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Abstract

We present recurrent transformer networks (RTNs) for obtaining dense correspon-
dences between semantically similar images. Our networks accomplish this through
an iterative process of estimating spatial transformations between the input images
and using these transformations to generate aligned convolutional activations. By
directly estimating the transformations between an image pair, rather than employ-
ing spatial transformer networks to independently normalize each individual image,
we show that greater accuracy can be achieved. This process is conducted in a
recursive manner to refine both the transformation estimates and the feature repre-
sentations. In addition, a technique is presented for weakly-supervised training of
RTNs that is based on a proposed classification loss. With RTNs, state-of-the-art
performance is attained on several benchmarks for semantic correspondence.

1 Introduction

Establishing dense correspondences across semantically similar images can facilitate a variety of
computer vision applications including non-parametric scene parsing, semantic segmentation, object
detection, and image editing [25; 22; 20]. In this semantic correspondence task, the images resemble
each other in content but differ in object appearance and configuration, as exemplified in the images
with different car models in Fig. 1(a-b). Unlike the dense correspondence computed for estimating
depth [34] or optical flow [4], semantic correspondence poses additional challenges due to intra-class
appearance and shape variations among different instances from the same object or scene category.

To address these challenges, state-of-the-art methods generally extract deep convolutional neural
network (CNN) based descriptors [5; 45; 18], which provide some robustness to appearance variations,
and then perform a regularization step to further reduce the range of appearance. The most recent
techniques handle geometric deformations in addition to appearance variations within deep CNNs.
These methods can generally be classified into two categories, namely methods for geometric
invariance in the feature extraction step, e.g., spatial transformer networks (STNs) [15; 5; 20], and
methods for geometric invariance in the regularization step, e.g., geometric matching networks [30;
31]. The STN-based methods infer geometric deformation fields within a deep network and transform
the convolutional activations to provide geometric-invariant features [5; 41; 20]. While this approach
has shown geometric invariance to some extent, we conjecture that directly estimating the geometric
deformations between a pair of input images would be more robust and precise than learning to
transform each individual image to a geometric-invariant feature representation. This direct estimation
approach is used by geometric matching-based techniques [30; 31], which recover a matching model
directly through deep networks. Drawbacks of these methods include that globally-varying geometric
fields are inferred, and only fixed, untransformed versions of the features are used.
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(a) (b) (c) (d) (e) (f)

Figure 1: Visualization of results from RTNs: (a) source image; (b) target image; (c), (d) warped
source and target images using dense correspondences from RTNs; (e), (f) pseudo ground-truth
transformations as in [36]. RTNs learn to infer transformations without ground-truth supervision.

In this paper, we present recurrent transformer networks (RTNs) for overcoming the aforementioned
limitations of current semantic correspondence techniques. As illustrated in Fig. 2, the key idea
of RTNs is to directly estimate the geometric transformation fields between two input images, like
what is done by geometric matching-based approaches [30; 31], but also apply the estimated field to
transform the convolutional activations of one of the images, similar to STN-based methods [15; 5; 20].
We additionally formulate the RTNs to recursively estimate the geometric transformations, which are
used for iterative geometric alignment of feature activations. In this way, regularization is enhanced
through recursive refinement, while feature extraction is likewise iteratively refined according to the
geometric transformations as well as jointly learned with the regularization. Moreover, the networks
are learned in a weakly-supervised manner via a proposed classification loss defined between the
source image features and the geometrically-aligned target image features, such that the correct
transformation is identified by the highest matching score while other transformations are considered
as negative examples.

The presented approach is evaluated on several common benchmarks and examined in an ablation
study. The experimental results show that this model outperforms the latest weakly-supervised and
even supervised methods for semantic correspondence.

