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Abstract—This paper presents a novel method for cost ag-
gregation and occlusion handling for stereo matching. In order
to estimate optimal cost, given a per-pixel difference image as
observed data, we define an energy function and solve the min-
imization problem by solving the iterative equation with the
numerical method. We improve performance and increase the
convergence rate by using several acceleration techniques such as
the Gauss–Seidel method, the multiscale approach, and adaptive
interpolation. The proposed method is computationally efficient
since it does not use color segmentation or any global optimization
techniques. For occlusion handling, which has not been performed
effectively by any conventional cost aggregation approaches, we
combine the occlusion problem with the proposed minimization
scheme. Asymmetric information is used so that few additional
computational loads are necessary. Experimental results show
that performance is comparable to that of many state-of-the-art
methods. The proposed method is in fact the most successful
among all cost aggregation methods based on standard stereo test
beds.

Index Terms—Cost aggregation, multiscale approach, occlusion
handling, stereo vision, weighted least square.

I. INTRODUCTION

F OR decades, the correspondence problem has been an im-
portant issue in the field of computer vision, and many

methods have been proposed to solve this problem. Given two
or more images of the same scene taken from different view-
points, the correspondence problem is to find the corresponding
points in other images for a pixel in one image and compute the
disparity map which is a set of the displacement vectors between
the corresponding pixels. In binocular stereo, it is assumed that
two input images are calibrated and rectified in order to make
the problem easy and accurate, so that epipolar line becomes
horizontal and the search range is limited in a horizontal di-
rection. Dense disparity maps acquired by stereo matching can
be used in many applications, including image-based rendering,
3-D object modeling, robot vision, tracking, etc. An extensive
review of stereo matching algorithms can be found in [1]. Stereo
matching presents a difficult problem due to image ambiguity.
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This ambiguity may include noise factors, occlusion, and lack
of texture. In order to reduce the ambiguities and uncertainties
of matching, many algorithms have been proposed using sev-
eral constraints. Generally, stereo matching algorithms can be
classified into two approaches (global and local) based on the
strategies used for estimation. Global approaches define energy
models that apply various constraints to reduce uncertainties of
disparity maps and solve them through various minimization
techniques (such as graph cut and belief propagation). Local ap-
proaches use correlations between color or intensity patterns in
neighboring windows. These approaches can easily obtain cor-
rect disparities in highly textured regions. However, they often
tend to produce noisy results in large untextured regions. More-
over, they assume that all the pixels in a matching window have
similar disparities, resulting in blurred object boundaries and the
removal of small details. Performance depends on how the op-
timal window is selected in each pixel, but finding an optimal
window with an arbitrary shape and size is very difficult. This is
generally known as the NP-hard problem. To define the optimal
window for each pixel well, it is necessary to be aware of depth
information, which must be estimated. To solve this problem, a
number of methods have been proposed.

In general, adaptive window algorithms try to find optimal
windows for each pixel by adaptively changing the window size
and shape. Kanade and Okutomi [2] proposed a way of selecting
an appropriate window by evaluating the local intensity and dis-
parity variations. This method is, however, highly dependent on
the initial disparity estimation and is computationally expen-
sive. Moreover, the window shape has to be constrained as a
rectangle due to the high computational complexity. Boykov
[3] proposed a way of performing plausibility testing and com-
puting accurate windows for each pixel. Veksler [4] presented
an algorithm that could be used to select a certain window size
and shape over a large class of many windows. Efficient opti-
mization over many windows was achieved using the minimum
ratio cycle algorithm for graphs. However, the window shape is
not general and the computation of window cost requires many
parameters. For further efficient implementation, a fast method
was proposed with integral images and dynamic programming
[5]. Segmentation-based cooperation works by selecting the size
and shape of windows by using the segmentation results for ref-
erence images [6]–[8]. These approaches yield good results, but
they require color segmentation, which may cause high compu-
tational complexity. Gong [9] proposed the adaptive cost aggre-
gation scheme using edge detection instead of color segmenta-
tion for real-time implementation with graphic hardware (GPU).
Tang [10] presented a method of region growing with an adap-
tive window, but the weight of the window depended on the geo-
metric distance only. Yoon et al. [11] used boundary informa-
tion to compute accurate windows for each pixel, and solved
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the iterative problem in a hierarchical framework, known as the
scale-variant iterative scheme.

