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Abstract

In this paper, we present a new method of synthesizing novel views from the vir-
tual cameras in multiview camera configurations for 3DTV system. We introduce a
semi N -view & N -depth framework in order to estimate disparity maps efficiently
and correctly. This framework reduces redundancy on disparity estimation by us-
ing information from neighboring views. N views can be classified as reference and
target images. The disparity maps on the reference images are only estimated by
using the cost aggregation method with the weighted least square. The cost func-
tions on the target images are computed by the proposed warping technique so
that significant reduction of computation loads is possible. The occlusion problem,
which significantly affects the quality of virtual view rendering, is handled by us-
ing cost functions computed with multiview images. The proposed method provides
a 2D/3D freeview video for 3DTV system. User can select 2D/3D modes of free-
view video and control 3D depth perception by adjusting several parameters in
3D freeview video. Experimental results show that the proposed method yields the
accurate disparity maps and the synthesized novel view is satisfactory enough to
provide seamless freeview videos for 3DTV system.
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1 Introduction

By recent advance in the multimedia processing fields, 3-dimensional TV
(3DTV) is expected to become one of the most dominant markets in the next
generation broadcasting system. In conventional TV, the viewpoint of a user
is dependent to the acquisition camera, in other words, it can only provide a
user subjective video. The basic concept of 3DTV is to provide user interac-
tivity and 3D depth feeling. User interactivity means that 3DTV can provide
a user the freedom of selecting viewpoint. 3DTV can also provide a user 3D
impression as if he is really over there, by displaying 3D images on the 3D
display monitors of glasses/non-glasses types. Development of 3DTV requires
the ability of capturing and analyzing the multiview images and compressing
and transmitting huge amount of data in communication network [1]. Matusik
implemented 3DTV prototype system with real-time acquisition, transmission
and 3D display of dynamic scenes [2].

Novel view rendering is an important technique in the 3DTV applications,
and many methods have been proposed to solve this problem in the area
of image-based rendering (IBR). It can provide reality and interactivity by
enabling specific users to select different viewpoints. Since various viewpoints
are provided with a limited number of cameras, it is useful to reduce an amount
of data and a cost for constructing 3DTV system. It is also necessary in the
aspects of compensating for discordances between 3D capturing and display
formats. IBR can be classified into three categories according to the estimation
of geometry: rendering without geometry, rendering with explicit geometry,
and rendering with implicit geometry.

Light field and lumigraph approaches that use the rendering without geometry
can perform photorealistic rendering with simple planar geometry representa-
tion [3][4][5]. It is possible to synthesize novel views based on densely sampled
reference images without estimating accurate geometry information. However,
a significant number of 2D images must be used to reconstruct a function that
defines the flow of light through the 3D space. A second group of researches
reconstruct a complete 3D model from 2D images and render the model from
the desired viewpoint. This method consists of estimating the 3D depth in-
formation and integrating this depth information to generate a complete 3D
model of a given scene. The difficulties of generating complete 3D models have
caused these approaches to be used in limited applications only [6][7].

Rendering with implicit geometry synthesizes novel views from a virtual cam-
era with a small number of cameras. These reference images are warped by
geometry information and novel views can be computed by the weighted-
interpolation of the warped images [8][9]. This method consists of image rectifi-
cation, disparity estimation, image warping, and view interpolation. A number
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Fig. 1. An example of 3DTV system.

of view interpolation approaches have been proposed to improve performance.

Park et al. described the method to estimate a disparity map from multiple
images and then warp this map onto neighboring images [18]. Zhang et al.
proposed a method of reconstructing intermediate views from stereoscopic
images [10]. Criminisi et al. introduced the novel view synthesis method for
one-to-one teleconferencing [11]. These researchers used a stereo algorithm
based on improved dynamic programming for efficient novel view generation,
and proposed a compact geometric method for novel view synthesis by direct
projection of the minimum cost surface. A mesh-based representation method
for the disparity map of the stereo images was used for the view interpolation
and stereo image compression [12]. Lhuillier and Quan introduced joint view
triangulation to efficiently handle the visibility and occlusion problems created
by the parallaxes between the images [13].

Redert et al. and Kauff et al. introduced an advanced approach for 3DTV
systems based on the concept of video-plus-depth data representation [14][15].
In this paper, the video-plus-depth data representation method is called the N -
view & N -depth framework, where N is the number of cameras in a multiview
camera configuration. It focuses on providing a modular and flexible system
architecture that can support a wide range of multi-view structures. Zitnick et
al. proposed a way of performing high-quality novel view interpolation by using
multiple synchronized video streams [16] [17]. The depth maps were extracted
using the calibration information of cameras directly without rectifying the
multiview images in the N -view & N -depth framework. A color segmentation
algorithm was used to improve performance and provide robustness to noise
and an intensity bias. Visible artifacts on the object boundaries in virtual
view rendering were handled by computing the matting information within
the pixels from all the depth discontinuities.

In this paper, we propose a new way of synthesizing novel views from virtual
cameras based on sparsely sampled reference images. We reduce redundancy
when estimating disparity maps in the semi N -view & N -depth framework.
The conventional method estimates the disparity maps in the same manner for
the N images in the N -view & N -depth framework. The occlusion problem,
which significantly affects the quality of synthesized images in virtual view
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rendering, is handled by using cost functions computed with multiview images.