2 Related Work

Semantic Correspondence To elevate matching quality, most conventional methods for semantic
correspondence focus on improving regularization techniques while employing handcrafted features
such as SIFT [27]. Liu et al. [25] pioneered the idea of dense correspondence across different scenes,
and proposed SIFT flow. Inspired by this, methods have been presented based on deformable spatial
pyramids (DSP) [17], object-aware hierarchical graphs [39], exemplar LDA [3], joint image set
alignment [44], and joint co-segmentation [36]. As all of these techniques use handcrafted descriptors
and regularization methods, they lack robustness to geometric deformations.

Recently, deep CNN-based methods have been used in semantic correspondence as their descriptors
provide some degree of invariance to appearance and shape variations. Among them are techniques
that utilize a 3-D CAD model for supervision [45], employ fully convolutional feature learning [5],
learn filters with geometrically consistent responses across different object instances [28], learn
networks using dense equivariant image labelling [37], exploit local self-similarity within a fully
convolutional network [18; 20], and estimate correspondences using object proposals [7; 8; 38].
However, none of these methods is able to handle non-rigid geometric variations, and most of
them are formulated with handcrafted regularization. More recently, Han et al. [9] formulated the
regularization into the CNN but do not deal explicitly with the significant geometric variations
encountered in semantic correspondence.

Spatial Invariance Some methods aim to alleviate spatial variation problems in semantic corre-
spondence through extensions of SIFT flow, including scale-less SIFT flow (SLS) [11], scale-space
SIFT flow (SSF) [29], and generalized DSP (GDSP) [13]. A generalized PatchMatch algorithm [1]
was proposed for efficient matching that leverages a randomized search scheme. It was utilized by
HaCohen et al. [6] in a non-rigid dense correspondence (NRDC) algorithm. Spatial invariance to scale
and rotation is provided by DAISY filter flow (DFF) [40]. While these aforementioned techniques
provide some degree of geometric invariance, none of them can deal with affine transformations over
an image. Recently, Kim et al. [19; 21] proposed the discrete-continuous transformation matching
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Figure 2: Intuition of RTNs: (a) methods for geometric inference in the feature extraction step, e.g.,
STN-based methods [5; 20], (b) methods for geometric invariance in the regularization step, e.g.,
geometric matching-based methods [30; 31], and (c) RTNs, which weave the advantages of both
existing STN-based methods and geometric matching techniques, by recursively estimating geometric
transformation residuals using geometry-aligned feature activations.

(DCTM) framework where dense affine transformation fields are inferred using a hand-designed
energy function and regularization.

To deal with geometric variations within CNNs, STNs [15] offer a way to provide geometric invari-
ance by warping features through a global transformation. Inspired by STNs, Lin et al. [23] proposed
inverse compositional STNs (IC-STNs) that replaces the feature warping with transformation pa-
rameter propagation. Kanazawa et al. [16] presented WarpNet that predicts a warp for establishing
correspondences. Rocco et al. [30; 31] proposed a CNN architecture for estimating a geometric
matching model for semantic correspondence. However, they estimate only globally-varying geomet-
ric fields, thus leading to limited performance in dealing with locally-varying geometric deformations.
To deal with locally-varying geometric variations, some methods such as UCN-spatial transformer
(UCN-ST) [5] and convolutional affine transformer-FCSS (CAT-FCSS) [20] employ STNs [15] at
the pixel level. Similarly, Yi et al. [41] proposed the learned invariant feature transform (LIFT) to
learn sparsely, locally-varying geometric fields, inspired by [42]. However, these methods determine
geometric fields by accounting for the source and target images independently, rather than jointly,
which limits their prediction ability.