Multiple window algorithms evaluate a small number of dif-
ferent windows, whose reference points lie in several positions,
and then select the one with the lowest cost [12]. Okutomi et al.
[13] used multiple stereo pairs and windowing to solve the
boundary overreach and occlusion problems.

Yoon and Kweon [14] proposed a general method that com-
putes an optimal local support window. It uses a fixed-sized
support window with varying weights for each pixel. Although
no global optimization techniques were used in the original re-
search, it yielded very strong results. However, in general, it is
very computationally expensive to perform pixel-wise support
weight computation. Wang et al. [15] introduced the adaptive
weight approach in a dynamic programming framework, and
applied the method into a real-time approach, by using GPU
hardware. The matching cost is aggregated over the vertical 1-D
window only. They also proposed a two-pass approximation
scheme to accelerate the original method.

Another issue discussed in this paper is occlusion handling.
For stereo image pairs, occluded pixels are usually only vis-
ible in one image so it is impossible to estimate disparity in-
formation from the occluded pixels. However, in many appli-
cations such as image-based rendering and 3-D modeling, it is
necessary to assign reasonable disparity fields to the occluded
pixels. Several constraints have been used in stereo matching
for occlusion handling. The ordering constraint preserves the
order of matching along the scanline in stereo image pairs. Ap-
proaches which exploit the ordering constraint have used dy-
namic programming [16]. Stereo matching has been formulated
as the problem of finding a minimum cost path in the matrix of
matching costs between the corresponding scanlines. Dynamic
programming finds the minimum path for each scanline. In the
estimated minimum path, the discontinuities correspond to the
left and right occlusions. This approach is very efficient but the
ordering constraint is invalid when an image has a thin object.
Moreover, to generate the cost matrix it is necessary to define
an appropriate penalty for occluded pixels, which may be sensi-
tive to the matching cost. The uniqueness constraint means that
the corresponding points between the two images are unique.
According to this principle, each pixel must have at most one
disparity vector. A simple method of detecting occlusion with
the uniqueness constraint is the cross-checking technique. Many
approaches have been proposed to estimate the disparity of the
occluded pixels by combining the uniqueness constraint into a
global optimization method [17], [18]. Most approaches have
used iterative schemes to detect the occlusion regions and as-
sign predefined values to the occluded pixels, which may also
be sensitive to the matching cost. They estimate the symmetric
disparity fields for the left and right images, which may cause
the computational complexity to double.

In this paper, we propose a novel approach of performing
efficient cost aggregation and handling occlusion for stereo
matching. Most conventional cost aggregation methods have
tried to find the optimal window by using different, predefined
windows or by computing the weight of the window based on
disparity and intensity information. To estimate the optimal
cost, given a per-pixel difference image as observed data, we
define an energy function and solve the minimization problem

by solving a corresponding iterative equation with the numer-
ical method. In this case, since the energy function is convex,
its minimization problem does not suffer from being trapped
in local minima. For occlusion handling, it is not necessary
to define a predefined value for the occluded pixel and it is
possible to use asymmetric information, that is, only the left
disparity field needs to be used. Therefore, it is possible to
estimate the disparity fields for the occluded pixels efficiently
and correctly. The main contributions of the proposed method
are as follows.

1) We define an energy function for optimal cost aggregation
and solve the minimization problem using the numerical
method.

2) When solving the iteration scheme, we use several acceler-
ation techniques to improve performance and increase the
convergence rate.

3) We combine the occlusion problem, which has not been
solved by any existing cost aggregation approaches, into
the iterative scheme. We only use asymmetric informa-
tion for occlusion handling with trivial additional compu-
tational loads.