We provide the user with 2D/3D freeview videos. 3D freeview videos are pro-
vided as stereoscopic images. These images are generated by synthesizing two
novel views - one for the left view and one for the right view. Users can se-
lect the freeview video mode according to the display device, and control 3D
perception by adjusting several parameters in 3D freeview video. Most con-
ventional methods provide users with 2D freeview video [16] [17] or 3D video
at one fixed viewpoint by synthesizing intermediate views when stereo images
are given [10]. We propose a more flexible system for 3DTV by making it
possible for the user to select 2D/3D modes.

Fig. 1 shows an example of 3DTV system. The multiview images and the asso-
ciated depth maps estimated by the stereo matching method are transmitted
through communication network. In receiver side, the user can select the modes
of videos according to his preference, which are 2D video, 2D freeview video
and 3D freeview video. We propose a new approach for efficient multiview
depth estimation and virtual view generation, which are key technologies for
3DTV system.

The remainder of this paper is organized as follows. In section II, we describe
the motivation and overview of the proposed method, and then explain the cost
aggregation method for stereo matching in section III. Virtual view rendering
in the semi N -view & N -depth framework is described in section IV. Finally,
we present the experimental results and conclusions in sections V and VI,
respectively.

2 Motivation and Overview

When N images are given, it is necessary to acquire N depth maps for ren-
dering novel views from virtual cameras in multiview camera configurations.
Given these novel viewpoints, the nearest images are warped with the asso-
ciated disparity maps, and novel views are synthesized by interpolating these
warped images. Zitnick et al. proposed a way of synthesizing intermediate
views by estimating N depth maps from multiview images [16] [17]. Disparity
estimation was performed off-line due to the huge computational loads and
intermediate view rendering was applied in real-time by using GPU hardware.
One of the most serious implications of the huge computational loads is that
the disparity maps for all the images can all be estimated in the same manner.
It is known that the disparity maps for neighboring images are generally simi-
lar to each other. Fig. 2 shows the ‘Breakdancer’ image pairs and the disparity
maps provided by Zitnick et al. [16]. The disparity maps are very similar to
each other, except in the occluded parts. By considering this redundancy, we
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Fig. 2. ‘Breakdancer’ color images and depth maps: (from top to bottom) view 3
and 4.

: Reference views with depth maps by stereo matching: Reference views with depth maps by stereo matching

(a) N -view & N -depth framework

: Reference views

: Target views with symmetric warping

: Semi-target views with asymmetric warping

: Forward warping of cost function

: Backward warping of cost function

(b) Semi N -view & N -depth framework

Fig. 3. Representation of multiview images and depth data: N -view & N -depth
framework and semi N -view & N -depth framework

are able to reduce the complexity in the N -view & N -depth framework.

Based on this observation, we propose semi N -view & N -depth framework
to reduce the redundancy of estimating the disparity maps in multiview im-
ages. Fig. 3 shows the concepts of the N -view & N -depth and semi N -view
& N -depth frameworks. In the N -view & N -depth framework, a disparity
map for each image is estimated independently in the same manner, although
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(a) (b) (c)

Fig. 4. Costs of the multiview images for (from top to bottom) views 3 and 5 of the
‘Cone’ image pairs: (a) original images, (b)(c) per-pixel cost e(p, d) and estimated
cost E(p, d) when disparity d is 3. The estimated costs are computed with the
proposed cost aggregation method.

corresponding pixels, visible pixels on neighboring images, contain the same
disparity (depth) values. In contrast, we use the estimated information of
neighboring images to estimate the disparity map of one image.

The multiview images (N views) are classified into reference and target images.
The target images are divided into target and semi-target images. The efficient
cost aggregation method with the weighted least square [19] is only used to
estimate the disparity maps of the reference images. The disparity maps of
the target images are acquired by warping the cost functions of the reference
images. Note that the cost functions of the reference images are transferred
into those of the target images, not the disparity values. As shown in Fig. 3,
symmetric warping on the target images means that both forward and back-
ward warping are done from neighboring reference images, while asymmetric
warping on the semi-target images means that either forward or backward
warping are done. Note that the leftmost and rightmost views, in other words,
0 and N − 1 views, are always semi-target images. This process is based on
the assumption that corresponding pixels on neighboring images have similar
cost functions. Fig. 4 shows the estimated cost functions of the ‘Cone’ image
pairs. The cost functions of views 3 and 5 are used for comparison, when the
disparities are 3. We find that the cost functions of the two images are very
similar to each other.

Fig. 5 shows the overall framework of the proposed system. We acquire N
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Fig. 5. Overall framework of the proposed method.

depth maps from the semi N -view & N -depth framework, and synthesize the
novel views from the virtual camera for the given viewpoint. Each part of Fig.
5 will be explained in the following sections.