3 Background

Let us denote semantically similar source and target images as Is and It, respectively. The objective
is to establish a correspondence field fi = [ui, vi]

T between the two images that is defined for each
pixel i = [ix, iy]

T in Is. Formally, this involves first extracting handcrafted or deep features, denoted
by Ds

i and Dt
i , from Isi and Iti within local receptive fields, and then estimating the correspondence

field fi of the source image by maximizing the feature similarity between Ds
i and Dt

i+fi
over a set of

transformations using handcrafted or deep geometric regularization models. Several approaches [25;
18] assume the transformation to be a 2-D translation with negligible variation within local receptive
fields. As a result, they often fail to handle complicated deformations caused by scale, rotation, or skew
that may exist among object instances. For greater geometric invariance, recent approaches [19; 21]
have modeled the deformations as an affine transformation field represented by a 2× 3 matrix

Ti = [Ai | fi ] (1)

that maps pixel i to i′ = i+ fi. Specifically, they maximize the similarity between the source Ds
i and

target Dt
i′(Ai), where D(Ai) represents the feature extracted from spatially-varying local receptive

fields transformed by a 2× 2 matrix Ai [5; 20]. For simplicity, we denote Dt(Ti) = Dt
i+fi

(Ai).

Approaches for geometric invariance in semantic correspondence can generally be classified into two
categories. The first group infers the geometric fields in the feature extraction step by minimizing
a matching objective function [5; 20], as exemplified in Fig. 2(a). Concretely, Ai is learned
without a ground-truth A∗i by minimizing the difference between Ds

i and Dt
i+fi

(Ai) according to a
ground-truth flow field f∗i . This enables explicit feature learning which aims to minimize/maximize
convolutional activation differences between matching/non-matching pixel pairs [5; 20]. However,
ground-truth flow fields f∗i are still needed for learning the networks, and it predicts the geometric
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Figure 3: Network configuration of RTNs, consisting of a feature extraction network and a geometric
matching network in a recurrent structure.

fields Ai based only on the source or target feature, without jointly considering the source and target,
thus limiting performance.

The second group estimates a geometric matching model directly through deep networks by consider-
ing the source and target features simultaneously [30; 31]. These methods formulate the geometric
matching networks by mimicking conventional RANSAC-like methods [14] through feature extrac-
tion and geometric matching steps. As illustrated in Fig. 2(b), the geometric fields Ti are predicted
in a feed-forward network from extracted source features Ds

i and target features Dt
i . By learning

to extract source and target features and predict geometric fields in an end-to-end manner, more
robust geometric fields can be estimated compared to existing STN-based methods that consider
source or target features independently as shown in [31]. A major limitation of these learning-based
methods is the lack of ground-truth geometric fields T∗i between source and target images. To
alleviate this problem, some methods use self-supervision such as synthetic transformations [30] or
weak-supervision such as soft-inlier maximization [31], but these approaches constrain the global
geometric field only. Moreover, these methods utilize feature descriptors extracted from the original
upright images, rather than from geometrically transformed images, which limits their capability to
represent severe geometric variations.

4 Recurrent Transformer Networks

4.1 Motivation and Overview

In this section, we describe the formulation of recurrent transformer networks (RTNs). The objective
of our networks is to learn and infer locally-varying affine deformation fields Ti in an end-to-end
and weakly-supervised fashion using only image pairs without ground-truth transformations T∗i .
Toward this end, we present an effective and efficient integration of the two existing approaches for
geometric invariance, i.e., STN-based feature extraction networks [5; 20] and geometric matching
networks [30; 31], that includes a novel weakly-supervised loss function tailored to our objective.
Specifically, the final geometric field is recursively estimated by deforming the activations of feature
extraction networks according to the intermediate output of the geometric matching networks, in
contrast to existing approaches based on geometric matching which consider only fixed, upright
versions of features [30; 31]. At the same time, our method outperforms STN-based approaches [5;
20] by using a deep CNN-based geometric matching network instead of handcrafted matching
criteria. Our recurrent geometric matching approach intelligently weaves the advantages of both
existing STN-based methods and geometric matching techniques, by recursively estimating geometric
transformation residuals using geometry-aligned feature activations.