The minimization problem can be converted into non-
linear diffusion filtering while respecting the discontinuities.
Nonlinear filtering is used to solve various problems in-
cluding image restoration/denoising, motion estimation, stereo
matching, etc. In stereo matching, many approaches have
been proposed to estimate the disparity field which has good
discontinuity localization and is robust to textureless regions
[19], [20]. The proposed method differs from conventional
methods in the sense that nonlinear filtering is executed in the
matching cost domain, not in the image domain. Therefore, the
minimization problem is not trapped in local minima, which is
one of the most serious problems of stereo matching or motion
estimation when using the variational method. We manage to
solve the occlusion problem by combining it into the iterative
scheme to minimize the proposed energy function.

The remainder of this paper is organized as follows. In
Section II, we discuss the proposed method, and then intro-
duce the cost aggregation scheme with anisotropic diffusion
and weighted least square and the acceleration methods in
Section III. The occlusion handling methods are described in
Section IV. Finally, we present the experimental results and
conclusion in Sections V and VI, respectively.

II. PROBLEM STATEMENT

When estimating the disparity field, only the left and right
image pairs are used. We obtain the difference image by shifting
the right image further to the right, and then subtracting the left
and the shifted right images. This is done for all disparities.
A set of difference images is called 3-D cost volume ,
where and represent the 2-D locations of pixels and disparity,
respectively. We call the 3-D cost volume a per-pixel cost. In
order to estimate the optimal cost, we define the per-pixel cost

as follows:

(1)

where represents noise. We simplify to , since
the same process is performed for each disparity. In other
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Fig. 1. Per-pixel and estimated costs in the “Tsukuba” image: (a) stereo image pairs, (b) per-pixel and estimated cost when disparity is 0, (c) per-pixel and estimated
cost when disparity is 6. The estimated cost is computed with the proposed method, and � is set to 1.0. We can find that the per-pixel cost is very noisy.

words, can be referred to as the 2-D cost function which
is the section of 3-D cost volume, given the disparity value
of . Fig. 1 shows the per-pixel and estimated costs for the
“Tsukuba” image. We find that the per-pixel cost function is
very noisy. Given the observation data, which represents a
per-pixel cost, we use the prior knowledge that costs should
vary smoothly, except at object boundaries. From this observa-
tion, we are able to estimate the cost function by minimizing
the following energy model:

(2)

where decreases monotonically with respect to .
This is known as the diffusivity function, which plays the role
of a discontinuity marker. is the weighting factor used to
control the ratio between the fidelity and smoothness terms.

The proposed scheme is different from the nonlinear diffu-
sion scheme for cost aggregation, proposed by Scharstein et al.
[21] and derived from a Bayesian model of stereo matching.
While this scheme performs nonlinear diffusion based on the
MRF model by using the cost function with different disparities
(diffusion over disparity), the proposed method performs diffu-
sion by using the intensity of an image in the cost function with
the same disparity (diffusion in disparity).

III. PROPOSED COST AGGREGATION

A. Cost Aggregation With Anisotropic Diffusion

Anisotropic diffusion filtering is one of the most popular
approaches in image restoration/denoising, image segmenta-
tion, 3-D reconstruction, motion estimation, stereo matching,
etc. Especially in stereo and motion analysis, the minimization
problem is solved with scale-space filtering to avoid becoming
trapped in local minima, since the minimization problem is
nonconvex. The proposed method contains a convex energy
function since the data term is quadratic, as shown in (2).
The minimization of (2) yields the following Euler–Lagrange
equation:

(3)

We obtain the solution to the equation by calculating the
asymptotic state of the parabolic system, as shown in
(4)

(4)

Fig. 2. Results for anisotropic diffusion in the “Venus” image: (a) per-pixel
and estimated cost when disparity is 0, (b) estimated disparity map obtained by
WTA.

