increases sublinearly with the im-
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Figure 5. Qualitative results on the Taniai benchmark [53]: (a) source image, (b) target image, (c) Lin et al. [29], (d) DFF [59], (e) PF [16],
(f) Taniai et al. [53], (g) SF w/FCSS [24], and (h) DCTM. The source images were warped to the target images using correspondences.

Methods FG3D JODS PASC. Avg.
SIFT Flow [33] 0.632 0.509 0.360 0.500
DSP [23] 0.487 0.465 0.382 0.445
Zhou et al. [61] 0.721 0.514 0.436 0.556
Taniai et al. [53] 0.830 0.595 0.483 0.636
SF w/DAISY [54] 0.636 0.373 0.338 0.449
SF w/VGG [49] 0.756 0.490 0.360 0.535
SF w/FCSS [24] 0.830 0.653 0.494 0.660
SLS [18] 0.525 0.519 0.320 0.457
SSF [41] 0.687 0.344 0.370 0.467
SegSIFT [56] 0.612 0.421 0.331 0.457
Lin et al. [29] 0.406 0.283 0.161 0.283
DFF [59] 0.489 0.296 0.214 0.333
GDSP [21] 0.639 0.374 0.368 0.459
Proposal Flow [16] 0.786 0.653 0.531 0.657
DCTM w/DAISY 0.710 0.506 0.482 0.566
DCTM w/VGG 0.790 0.611 0.528 0.630
DCTM wo/Cont. 0.850 0.637 0.559 0.682
DCTM wo/C2F 0.859 0.684 0.550 0.698
DCTM 0.891 0.721 0.610 0.740

Table 1. Matching accuracy compared to state-of-the-art corre-
spondence techniques on the Taniai benchmark [53].

age size, e.g., K = 500 for 640 × 480 images. The image
pyramid level F is set to 3. We implemented our DCTM
method in Matlab/C++ on Intel Core i7-3770 CPU at 3.40
GHz, and measured the runtime on a single CPU core. Our
code will be made publicly available.

In the following, we comprehensively evaluated our
DCTM method through comparisons to the state-of-the-
art methods for dense semantic correspondences, including
SIFT Flow [33], DSP [23], Zhou et al. [61], UCN [11],
Taniai et al. [53], SIFT Flow optimization with VGG1 [49]
and FCSS [24] descriptor. Furthermore geometric-invariant
methods including SLS [18], SSF [41], SegSIFT [56], Lin
et al. [29], DFF [59], GDSP [21], and PF [16] were eval-
uated. The performance was measured on Taniai bench-
mark [53], Proposal Flow dataset [16], and PASCAL-VOC

1In the ‘VGG’, ImageNet pretrained VGG-Net [49] from the botton
conv1 to the conv3-4 layer were used with L2 normalization [50].

dataset [10]. To validate the components of our method,
we additionally examined the performance contributions of
the continuous optimization (wo/Cont.) and the coarse-to-
fine scheme (wo/C2F). Furthermore the performance of our
DCTM method when combined with other dense descrip-
tors2 was examined using the DAISY [54] and VGG [49].

4.2. Results

Taniai Benchmark [53] We first evaluated our DCTM
method on the Taniai benchmark [53], which consists of
400 image pairs divided into three groups: FG3DCar [31],
JODS [44], and PASCAL [17]. As in [53, 24], flow ac-
curacy was measured by computing the proportion of fore-
ground pixels with an absolute flow endpoint error that is
smaller than a certain threshold T , after resizing images so
that its larger dimension is 100 pixels.

Table 1 summarizes the matching accuracy for state-of-
the-art correspondence techniques (T = 5 pixels). Fig.
5 displays qualitative results for dense flow estimation.
Fig. 6 plots the flow accuracy with respect to error thresh-
old. Compared to methods based on handcrafted features
[41, 59, 21], CNN based methods [53, 24] provide higher
accuracy even though they do not consider geometric varia-
tions. The method of Lin et al. [29] cannot estimate reliable
correspondences due to unstable sparse correspondences.
Thanks to its discrete labeling optimization with contin-
uous regularization and affine-FCSS, our DCTM method
provides state-of-the-art performance.