Concretely, our networks are split into two parts, as shown in Fig. 3: a feature extraction network
to extract source Ds

i and target Dt(Ti) features, and a geometric matching network to infer the
geometric fields Ti. To learn these networks in a weakly-supervised manner, we formulate a novel
classification loss defined without ground-truth T∗i based on the assumption that the transformation
which maximizes the similarity of the source features Ds

i and transformed target features Dt(Ti) at
a pixel i should be correct, while the matching scores of other transformation candidates should be
minimized.
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Figure 4: Visualization of search window Ni in RTNs (e.g., |Ni| : 5× 5): Source images with the
search window of (a) stride 4, (c) stride 2 , (e) stride 1, and target images with (b), (d), (f) transformed
points for (a), (c), (e), respectively. As evolving iterations, the dilate strides are reduced to consider
precise matching details.

4.2 Feature Extraction Network

To extract convolutional features for source Ds and target Dt, the input source and target images (Is,
It) are first passed through fully-convolutional feature extraction networks with shared parameters
WF such that Di = F(IiWF ), and the feature for each pixel then undergoes L2 normalization.
In the recurrent formulation, at each iteration the target features Dt can be extracted according to
Ti such that Dt(Ti) = F(It(Ti)|WF ). However, extracting each feature by transforming local
receptive fields within the target image It according to Ti for each pixel i and then passing it through
the networks would be time-consuming when iterating the networks. Instead, we employ a strategy
similar to UCN-ST [5] and CAT-FCSS [20] by first extracting the convolutional features of the
entire image It by passing it through the networks except for the last convolutional layer, and then
computing Dt(Ti) by transforming the resultant convolutional features and finally passing it through
the last convolution with stride to combine the transformed activations independently [5; 20]. It
should be noted that any other convolutional features [35; 12] could be used in this framework.

4.3 Recurrent Geometric Matching Network

Constraint Correlation Volume To predict the geometric fields from two convolutional features
Ds and Dt, we first compute the correlation volume with respect to translational motion only [30; 31]
and then pass it to subsequent convolutional layers to determine dense affine transformation fields. As
shown in [31], this two-step approach reliably prunes incorrect matches. Specifically, the similarity
between two extracted features is computed as the cosine similarity with L2 normalization:

C(Ds
i , D

t(Tj)) = < Ds
i , D

t(Tj) >/

√∑
l
< Ds

i , D
t(Tl) >2, (2)

where j, l ∈ Ni for the search window Ni of pixel i.

Compared to [30; 31] that consider all possible samples within an image, the constraint correlation
volume defined within Ni reduces the matching ambiguity and computational times. However, due
to the limited search window range, it may not cover large geometric variations. To alleviate this
limitation, inspired by [43], we utilize dilation techniques in a manner that the local neighborhood
Ni is enlarged with larger stride than 1 pixel, and this dilation is reduced as the iterations progress, as
exemplified in Fig. 4.

Recurrent Geometry Estimation Based on this matching similarity, the recurrent geometry es-
timation network with parameters WG iteratively estimates the residual between the previous and
current geometric transformation fields as

Tk
i −Tk−1

i = F(C(Ds
i , D

t(Tk−1));WG), (3)

where Tk
i denotes the transformation fields at the k-th iteration. The final geometric fields are then

estimated in a recurrent manner as follows:

Ti = T0
i +

∑
k∈{1,..,Kmax}

F(C(Ds
i , D

t(Tk−1));WG), (4)

where Kmax denotes the maximum iteration and T0
i is an initial geometric field. Unlike [30; 31]

which estimate a global affine or thin-plate spline transformation field, we formulate the encoder-
decoder networks as in [32] to estimate locally-varying geometric fields. Moreover, our networks are
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Figure 5: Convergence of RTNs: (a) source image; (b) target image; Iterative evolution of warped
images (c), (d), (e), and (f) after iteration 1, 2, 3, and 4. In the recurrent formulation of RTNs, the
predicted transformation field becomes progressively more accurate through iterative estimation.

formulated in a fully-convolutional manner, thus source and target inputs of any size can be processed,
in contrast to [30; 31] which can take inputs of only a fixed size.