We then discretize the equation to find the solution using a
finite difference method. All spatial and temporal derivatives
are approximated by forward differences and a semi-implicit
scheme. The final iterative scheme is as follows:

(5)

We use the diffusivity function proposed by Geman and MC-
clure [26]. In (5), we define the step size as and the
weighting factor as . Fig. 2 shows the results of the
estimated cost with nonlinear diffusion filtering, and the dis-
parity field computed with these cost functions. To evaluate
the performance of the cost aggregation scheme, we use the
winner-takes-all (WTA) method as an optimization technique.
We find that the estimated disparity field is not satisfactory. Al-
though edge-preserving smoothing is performed and the impul-
sive noise generated by the sensor is reduced, there are some
problems in the textureless and occluded regions. In (1), the
optimal cost model considers sensor noise only. Thus, another
strategy to solve these problems is necessary.

B. Cost Aggregation With Weighted Least Square

To solve the problem in textureless regions, we consider using
the smoothness constraint with more neighborhoods. As op-
posed to image restoration/denoising, it is necessary to gather
sufficient texture in the neighborhoods for reliable matching. To
include more neighborhoods, we propose a new energy function
with the weighted least square method

(6)
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Fig. 3. Neighboring pixels used in the smoothness term: when n contains (1,0)
only, it is similar to anisotropic diffusion.

where represents the weighting function between corre-
sponding neighbor pixels, and is defined with color or intensity
information. and represent the 2-D vectors, which are
perpendicular to each other. represents the size of a set of
neighbor pixels. When the element of the set is (1,0) only,
(6) is similar to anisotropic diffusion. In other words, (6) can be
considered to be the generalized function of (2). Fig. 3 shows
the neighboring pixels which are used in the weighted least
square method. Taking the first derivative of (6) with respect to

, we yield the following equation:

(7)

where and represent the first derivative operators
along and , respectively. We induce the above equation
as follows:

(8)

To simplify the above equation, we redefine the set of
neighbor pixels. When is , the set can be expressed as

By using the above notation, (8) is expressed as

(9)

Fig. 4. Causal and noncausal parts used in Gauss–Seidel acceleration.

In the above equation, we assume that the weighting function
is symmetric

(10)

The solution of the th iteration is obtained by the fol-
lowing equation:

(11)

Equation (11) consists of two parts: normalized per-pixel
matching cost and weighted neighboring pixel cost. By running
the iteration scheme, the cost function is regularized with
the weighted neighboring pixel cost. The iteration scheme is
similar to the adaptive weight approach when the number of
iterations is 1. In the proposed method, we use the symmetric
Gaussian weighting function with the CIE-Lab color space
in (12). and are weighting constants for the color and
geometric distances, respectively. As opposed to in
(3) it is necessary to use the term for geometric distance in the
weighting function, since the smoothness constraints with more
neighborhoods are considered

(12)

C. Acceleration Scheme

1) Gauss–Seidel Acceleration: The proposed iterative
scheme is accelerated with several numerical methods. One
reason for slowing down the convergence in (11) is that it
does not use the latest information available. The updated
components in each pixel are used only after one iteration is
complete. Therefore, we compensate for this problem by using

(13)
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Fig. 5. Multiscale approach. (a) Conventional approach; the search range decreases when the resolution decreases to half. (b) Proposed approach.

the updated components in each pixel intermediately after they
are computed. While it is generally assumed that the iterative
scheme is performed from the upper left to the lower right
parts of an image, we divide a set of neighbor pixels
into two parts as shown in Fig. 4: the causal part and
the noncausal part . Equation (11) is expressed as (13),
shown at the bottom of the previous page.

Another advantage of the Gauss–Seidel acceleration method
in general is that duplicate storage is not necessary for .
Thus, we are able to make the iterative scheme more efficient
[22].