3 Stereo Matching with Multiview Images

We use a multiview camera configuration for estimating the disparity maps
and rendering virtual views. An extensive review of stereo matching algo-
rithms can be found in [20]. In this paper, our aim is to develop a 2D/3D
freeview video generation system. Thus, a parallel camera structure is used,
since multiview camera configuration with a toed-in structure may cause a
number of holes in the synthesis of 3D freeview videos. We assume that the
baseline distances between the captured cameras are the same as B.

3.1 Per-pixel Cost Computation

When estimating the disparity field, two or more images are used. The dif-
ference image is computed for each image based on the constant brightness
assumption. Let i−1th, ith and i+1th images left, center and right images, re-
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spectively. Since the multiple images are rectified into horizontal direction, we
obtain the difference image of center image by shifting the left (or right) im-
age to the right (or left) direction, and the subtracting the center and shifted
left (or right) images. The difference image ei,j(p, d) for ith image is computed
with the ith and jth images, as follows:

ei,i+1(p, d) = min{|Ii(x, y)− Ii+1(x + d, y)|, T}
ei,i−1(p, d) = min{|Ii(x, y)− Ii−1(x− d, y)|, T}

(1)

where p and d represent the 2D locations of the pixels and the disparity,
respectively. I is the intensity when using RGB color, and T is the threshold
that defines the upper bound of the matching cost function. We compute the
per-pixel cost ei(p, d) with the ei,i+1 and ei,i−1 values. When computing the
per-pixel cost, we consider whether the pixels in the center image are visible or
occluded. We assume that all the pixels in the center image have at least one
corresponding point for two neighboring (left and right) images. The occluded
pixels are compensated for by using the cost functions of the multiview images.
This assumption is useful for handling occlusion, although it is invalid in a
few pixels. When the corresponding points are visible in three images, the
per-pixel cost is computed with both the ei,i+1 and ei,i−1 values. However, if it
is visible in only one of the two reference images, the per-pixel cost have to be
computed with only one visible point among them. Based on the principle that
the matching cost of visible pixels is generally smaller than that of occluded
pixels, we compute the per-pixel cost for the center (ith) image as follows:

ei(p, d) = min(ei,i+1(p, d), ei,i−1(p, d)) (2)

While most approaches detect the occluded regions by using a uniqueness
constraint and assign pre-defined values to the occluded pixels, we address
the occlusion problem by using the cost functions of the multiview images.

3.2 Cost Aggregation with Weighted Least Square [19]

In order to estimate the optimal cost Ei(p, d) for given the per-pixel cost
ei(p, d) of the ith image, we use a prior knowledge that costs should vary
smoothly, except at object boundaries. Moreover, it is necessary to gather
sufficient texture in the neighborhoods for computing optimal cost. From this
assumption, we are able to estimate the cost by using nonlinear iterative fil-
tering in the weighted least square framework [19] as follows:
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Ek+1(p) = ē(p) + Ēk(p)

=

e(p)+λ
∑

m∈Nc(p)

w(p,m)Ek+1(m)+λ
∑

m∈Nn(p)

w(p,m)Ek(m)

1+λ
∑

m∈N(p)

w(p,m)

(3)

N(p) = {(x + xn, y + yn)| −M ≤ xn, yn ≤ M, xn + yn 6= 0}

where Nc(p) and Nn(p) are the causal and non-causal parts of N(p), and
N(p) = Nc(p) ∪ Nn(p). w represents the weighting function between corre-
sponding neighboring pixels. w is a weighting factor that controls an ratio
of the per-pixel cost and estimated cost. We simplify Ei(p, d) to E(p), since
the same process is performed for each disparity value. Eq. (3) consists of two
parts: normalized per-pixel matching cost and weighted neighboring pixel cost.
By running the iteration scheme, the cost function E is regularized with the
weighted neighboring pixel cost. In the proposed method, we use the asym-
metric Gaussian weighting function with the CIE-Lab color space in Eq. (4).
rc and rs are the weighting constants for the color and geometric distances,
respectively. If Ci is the color distance that is computed with the ith image,
the weighting function is defined as follows.

w(p,m) = exp
(
−

(
Ci(p,m)

2r2
c

+ S(p,m)
2r2

s

))

Ci(p,m) = (Li(p)− Li(m))2 + (ai(p)− ai(m))2 + (bi(p)− bi(m))2

S(p,m) = (p−m)2

(4)

We use a multiscale approach to accelerate the convergence of Eq. (3). We
can initialize the value close to the optimal cost in each level by using the
final value in the coarser level. We first compute the 3D cost volume and
then perform the proposed multiscale scheme for each 2D cost function. The
proposed multiscale method runs the iterative scheme at the coarsest level
by initializing the cost function to e(p, d). After K iterations, the resulting
cost function is used to initialize the cost function at the finer level, and this
process is repeated until the finest level is reached. The proposed multiscale
scheme is shown in Fig. 6, which includes adaptive interpolation.

When the cost function on the (l +1)th level is defined as El+1(p), we are able
to refine the resolution of the cost function El(p) on the finer level by using
adaptive interpolation [19]:
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Fig. 6. Overall framework of the proposed cost aggregation.