Iteratively inferring affine transformation residuals boosts matching precision and facilitates conver-
gence. Moreover, inferring residuals instead of carrying the input information through the network has
been shown to improve network optimization [12]. As shown in Fig. 5, the predicted transformation
field becomes progressively more accurate through iterative estimation.

4.4 Weakly-supervised Learning

A major challenge of semantic correspondence with deep CNNs is the lack of ground-truth cor-
respondence maps for training. Obtaining such ground-truth data through manual annotation is
labor-intensive and may be degraded by subjectivity [36; 7; 8]. To learn the networks using only
weak supervision in the form of image pairs, we formulate the loss function based on the intuition
that the matching score between the source feature Ds

i at each pixel i and the target feature Dt(Ti)
should be maximized while keeping the scores of other transformation candidates low. This can
be treated as a classification problem in that the network can learn a geometric field as a hidden
variable for maximizing the scores for matchable Ti while minimizing the scores for non-matchable
transformation candidates. The optimal fields Ti can be learned with a classification loss [20] in a
weakly-supervised manner by minimizing the energy function

L(Ds
i , D

t(T)) = −
∑

j∈Mi

p∗j log(p(D
s
i , D

t(Tj))), (5)

where the function p(Ds
i , D

t(Tj)) is a softmax probability defined as

p(Ds
i , D

t(Tj)) =
exp(C(Ds

i , D
t(Tj)))∑

l∈Mi

exp(C(Ds
i , D

t(Tl)))
, (6)

with p∗j denoting a class label defined as 1 if j = i, and 0 otherwise for j ∈ Mi for the search
windowMi, such that the center point i withinMi becomes a positive sample while the other points
are negative samples.

With this loss function, the derivatives ∂L/∂Ds and ∂L/∂Dt(T) of the loss function L with respect
to the features Ds and Dt(T) can be back-propagated into the feature extraction networks F(·|WF ).
Explicit feature learning in this manner with the classification loss has been shown to be reliable [20].
Likewise, the derivatives ∂L/∂Dt(T) and ∂Dt(T)/∂T of the loss function L with respect to
geometric fields T can be back-propagated into the geometric matching networks F(·|WG) to learn
these networks without ground truth T∗.

It should be noted that our loss function is conceptually similar to [31] in that it is formulated with
source and target features in a weakly-supervised manner. While [31] utilizes only positive samples
in learning feature extraction networks, our method considers both positive and negative samples to
enhance network training.

5 Experimental Results and Discussion

5.1 Experimental Settings

In the following, we comprehensively evaluated our RTNs through comparisons to state-of-the-art
methods for semantic correspondence, including SF [25], DSP [17], Zhou et al. [45], Taniai et al. [36],
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Figure 7: Qualitative results on the TSS benchmark [36]: (a) source image, (b) target image, (c)
DCTM [18], (d) SCNet [9], (e) GMat. w/Inl. [31], and (f) RTNs. The source images are warped to
the target images using correspondences.

PF [7], SCNet [9], DCTM [18], geometric matching (GMat.) [30], and GMat. w/Inl. [31], as well as
employing the SIFT flow optimizer1 together with UCN-ST [5], FCSS [18], and CAT-FCSS [20].
Performance was measured on the TSS dataset [36], PF-WILLOW dataset [7], and PF-PASCAL
dataset [8]. In Sec. 5.2, we first analyze the effects of the components within RTNs, and then evaluate
matching results with various benchmarks and quantitative measures in Sec. 5.3.

5.2 Ablation Study
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Figure 6: Convergence analysis of RTNs
w/ResNet [12] for various numbers of
iterations and search window sizes on
the TSS benchmark [36].