2) Multiscale Approach: As previously mentioned, it is nec-
essary to gather pixel information at a large distance to ensure
reliable matching. This implies that a number of iterations are
required to estimate the correct cost function. We use a multi-
scale approach to solve this problem. The multiscale approach
has been widely used in various applications such as image
segmentation, stereo matching, motion estimation, etc [23]. In
stereo and motion analysis, most methods have used multiscale
approaches to reduce the search range and propagate the reliable
disparity and motion information [24], [25]. While conventional
approaches are performed in an image domain, our method is
different in the sense that the multiscale approach is applied in
the cost domain to reduce the number of iterations required for
the propagation of information. In (13), the cost function
can generally be initialized to . In the multiscale approach,
we can initialize the value close to the optimal cost in each level
by using the final value in the coarser level as the initial value
in the finer level. This makes convergence faster.

Using (13), the proposed method performs cost aggregation
independently in each section of the 3-D cost volume. The cost
with the same disparity is used in the aggregation scheme. Con-
ventional multiscale approaches reduce image resolution at first,
and then the estimation process continues. The reduction of the
resolution also reduces the search range of the disparity. For
instance, if we use the multiscale approach over three levels,

the search range will have been reduced to a quarter of the
original search range on the coarsest level. Since the iterative
scheme is performed in the cost domain, two cost functions in
the finer level and are initialized by
using the cost function in the coarser level . To avoid
this problem, we use an alternative multiscale scheme for cost
aggregation, as shown in Fig. 5. As this differed from conven-
tional methods, we first compute the 3-D cost volume and then
perform the proposed multiscale scheme in each 2-D cost func-
tion in a coarse-to-fine manner. Subsampling is performed on
both the cost function and the stereo image pairs, since the sub-
sampled image pairs are necessary to compute the weighting
function in each level. In order to reduce the artifacts gen-
erated during the subsampling step, we apply Gaussian lowpass
filtering. The variance of the Gaussian function is proportional
to the ratio of subsampling. The proposed multiscale method
runs the iterative scheme at the coarsest level by initializing the
cost function to . After iterations, the resulting cost
function is used to initialize the cost function in the finer level,
and this process is repeated until the finest level is reached.
When the cost function on the th level is defined as

, we compute the cost function on the finer level
by using bilinear interpolation

(14)

3) Adaptive Interpolation: In the previous section, we refine
the resolution of the cost function by bilinear interpolation. If
the cost function on the coarser level is linearly interpolated to
initialize the cost in the finer level, the error can be propagated
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into the neighborhood regions, especially on the boundary re-
gion. To avoid this problem, we propose an adaptive interpola-
tion method based on the weighted least square, as follows:

(15)

where represents a pixel on the coarser level, and
is defined as follows:

on the level

By minimizing (15), we obtain

(16)

In (16), represents the weighting function, equivalent to
that in (11). The even pixels are computed by using the fol-
lowing equation at first.

(17)

Then, the odd pixels are computed by (16). The set of neigh-
boring pixels consists of

, and . Finally, the remaining pixels
are computed by (16). We set the weighting factor to .

Another advantage of adaptive interpolation is to increase the
resolution of the cost function so that no blocking artifact exists.
The adaptive interpolation by the intensity values on two succes-
sive levels leads to the up-sampling scheme, which preserves the
discontinuities on the boundary region. The proposed adaptive
interpolation is different from conventional image interpolation
in the sense that we perform interpolation for the cost function
with the intensity values that are already on the two successive
levels. Thus, it is not necessary to perform the cost aggregation
scheme on the finest level, and this makes the proposed method
faster. In the experimental results, we will show that adaptive in-
terpolation increases the resolution of the cost function without
requiring any blocking artifact.

IV. OCCLUSION HANDLING

Most approaches have used an iterative scheme which
combines the uniqueness constraint into a global optimiza-
tion method for occlusion handling. This scheme assigns a
predefined value to the occluded pixels, which may also be
sensitive to the matching cost value. These approaches estimate
both the left and right disparity fields and, therefore, double
the computation complexity. In this section, we introduce a
new approach for dealing with the occlusion problem in the

Fig. 6. Pseudo code for asymmetric occlusion detection.

proposed cost aggregation scheme. Only the left disparity field,
and not a predefined value for the occluded pixels, is used
in the occlusion handling. The occluded regions are handled
by using asymmetric occlusion detection in the proposed cost
aggregation method, while other methods use the symmetric
matching scheme or do not handle the occluded regions at all.