El(p) =

el(p) + λa
∑

pm∈N(pc)
wp,pmEl+1(pm)

1 + λa
∑

pm∈N(pc)
wp,pm

(5)

where pc = (xc, yc) represents a pixel on the coarser level, and N(pc) on the
(l + 1)th level is a set of 4-neighboring pixels. We set the weighting factor
to λa = 15. Another advantage of adaptive interpolation is to increase the
resolution of the cost function so that no blocking artifact exists, so that it is
not necessary to perform the cost aggregation scheme on the finest level, and
this makes the proposed method faster.

4 Virtual View Rendering

We estimate the disparity maps by using cost aggregation, and handle the oc-
clusion problem by using cost functions computed with multiview images. It
is necessary to acquire N depth maps for virtual view rendering in multiview
camera configuration. In this section, we propose a new approach which elim-
inates the redundancy of estimating the disparity maps in the semi N -view
& N -depth framework. The virtual view can be synthesized by warping each
image with its disparity map. Since the proposed system provides 2D/3D free-
view video, users can select 2D/3D modes and control 3D depth perception
by adjusting several parameters in 3D freeview video.
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Fig. 7. Several cases of forward warping: (from top to bottom) when occluded pixels
in the reference view are blocked by visible pixels, and when occluded pixels in the
reference view block visible pixels.

4.1 Semi N-view & N-depth Framework by Warping of Aggregated Cost

In this section, we propose a new way of eliminating redundancy and reducing
computational loads in the cost aggregation scheme. The cost functions in the
reference images are estimated by using the proposed cost aggregation method
with the weighted least square. The cost functions in the target and semi-target
images are estimated through the warping of those in the reference images. The
cost functions of the reference images are transferred into those of the target
(semi-target) images with the corresponding disparity maps of the reference
images. Since both forward and backward warping are performed in the target
images, we are able to compensate for the occluded pixels, which are caused
by other warping so that only few holes exist. However, since either forward
or backward warping is performed in the semi-target images, the occluded
parts as well as the holes remain. For example, since backward warping is
only performed in the leftmost view 0, the occluded parts appear in the left
side of the given object and in the left border region of the given image. For
assigning a reasonable cost function to the occluded pixels and holes, we use
the method of handling the occluded pixels and holes with reliable neighboring
pixels in the cost aggregation scheme.

In general, the cost functions of visible pixels on two images should only be
transferred through forward/backward warping. To determine whether a pixel
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on the reference image is visible or not, we use geometric and photometric
constraints. First, we explain the process of forward warping. We are able to
estimate the visibility of the pixels by evaluating the disparity values of the
neighboring pixels. The occluding pixel has the largest disparity among mul-
tiple matching pixels, so that the disparity of the occluding pixels is generally
larger than that of the occluded pixels. Before we define the visibility function
of the pixels based on this principle, we describe the function St(j) for target
image as a set of pixels in the reference image:

St(j) = {i|i− dr(i) = j, all i with 0 ≤ i ≤ W − 1}

where i and j represent the x coordinates of the reference and target images,
respectively. W represents the width of the image and d represents the dispar-
ity of the pixel. We define a visibility function Ot which takes the value 1 (or 0)
when the pixel is visible (or occluded and hole). Approaches which exploit the
uniqueness constraint determine the visibility function of the reference images
with the disparity fields estimated from other images when there are multi-
ple matching points at the pixels of the other images. However, the proposed
method only uses the disparity fields on the reference image. When there are
multiple matching points at pixels in the target image, that is, #(St(j)) ≥ 1,
the pixel with the largest disparity among St(j) is considered as visible and
the remaining pixels as occluded. This is valid only if the occluding pixels
have reliable disparities. Fig. 7 shows several cases of forward warping. If the
disparities in the occluded pixels are smaller than those of the visible pixels,
we are able to accurately detect the occluded region. Otherwise, the occluded
pixels block the other visible pixels. We use the photometric constraint to
evaluate the reliability of the occluding pixels. We determine a set of occlu-
sion candidates instead of a set of occlusions on the target image by using this
constraint. The occlusion candidates consist of both occlusion and holes. The
costs at the occluded pixels are generally larger than those of the visible pixels.
If the cost at the pixel, which is determined as occluding pixels by geometric
constraints, is not smaller than that of the remaining occluded pixels, we can
not guarantee the reliability of the occluding pixels. Therefore, all the pixels
in St(j) are used as occlusion candidates as shown in Fig. 7 (b), and #(St(j))
is reset to 0. Then, the visibility function Ot(j) on the target image is set to 0
when #(St(j)) = 0, and otherwise, Ot(j) = 1. By using the visibility function
Ot on the target image, we warp cost functions of reference image as follows:

Et(i− dr, dr) = Er(i, dr), if Ot(i− dr) = 1. (6)

In Eq. (6), the y coordinate is omitted, since the same process is performed for
each scanline. The process of backward warping is similar to that of forward
warping. In backward warping, we define the function St(j) as follows:
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St(j) = {i|i + dr(i) = j, all i with 0 ≤ i ≤ W − 1}

By using the visibility function Ot on the target image, we perform backward
warping.