To validate the components within RTNs, we evaluated
the matching accuracy for different numbers of itera-
tions, with various window sizes of Ni, for different back-
bone feature extraction networks such as VGGNet [35],
CAT-FCSS [20], and ResNet [12], and with pretrained or
learned backbone networks. For quantitative assessment,
we examined the matching accuracy on the TSS bench-
mark [36], as described in the following section. As shown
in Fig. 6, RTNs w/ResNet [12] converge in 3−5 iterations.
By enlarging the window size of Ni, the matching accu-
racy improves until 9×9 with longer training and testing
times, but larger window sizes reduce matching accuracy
due to greater matching ambiguity. Note thatMi = Ni.
Table 1 shows that among the many state-of-the-art fea-
ture extraction networks, ResNet [12] exhibits the best
performance for our approach. As shown in comparisons
between pretrained and learned backbone networks, learn-
ing the feature extraction networks jointly with geometric matching networks can boost matching
accuracy, as similarly seen in [31].

5.3 Matching Results

TSS Benchmark We evaluated RTNs on the TSS benchmark [36], which consists of 400 image
pairs divided into three groups: FG3DCar [24], JODS [33], and PASCAL [10]. As in [18; 19],
flow accuracy was measured by computing the proportion of foreground pixels with an absolute
flow endpoint error that is smaller than a threshold of T = 5, after resizing each image so that
its larger dimension is 100 pixels. Table 1 compares the matching accuracy of RTNs to state-of-
the-art correspondence techniques, and Fig. 7 shows qualitative results. Compared to handcrafted
methods [25; 17; 36; 7], most CNN-based methods have better performance. In particular, methods
that use STN-based feature transformations, namely UCN-ST [5] and CAT-FCSS [20], show improved
ability to deal with geometric variations. In comparison to the geometric matching-based methods
GMat. [30] and GMat. w/Inl. [30], RTNs consisting of feature extraction with ResNet and recurrent

1For these experiments, we utilized the hierarchical dual-layer belief propagation of SIFT flow [25] together
with alternative dense descriptors.
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Methods Feature Regular. Superv. FG3D. JODS PASC. Avg.

SF [25] SIFT SF - 0.632 0.509 0.360 0.500
DSP [17] SIFT DSP - 0.487 0.465 0.382 0.445
Taniai et al. [36] HOG TSS - 0.830 0.595 0.483 0.636
PF [7] HOG LOM - 0.786 0.653 0.531 0.657
DCTM [18] CAT-FCSS† DCTM - 0.891 0.721 0.610 0.740

UCN-ST [5] UCN-ST SF Sup. 0.853 0.672 0.511 0.679

FCSS [18; 20] FCSS SF Weak. 0.832 0.662 0.512 0.668
CAT-FCSS SF Weak. 0.858 0.680 0.522 0.687

SCNet [9] VGGNet AG Sup. 0.764 0.600 0.463 0.609
VGGNet AG+ Sup. 0.776 0.608 0.474 0.619

GMat. [30] VGGNet GMat. Self. 0.835 0.656 0.527 0.673
ResNet GMat. Self. 0.886 0.758 0.560 0.735

GMat. w/Inl. [31] ResNet GMat. Weak. 0.892 0.758 0.562 0.737

RTNs VGGNet† R-GMat. Weak. 0.875 0.736 0.586 0.732
RTNs VGGNet R-GMat. Weak. 0.893 0.762 0.591 0.749
RTNs CAT-FCSS R-GMat. Weak. 0.889 0.775 0.611 0.758
RTNs ResNet R-GMat. Weak. 0.901 0.782 0.633 0.772

Table 1: Matching accuracy compared to state-of-the-art correspondence techniques (with feature,
regularization, and supervision) on the TSS benchmark [36]. † denotes a pre-trained feature.