Our main goal is not to detect the occluded pixels in an
image correctly but to determine a candidate set of occluded
pixels. Then, reasonable cost functions in the candidate set
are assigned. As many occluded pixels as possible should be
included in the candidate set. Although some visible pixels
may be contained in the candidate set, this problem is solved by
using the proposed cost aggregation. For asymmetric occlusion
detection, we use geometric and photometric constraints. To
determine whether a pixel is visible or not, we have to eval-
uate the disparity values of the neighboring pixels. Since it is
assumed that the epipolar line is parallel, we only consider
the pixels in the corresponding horizontal line. In fact, to use
ordering constraint means that only the right pixel of each pixel
is considered. The disparity of the occluding pixels is generally
larger than that of the occluded pixels. Before we define the
visibility function of the pixels based on this principle, we
describe the function as a set of pixels in the right image

all with

where and represent the coordinates of the left and right
images, respectively. represents the width of the image and
represents the disparity of the pixel. Fig. 6(a) shows the pseudo
code of the asymmetric occlusion detection method. rep-
resents the visibility function of the left image, which takes
the value 1 (or 0) when the pixel is visible (or occluded). The
approaches which exploit the uniqueness constraint determine
the visibility function of the reference image with the disparity
fields estimated from the other image when there are multiple
matching points at pixels in the other image. However, since
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Fig. 7. Several cases of asymmetric occlusion detection: (a), (b) using the geometric constraints only, (c) using both the geometric and photometric constraints.

the proposed method uses the disparity fields on the reference
image only, the pixel with the largest disparity among a set of
multiple matching pixels is considered as visible and the re-
maining pixels are considered occluded. This is valid only if the
occluding pixels have reliable disparities. Fig. 7 shows several
cases of asymmetric occlusion detection. As shown in Fig. 7(a),
if the disparities in the occluded pixels are smaller than those
of the visible pixels, we are able to accurately detect the oc-
cluded region. Otherwise, the occluded pixels block the other
visible pixels, as shown in Fig. 7(b). We use the photometric
constraint to evaluate the reliability of the occluding pixels. We
determine a set of occlusion candidates instead of a set of occlu-
sions by using this constraint. This is a trivial problem since the
cost function in the pixels is estimated with reliable neighboring
pixels using the proposed cost aggregation scheme. Fig. 6(b)
shows occlusion detection by using both geometric and photo-
metric constraints. is the cost function computed by (13). The
costs at the occluded pixels are generally larger than those of the
visible pixels. If the cost at the pixel, which is determined as oc-
cluding pixels by geometric constraints, is not smaller than that
of the remaining occluded pixels, we can not guarantee the reli-
ability of the occluding pixels. Therefore, all the pixels in
are used as occlusion candidates, as shown in Fig. 7(c). By using
the visibility function , we redefine the iterative scheme in
(13) with (18), shown at the bottom of the page.

Fig. 8 shows the overall process of the proposed occlusion
handling method. When the 3-D cost volume is given, we are
able to estimate the disparity by using several techniques as
an optimization method such as the WTA method, dynamic
programming, belief propagation, graph cut, and so on. In this
paper, we only use the WTA method to evaluate performance of
proposed cost aggregation. However, other optimization tech-
niques (for instance, belief propagation) can also be used in the
proposed cost aggregation scheme. Most conventional methods
perform the cost aggregation and optimization steps indepen-
dently, in other words, after the cost aggregation step, the opti-
mization step is performed with the aggregated cost function.

Fig. 8. Occlusion handling process: given the 3-D cost volume, we assign rea-
sonable data to the occluded candidates. In this case, various techniques can be
used as the optimization method for disparity estimation.

Fig. 9. Propagation of information at the visible pixels in sequential occlusion
handling.

However, we perform the cost aggregation and optimization
steps interactively. If we use belief propagation for disparity es-
timation at each level, the message computed at each specific
level can be used to initialize the message of the finer level. This
scheme is very similar to hierarchical belief propagation [36].