Et(i + dr, dr) = Er(i, dr), if Ot(i + dr) = 1 (7)

Note that the cost functions of the reference images are transferred into those
of the target images through the warping process, not the disparity values of
the reference images. Both forward and backward warping compensate for the
occluded pixels that are caused by other warping, and there are only a few
holes in the target image. In the pixels of the target image where the cost
functions are transferred by both forward and backward warping, we select
the warping process in which the cost function for the warped disparity value
is smaller. The occluded parts and holes in the target (semi-target) images
are handled in the cost aggregation process. By using the visibility function
Ot on the target (semi-target) image, we estimate the costs of the pixels in
the candidate of occlusion in Eq. (8) as follows:

if Ot(p) = 0,

for k = 1 : K

Ek+1
t (p) =

Ot(p)e(p) + λ
∑

m∈Nc(p)
Ot(m)w(p,m)Ek+1

t (m)

+λ
∑

m∈Nn(p)
Ot(m)w(p,m)Ek

t (m)

Ot(p)+λ
∑

m∈N(p)

Ot(m)w(p,m)

end

Ot(p) = 1

end

(8)

Ot is 0, when a pixel is in the candidate of occlusion on the semi-target image,
and 1 if otherwise. The costs of pixels in the candidate of occlusion are com-
puted with those of visible pixels only. In Eq. (8), the number of iterations is
K = 1, and we can estimate the costs of pixels in the candidate of occlusion
after only one iteration. The updated pixels through Eq. (8) become visible,
and they are sequentially used when the costs of other pixels are computed.
Fig. 8 shows the process of symmetric/asymmetric warping. Generally, asym-
metric warping is slower than symmetric warping, since occlusion handling is
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Fig. 8. (a) Symmetric and (b) asymmetric warping in the target and semi-target
views.

(a) (b) (c)

Fig. 9. Results of symmetric and asymmetric warping for the ‘Cone’ image pairs: (a)
symmetric warping in target view 4 (forward/backward warping and hole filling), (b)
asymmetric warping in semi-target view 2 (backward warping and occlusion/hole
handling), (c) asymmetric warping in semi-target view 6 (forward warping and
occlusion/hole handling).

done in the asymmetric warping process. The results of symmetric and asym-
metric warping are shown in Fig. 9. Five images (view 2 ∼ 6) from the ‘Cone’
image pairs are used [24]. Fig. 9 (a), (b) and (c) shows the results of symmet-
ric warping in target view 4, and asymmetric warping in semi-target views 2
and 6, respectively. In the asymmetric warping process, reasonable disparity
values are assigned to occluded pixels and holes through the proposed han-
dling process. This is different from the extrapolation technique widely used
for occlusion handling. While the extrapolation technique is just filling by us-
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: Reference views

: Target views with symmetric warping

: Semi-target views with asymmetric warping

: Forward warping of cost function

: Backward warping of cost function

: Reference views

: Target views with symmetric warping

: Semi-target views with asymmetric warping
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Fig. 10. Semi N -view & N -depth framework (when N is even): target views 2 and
3 are made by the warping reference views 1 and 4.

ing the disparities of the visible pixels, the proposed method propagates the
information of the visible pixels into that of the occluded pixels and holes.
In this paper, we use WTA (Winner-Takes-All) method as the optimization
method for disparity estimation. Other optimization techniques such as graph
cut and belief propagation [21] [22] can be used to perform disparity estima-
tion in the warped cost function on the target and semi-target images instead
of the WTA method.

Fig. 10 shows the semi N -view & N -depth framework when N is even. The
images 1, 4 and 6 are used as for reference images. The cost function of the
target images 2, 3 and 5 are made by symmetric warping of the reference
images. The target images 2 and 3 are made by symmetric warping with the
reference images 1 and 4. It will have been possible to compensate for the
occluded pixels which are caused by other warping, although the reference
images 1 and 4 are not the neighboring views of 3 and 2, respectively. There
are always two semi-target views, except when N is 4. The number of reference
and target images is defined as follows:

# of reference views =
[
N− 1

2

]

# of target views =
[
N

2

]
− 1

# of semi− target views = 2

The ratio of the complexity value R with the N -view & N -depth and the semi
N -view & N -depth framework is defined as follows:

R =
C1

[
N−1

2

]
+ C2

([
N
2

]
− 1

)
+ 2C3

C1N
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Fig. 11. Novel view rendering process (1: back-projection, 2: transformation of cam-
era coordinates, 3: projection).

∼=
C1

[
N−1

2

]
+ 2C3

C1N
(9)

where C1, C2 and C3 represent the complexity value for the reference, target
and semi-target images, respectively. Since there are only a few holes in the
target images as shown in Fig. 9 (a), the complexity of the target image
C2 is negligible compared to that of the reference image C1. Moreover, the
complexity value of the semi-target view is nearly 10 ∼ 20 percent of that of
the reference view in our experiments. Therefore, we are able to reduce the
complexity value by about 50 percent or more in the semi N -view & N -depth
framework.