Proposal Flow Benchmark [16] We also evaluated our
FCSS descriptor on the Proposal Flow benchmark [16],
which includes 10 object sub-classes with 10 keypoint an-
notations for each image. For the evaluation metric, we used
the probability of correct keypoint (PCK) between flow-
warped keypoints and the ground truth [34, 16]. The warped
keypoints are deemed to be correctly predicted if they lie
within α ·max(H,W ) pixels of the ground-truth keypoints
for α ∈ [0, 1], where H and W are the height and width
of the object bounding box, respectively. The PCK values

2These experiments use only the upright version of the descriptors.



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Qualitative results on the Proposal Flow benchmark [16]: (a) source image, (b) target image, (c) SSF [41], (d) DSP [23], (e)
GDSP [21], (f) PF [16], (g) SF w/FCSS [24], and (h) DCTM. The source images were warped to the target images using correspondences.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8. Visualizations of dense flow field with color-coded part segments on the PASCAL-VOC part dataset [10]: (a) source image, (b)
target image, (c) source mask, (d) DFF [59], (e) GDSP [21], (f) Zhou et al. [61], (g) SF w/FCSS [24], (h) DCTM, and (i) target mask.

Methods PCK
α = 0.05 α = 0.1 α = 0.15

SIFT Flow [33] 0.247 0.380 0.504
DSP [23] 0.239 0.364 0.493
Zhou et al. [61] 0.197 0.524 0.664
SF w/FCSS [24] 0.354 0.532 0.681
SSF [41] 0.292 0.401 0.531
Lin et al. [29] 0.192 0.354 0.487
DFF [59] 0.241 0.362 0.510
GDSP [21] 0.242 0.487 0.512
Proposal Flow [16] 0.284 0.568 0.682
DCTM 0.381 0.610 0.721

Table 2. Matching accuracy compared to state-of-the-art corre-
spondence techniques on the Proposal Flow benchmark [16].

were measured for different correspondence techniques in
Table 2. Fig. 7 shows qualitative results for dense flow
estimation. Our DCTM method exhibits performance com-
petitive to the state-of-the-art correspondence techniques.

PASCAL-VOC Parts Dataset [10] Lastly, we evaluated
our DCTM method on the dataset provided by [62], where
the images are sampled from the PASCAL parts dataset
[10]. With human-annotated part segments, we measured
part matching accuracy using the weighted intersection over
union (IoU) score between transferred segments and ground
truths, with weights determined by the pixel area of each
part. To evaluate alignment accuracy, we measured the PCK
metric using keypoint annotations for the 12 rigid PASCAL
classes [57]. Table 3 summarizes the matching accuracy
compared to state-of-the-art correspondence methods. Fig.
8 visualizes estimated dense flow with color-coded part seg-

Methods IoU PCK
α = 0.05 α = 0.1

Zhou et al. [61] - - 0.24
UCN [11] - 0.26 0.44
SF w/ FCSS [33] 0.44 0.28 0.47
DFF [59] 0.36 0.14 0.31
GDSP [21] 0.40 0.16 0.34
Proposal Flow [16] 0.41 0.17 0.36
DCTM 0.48 0.32 0.50

Table 3. Matching accuracy on the PASCAL-VOC dataset [10].

ments. From the results, our DCTM method is found to
yield the highest matching accuracy.

Computation Speed For all the test cases, our DCTM
method converges with 3-5 iterations on each image pyra-
mid level. For 320 × 240 images, the average runtime
of DCTM is 15-20 seconds, compared to 216 seconds for
GDSP [21], 73 seconds for DFF [59], 276 seconds for Lin
et al. [29], and 321 seconds for Taniai et al. [53].

5. Conclusion
We presented DCTM, which estimates dense affine

transformation fields through a discrete label optimization
in which the labels are iteratively updated via continuous
regularization. DCTM infers solutions from the continu-
ous space of affine transformations in a manner that can be
computed efficiently through constant-time edge-aware fil-
tering and the affine-FCSS descriptor. A direction for fur-
ther study is to examine how the semantic flow of DCTM
could benefit single-image 3D reconstruction and instance-
level object segmentation.
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