Occlusion handling is sequentially performed. The order of
the iterative scheme is generally from the upper left to the lower
right parts of an image, as previously mentioned. After the cost

(18)
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Fig. 10. Overall framework of the proposed method. Occlusion handling is done once at each level. Cost aggregation is not done at the finest level, only occlusion
handling is performed.

aggregation scheme is performed with the neighboring visible
pixels at the pixels of the set of occlusion candidates, the pixels
become visible, in other words, . This is very reason-
able for occlusion handling since the occluded pixels are gener-
ally on the left side of the visible pixels and the occluded pixels
aggregated with the visible pixels are used as visible pixels again
in (13). Fig. 9 shows the process of sequential occlusion han-
dling. The information of the visible pixels is propagated to es-
timate the cost function at the occluded pixels by using the pro-
posed occlusion handling.

The proposed occlusion handling method is different from
the extrapolation technique widely used for occlusion handling.
While the extrapolation technique is just filling by using the
disparities of the visible pixels, the proposed method propagates
the information of the visible pixels into that of the occluded
pixels. This is very similar to the concept of edge-preserving
nonlinear diffusion.

V. EXPERIMENTAL RESULTS

A. Overall Framework and Experimental Environments

The basic framework of the proposed method is to perform
cost aggregation in a coarse-to-fine manner. Fig. 10 shows the
overall process of the proposed method. The cost function on
the coarsest level is computed with the iterative method in (13).
In order to initialize the cost function in the finer level, adaptive
interpolation is performed with (16), and then occlusion han-
dling is performed (once at each level). This process is repeated
until the finest level is reached.

We evaluate the performance of the proposed method and
compared it with state-of-the-art methods in the Middlebury
test bed [38]. We use the following test data sets: “Tsukuba,”
“Venus,” “Teddy,” and “Cone.” The results for each test dataset
are evaluated by measuring the percentage of bad matching
pixels (where the absolute disparity error is greater than 1
pixel). The measurement is computed for three subsets of an
image: nonocc (the pixels in the nonoccluded regions), all (the

pixels in both the nonoccluded and half-occluded regions), and
disc (the visible pixels near the occluded regions).

The proposed method is tested using the same parameters for
all the test images. The two parameters in the weighting func-
tion are , and the weighting factor is .
We use the multiscale approach at four levels, and the number of
iterations is , on a coarse to fine scale. The iteration
number of the finest level is not defined since we use the adaptive
interpolation technique in the up-sampling step, as mentioned
in Section III. The sizes of the sets of neighbor pixels are 5 5,
7 7, 9 9, and 9 9. In the finest level, only occlusion han-
dling is performed.

B. Performance Analysis

Fig. 11 shows the results of the proposed method for the
test bed images. We obtained the final disparity maps with a
sub-pixel estimation using quadratic fitting of the estimated
cost functions. The proposed method yielded accurate results
for the discontinuity, occluded, and textureless regions. Table I
shows objective evaluation results for comparison with other
state-of-the-art methods. The results show that the proposed
method obtained comparable performance with state-of-the-art
methods, and the best performance among many cost aggre-
gation techniques. We used only a simple local optimization
method (WTA) with no color segmentation, while most
state-of-the-art methods use various cues in low level vision
such as color segmentation and global optimization techniques
such as graph cut and belief propagation.

Fig. 12 shows the results obtained by the proposed occlusion
handling method. Given the aggregated cost function, the occlu-
sion candidate map was estimated with the geometric and pho-
tometric constraints. The disparity map was computed with the
WTA method. The occlusion candidate set contained as many
occluded pixels as possible in order to perform occlusion han-
dling well. In Fig. 12(b), although some visible pixels were in
the occlusion candidate map, the costs were accurately com-
puted with neighboring reliable visible pixels. The proposed
occlusion handling method was sequentially performed so that
pixels converted into visible pixels with sequential occlusion
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Fig. 11. Results for (from top to bottom) “Tsukuba,” “Venus,” “Teddy,” and “Cone” image pairs: (a) original images, (b) ground truth maps, (c) our results,
(d) error maps.