4.2 Novel View Generation

Given the N images and the associated disparity maps, the virtual views
are synthesized by warping each image with their disparity maps. All the
images are warped and a novel view is generated by performing a weighted-
interpolation procedure. The method of synthesizing novel views from a virtual
camera proceeds as follows:

1. We perform back-projection for all the pixels in the reference image into a
3D space by using the disparity map.

2. We transform the coordinate of the reference camera into the coordinate of
the virtual camera.

3. We perform the projection of the 3D points into an image plane of the novel
view.
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Using the above process, the texture in the reference image is mapped into
a novel view from the virtual camera. This process is performed for all the
reference images. Fig. 11 shows the process of projecting the reference images.
In this paper, all the images are disposed in the parallel structure. All the
images are rectified and the viewing directions are the same, in other words,
there is only translation between cameras. The translation of the virtual cam-
era is only considered in the novel view rendering process. When using a novel
viewpoint, the nearest two images (camera i and i + 1) are selected and pro-
jected into the virtual view. A point mi(x, y) with the disparity value di on
the ith image is converted into the 3D point Mi as follows:

(
(xi − x0)B

di

,
(yi − y0)B

di

,
fB

di

)
(10)

where (x0, y0) represents the center of the image plane. When the trans-
formation between the real and virtual cameras consists of the translation
(Tx, Ty, Tz), we compute the 3D point M v

i in the virtual camera coordinates:

(
(xi − x0)B

di

+ Tx,
(yi − y0)B

di

+ Ty,
fB

di

+ Tz

)
(11)

By projecting the 3D point M v
i into an image plane of the virtual camera, we

acquire the relationship between the corresponding pixels in the reference and
virtual images. A point in the novel view mv

i (x
v
i , y

v
i ) is computed as follows:

xv
i − x0 = f

(xi − x0)B/di + Tx

fB/di + Tz

=
xi − x0 + diαx

1 + diαz/f

yv
i − y0 = f

(yi − y0)B/di + Ty

fB/di + Tz

=
yi − y0 + diαy

1 + diαz/f
(12)

To simplify this notation, we use a normalized coordinate (αx, αy, αz) =
(Tx, Ty, Tz)/B, and set the baseline distance to 1. The novel view from the vir-
tual camera is synthesized by projecting the reference images into the image
plane of the virtual camera and then performing the weighted-interpolation
process. If Ii and Iv

i are the reference and projected images, respectively, then
Iv
i (xv

i , y
v
i ) = Ii(xi, yi).

When the novel view is synthesized with the forward mapping of the texture
information, there are some problems. Since the relationship in Eq. (12) is
generally not one-to-one mapping, multiple projections and holes in the novel
view can usually exist. Two or more pixels of the reference image can be
projected into the same point of the novel view, and the holes can be generated
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Real image
Virtual image

Real image
Virtual image

Fig. 12. Reverse mapping of disparity value and bilinear interpolation of intensity
value.

by occlusion. Multiple projections into the novel view can be caused by two
reasons: depth discontinuity and image resampling. The pixels on the depth
discontinuities can be projected into the same point in the novel view, although
they have different disparity values (depths). In this case, the pixel with the
smallest depth value among the projected pixels should be retained since the
pixel should cover the remaining pixels of objects farther from the camera.
Since the distance between the objects and the camera is inversely proportional
to the disparity value, we retain the pixel with the largest disparity value when
it comes to rectified camera configuration. Another problem occurs with regard
to image resampling. In general, when objects zoom out (or in) in novel view
rendering, multiple projections (or holes) may be found, although they are
equal disparity values. Moreover, the point (xv

i , y
v
i ) in the novel view may not

be an integer.

In order to solve these problems, we adopt the reverse mapping and bilinear
interpolation in the novel view rendering process. Given the novel viewpoint,
we perform geometric resampling in the novel view, by transferring the depth
and occlusion information to the novel view for each reference image, as shown
in Fig. 12. Simple median filtering is performed in the depth and occlusion map
to eliminate small holes. The reverse mapping process prevents the quality of
the novel view from being degenerated by image resampling. Since it is known
that disparity (or depth) varies smoothly, geometric resampling does not affect
the quality of novel view rendering. This is different from image resampling.

Fig. 13 shows the movement of the virtual camera. The distance between the
real cameras is normalized as 1.0 to simplify the notation. (αg

x, α
g
y, α

g
z) is the

global location of virtual camera. Virtual camera can move along x and z-
axes, which include left, right, forward and backward movements. The y-axis
movement is limited since this may cause some holes in the novel view. In
general, it is possible to generate 2D or 3D freeview video by synthesizing
one or two novel views, respectively. The final reconstructed novel view is
computed by interpolation with the projected images as follows:
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Fig. 13. Movement of virtual camera.

Iv(p) = V i(p)(1− αx)I
i
v(p) + V i+1(p)αxI

i+1
v (p) (13)

where α(αx, αy, αz) represents the relative locations of the virtual camera.
V (p) is a visibility function that shows whether a pixel in the novel view is
visible in the reference views, with values of 1 (or 0) when visible (or not). The
visibility function V (p) is defined when geometric resampling is performed.