(a) (b) (c) (d) (e) (f)

Figure 8: Qualitative results on the PF-WILLOW benchmark [7]: (a) source image, (b) target image,
(c) UCN-ST [5], (d) SCNet [9], (e) GMat. w/Inl. [31], and (f) RTNs. The source images are warped
to the target images using correspondences.

geometric matching modules provide higher performance. RTNs additionally outperform existing
CNN-based methods trained with supervision of flow fields. It should be noted that GMat. w/Inl. [31]
was learned with the initial network parameters set through self-supervised learning as in [30]. RTNs
instead start from fully-randomized parameters in geometric matching networks.

PF-WILLOW Benchmark We also evaluated our method on the PF-WILLOW benchmark [7],
which includes 10 object sub-classes with 10 keypoint annotations for each image. For the evaluation
metric, we use the probability of correct keypoint (PCK) between flow-warped keypoints and the
ground truth [26; 7] as in the experiments of [18; 9; 20]. Table 2 compares the PCK values of
RTNs to state-of-the-art correspondence techniques, and Fig. 8 shows qualitative results. Our RTNs
exhibit performance competitive to the state-of-the-art correspondence techniques including the
latest weakly-supervised and even supervised methods for semantic correspondence. Since RTNs
estimate locally-varying geometric fields, it provides more precise localization ability, as shown in the
results of α = 0.05, in comparison to existing geometric matching networks [30; 31] which estimate
globally-varying geometric fields only.

PF-PASCAL Benchmark Lastly, we evaluated our method on the PF-PASCAL benchmark [8],
which contains 1,351 image pairs over 20 object categories with PASCAL keypoint annotations [2].
Following the split in [9; 31], we used 700 training pairs, 300 validation pairs, and 300 testing
pairs. For the evaluation metric, we use the PCK between flow-warped keypoints and the ground

8



Methods PF-WILLOW [7] PF-PASCAL [8]

α = 0.05 α = 0.1 α = 0.15 α = 0.05 α = 0.1 α = 0.15

PF [7] 0.284 0.568 0.682 0.314 0.625 0.795
DCTM [18] 0.381 0.610 0.721 0.342 0.696 0.802
UCN-ST [5] 0.241 0.540 0.665 0.299 0.556 0.740
CAT-FCSS [20] 0.362 0.546 0.692 0.336 0.689 0.792
SCNet [9] 0.386 0.704 0.853 0.362 0.722 0.820
GMat. [30] 0.369 0.692 0.778 0.410 0.695 0.804
GMat. w/Inl. [31] 0.370 0.702 0.799 0.490 0.748 0.840

RTNs w/VGGNet 0.402 0.707 0.842 0.506 0.743 0.836
RTNs w/ResNet 0.413 0.719 0.862 0.552 0.759 0.852

Table 2: Matching accuracy compared to state-of-the-art correspondence techniques on the PF-
WILLOW benchmark [7] and PF-PASCAL benchmark [8].

(a) (b) (c) (d) (e) (f)

Figure 9: Qualitative results on the PF-PASCAL benchmark [8]: (a) source image, (b) target image,
(c) CAT-FCSS w/SF [20], (d) SCNet [9], (e) GMat. w/Inl. [31], and (f) RTNs. The source images are
warped to the target images using correspondences.

truth as done in the experiments of [9]. Table 2 summarizes the PCK values, and Fig. 9 shows
qualitative results. Similar to the experiments on the PF-WILLOW benchmark [7], CNN-based
methods [9; 30; 31] including our RTNs yield better performance, with RTNs providing the highest
matching accuracy.

6 Conclusion

We presented RTNs, which learn to infer locally-varying geometric fields for semantic correspondence
in an end-to-end and weakly-supervised fashion. The key idea of this approach is to utilize and
iteratively refine the transformations and convolutional activations via geometric matching between
the input image pair. In addition, a technique is presented for weakly-supervised training of RTNs. A
direction for further study is to examine how the semantic correspondence of RTNs could benefit
single-image 3D reconstruction and instance-level object detection and segmentation.
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