TABLE I
OBJECTIVE EVALUATION FOR THE PROPOSED METHOD WITH THE MIDDLEBURY TEST BED

handling were also used for occlusion handling for other oc-
cluded pixels. Occluded pixels generally consist of two cate-
gories. One is generated by a front object and appears in the right
side of the background. The other appears in the left border re-
gion of the image. Thus, we performed occlusion handling from
the right to the left side at first. The starting point of the right side
was equivalent to the search range. Then, we performed occlu-
sion handling from the left to the right. By propagating the cost

values of reliable pixels, we were able to assign reasonable data
to the occluded pixels. The weighting function played the role
of discontinuity localization, such as in anisotropic diffusion.
We used an asymmetric weighting function that was slightly dif-
ferent from that explained in (12). The asymmetric weighting
function computed with the left image was used for occlusion
handling since the symmetric weighting function is valid only
at the visible pixels.
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Fig. 12. Results in occlusion handling: (a) disparity map before occlusion handling, (b) occlusion candidate, (c) disparity map after occlusion handling. The
proposed occlusion handling method is different from the extrapolation technique widely used for occlusion handling.

Fig. 13. Disparity maps in each level in a multiscale approach: (a) level 3, (b) level 2, (c) level 1. By using adaptive interpolation in the up-sampling procedure,
we were able to acquire the disparity map on the next level with the cost aggregation on the current level.

Fig. 14. Results for (from top to bottom) captured image pairs (“Boy” and “Robot”): (a) original images, (b) shiftable window (c) adaptive weight window,
(d) two-pass approximation method, (e) our method. The processing time of the proposed method is nearly 10% of that of the adaptive weight approach, as shown
in Table II.

TABLE II
PROCESSING TIMES FOR CAPTURED IMAGE PAIRS

Fig. 13 shows the intermediate results of the multiscale ap-
proach. Since the cost function in each level was obtained after
performing adaptive interpolation, the cost function was consid-
ered as that in the finer level. In that sense, if cost aggregation
was performed at level , the cost function of level l–1 could
have been obtained. We found that the estimated disparity map
in level 1 had the finest resolution as shown in Fig. 13(c).

The experiment was additionally performed using other im-
ages such as “Boy” (320 240 pixels) and “Robot” (640 480

pixels). The “Boy” image, captured by the Bumblebee camera
of Point Grey Research, Inc., has very complex geometry. The
“Robot” image was generated by 3-D studio MAX. The search
ranges for them were 30 and 35, respectively. The results for
the images are shown in Fig. 14. For comparison, we also show
the results of the shiftable window [37], the adaptive weight
window [14], and two-pass approximation [15]. In the adap-
tive weight approach, the parameter setting was the same as
that in [14]. We confirm in Fig. 14 that the proposed method
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showed excellent performance and disparities in the occluded
regions were accurately estimated. The processing times of the
methods are shown in Table II. The processing time of the pro-
posed method was nearly 10% of that of the adaptive weight
approach.

VI. CONCLUSION

In this paper, we have proposed the cost aggregation and oc-
clusion handling method for stereo matching with the weighted
least square. By solving the iterative scheme with several accel-
eration techniques such as the Gauss–Seidel method, the mul-
tiscale approach, and adaptive interpolation, we efficiently es-
timated an accurate disparity map. The information at the vis-
ible pixels was propagated into the occluded pixels by sequen-
tial occlusion handling. This process was very similar to edge-
preserving nonlinear diffusion. The experimental results show
that the performance of the proposed method is comparable to
state-of-the-art methods and is the best among all cost aggrega-
tion methods in the Middlebury stereo datasets. Since we did
not use any color segmentationt or global optimization tech-
niques, the proposed method was efficient. In further research,
we will apply the global optimization technique such as hierar-
chical belief propagation to the proposed multiscale cost aggre-
gation scheme, as mentioned in the experimental results.
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