4.3 Virtual 3D View Generation

We synthesize the stereoscopic novel view from the virtual camera. In general,
this synthesis can be generated by synthesizing two novel views - one for the
left view and one for the right view. The distance between the two novel
views can be defined as Bs. In order to establish the zero parallax setting
(ZPS), the CCD sensors of the stereoscopic cameras in the parallel structure
are translated by a small shift h relative to the position of the lenses [23]. This
makes us choose the convergence distance Zc in the 3D scene. In general, this
shift sensor concept is usually used as an alternative to the “toed-in” approach,
because it does not cause keystone distortions and depth-plane curvature in
stereoscopic images [23]. The sensor shift can be simply formulated as the
displacement of a camera’s principal point. When the horizontal shift of the
principal point is defined as h, the point in the novel view is computed as
follows:

xv
i − (x0 ± h) =

xi − x0 + diαx

1 + diαz/f

yv
i − (y0 ± h) =

yi − y0 + diαy

1 + diαz/f
(14)
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Fig. 14. Stereoscopic imaging using the shift sensor method. This figure is from [23].

where ±h means the shifted right and left images of the novel stereoscopic
views, respectively. Fig. 14 shows stereoscopic imaging using the shift sensor
method [23]. Scene parts that lie further away than the convergence distance
Zc are visualized behind the screen in a 3D display, and areas closer than Zc

are reproduced in front of the display in the viewer space [23]. Please refer to
[23] for more detailed explanations for this method.

5 Experimental Results

To validate the performance of the semi N -view & N -depth framework, we
performed the experiments with the Middlebury test sequences [24]. We used
the following test data sets: ‘Tsukuba’ (384 × 288 pixels, search range: 16),
‘Venus’ (434× 383 pixels, search range: 20), ‘Teddy’ (450× 375 pixels, search
range: 60), and ‘Cone’ (450 × 375 pixels, search range: 60). The ‘Tsukuba’
image set contains five color images (views 0-4), and the ‘Venus’, ‘Teddy’ and
‘Cone’ image sets contain nine color images (views 0-8). We used the images
of the even views for ‘Venus’, ‘Teddy’ and ‘Cone’ image pairs. Note that the
Middlebury stereo test bed performs objective evaluation with views 2 and 3
for the ‘Tsukuba’ image set, views 2 and 6 for the ‘Venus’, ’Teddy’, and ‘Cone’
image sets, and provides ground truth maps of view 2 for the ‘Tsukuba’ image
set and views 2 and 6 for the ‘Venus’, ’Teddy’, and ‘Cone’ image sets.

The proposed method was tested using the same parameters for all the test
images. The two parameters in the weighting function were rc = 8.0, rs = 8.0,
and the weighting factor was λ = 1.0. We used the multiscale approach on
four levels, and the number of iterations was (3, 2, 2,×), on a coarse to fine
scale. The iteration number of the finest level was not defined since we used
the adaptive interpolation technique in the up-sampling step, as mentioned in
section III. The sizes of the sets of neighboring pixels were 5× 5, 7× 7, 9× 9,
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(a) (b) (c) (d) (e)

Fig. 15. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cone’
image pairs in the semi N -view & N -depth framework (N = 3): (a)(e) Disparity
maps on target images 0 and 2 before occlusion handling, (b)(d) Disparity maps
on target images 0 and 2 after occlusion handling, (c) Disparity maps on reference
image.

Table 1
Processing time for N -view & N -depth and semi N -view & N -depth frameworks
(N = 5).

View # Tsukuba (s) Venus (s) Teddy (s) Cone (s)

N.N. Semi N.N. Semi N.N. Semi N.N. Semi

View 0 2.43 0.59 3.03 0.48 6.58 1.97 6.32 2.09

View 1 2.39 2.42 2.92 3.05 6.42 6.65 6.27 6.20

View 2 2.36 0.11 2.89 0.13 6.38 0.28 6.24 0.34

View 3 2.37 2.39 2.93 3.02 6.33 6.55 6.22 6.22

View 4 2.41 0.53 3.08 0.47 6.52 1.91 6.37 2.05

Total 11.96 6.05 14.84 7.14 32.23 17.36 31.41 16.91
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(a) view 0 (b) view 1 (c) view 2 (d) view 3 (e) view 4

Fig. 16. Disparity maps for the multiview image pairs in the semi N -view & N -depth
framework (N = 5).

(a) (b) (c) (d)

Fig. 17. Disparity maps estimated in the N -view & N -depth (top) and semi N -view
& N -depth (bottom) frameworks.

and 9× 9.

To evaluate the proposed cost aggregation method, the disparity maps esti-
mated for the standard stereo image pairs are shown in Fig. 15. The disparity
map of view 2 for the ‘Tsukuba’ image set was estimated with views 1, 2 and

22



Table 2
PSNR results of reconstructed views in N -view & N -depth and semi N -view &
N -depth frameworks.

N = 5 Tsukuba (dB) Venus (dB) Teddy (dB) Cone (dB)

N-N. N.A. 36.99 33.66 31.57

Semi N-N. N.A. 36.98 33.57 31.67

3, and the disparity map of view 4 for the ‘Venus’, ‘Teddy’ and ‘Cone’ image
sets with views 0, 4 and 8 in order to perform disparity estimation in the same
search range. In other words, the disparity maps were estimated in the semi
N -view & N -depth framework, when N was 3. Fig. 15 (c) shows the dispar-
ity map estimated with cost aggregation method on the reference image. Fig.
15 (a) and (e) show the disparity maps of the target images before occlusion
handling. They were acquired by warping the cost function of reference image.
Fig. 15 (b) and (d) show the disparity maps after occlusion handling. We could
find that the disparity maps of the target images were accurate and had good
localization on the object boundary, although these were acquired by warping
technique. The proposed method yielded accurate results for the discontinu-
ity, occluded, and textureless regions. We found that correct disparity fields
were estimated in the occluded pixels by using a simple technique that com-
pared the cost functions of multiview images. We think that the error in some
parts, for example, the ‘Venus’ image pairs, may have been caused by using
the asymmetric weighting function in the proposed cost aggregation process
as shown in Eq. (4), which is different from the result obtained in [19].

The estimated disparity maps for the multiview image pairs are shown in
Fig. 16. The disparity maps were estimated in the semi N -view & N -depth
framework, when N was 5. Fig. 16 (b) and (d) show the disparity maps in
the reference images, which were acquired by the proposed cost aggregation
method. The disparity map Fig. 16 (c) in the target image was computed
by symmetric warping. The disparity maps Fig. 16 (a) and (e) in the semi-
target image were computed by backward (or forward) warping only, therefore
reasonable cost functions were assigned into the occluded pixels with the pro-
posed occlusion handling process. We find that the disparity maps for the
target and semi-target images were accurate and had good localization on the
object boundaries, although these were acquired by warping techniques.

Fig. 17 shows the estimated disparity maps in the N -view & N -depth and the
semi N -view & N -depth frameworks. The disparity maps in the semi N -view
& N -depth framework were estimated by using symmetric warping, in other
words, the disparity maps in the target images were used for comparison. We
found that the disparity maps estimated in the semi N -view & N -depth frame-
work were as good as those estimated in the N -view & N -depth framework
with trivial computational loads only. Table 1 shows the processing times when
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(a) (b) (c)

Fig. 18. Results for 2D freeview generation, when N is 5: (from left to right) (a)
(1.5, 0.0, 0.0), (b) (1.5, 0.0, 1.0), (c) (1.5, 0.0,−0.5).

(a) (b) (c)

Fig. 19. Difference images for original and reconstructed images in the semi N -view
& N -depth framework (Table 2): (a) Venus, (b) Teddy, (c) Cone.
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(a) (b) (c)

Fig. 20. Results for 3D freeview generation, when N is 5: (from top to bottom)
‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cone’ image pairs.

comparing levels of complexity with those of other methods. The processing
time of the semi N -view & N -depth framework was nearly half of that of the
N -view & N -depth framework.

Fig. 18 shows the synthesized novel views that were obtained by the virtual
camera. We found that seamless images were synthesized in the object bound-
aries and the occluded regions. The quality of the synthesized images was
satisfactory enough to provide users with natural freeview videos for 3DTV.
For objective evaluation, we compared with PSNR results of reconstructed
images in N -view & N -depth and semi N -view & N -depth frameworks, as
shown in Table 2. In the ‘Venus’, ‘Teddy’ and ‘Cone’ image pairs, we synthe-
sized view 3 with view 2 and 4 and computed PSNR. We found that the PSNR
of reconstructed images in two frameworks was nearly same. The difference
images for original and synthesized images (view 3) are shown in Fig. 19. The
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(a) (b) (c) (d) (e)

Fig. 21. Disparity maps for ‘Ballroom’ image pairs: We used 5 images (views 2-6)
in the experiment.

synthesized stereoscopic images are shown in Fig. 20. The virtual left view is
the same as that in Fig. 18. The virtual baseline distance Bs is 0.2, and the
sensor shift h is SR/3, where SR defines the search range of the stereo match-
ing process. Users could see the freeview 3D video through a 3D stereoscopic
monitor. In these experiments, we used a G170S, a stereoscopic MIRACUBE
LCD monitor [25]. This monitor supports various 3D display formats such
as ‘interlaced stereo’, ‘frame sequential’, ‘sub-field’, and ‘side-field’. Moreover,
it supports both 2D and 3D display modes, and the maximum resolution is
1280 × 512 (1280 × 1024) in the 3D (2D) mode. The synthesized 2D and 3D
freeview videos are available at [27].

Fig. 21 shows the estimated disparity maps for ‘Ballroom’ (640× 480 pixels)
image pairs, multiview video coding (MVC) test sequences which consists of 8
rectified views. In the experiments, we used 5 images (views 2-6), and search
range was set to 40. In order to minimize the error that might be caused by
the difference of baseline distances between cameras, we used the images of
320 × 240 pixels by performing subsampling. Fig. 21 (b) and (d) show the
disparity maps in the reference images. Fig. 21 (c) show the disparity maps
in the target image, and (a) and (e) the disparity maps in the semi-target
images. The figures in the second column show the intermediate results before
hole filling and occlusion handling. We found that reasonable disparity values
in the occluded parts were obtained on the target and semi-target images.
Fig. 22 shows the synthesized 2D and 3D novel views. The virtual baseline
distance and the sensor shift are the same as those of Fig. 18.

The experiment was additionally performed using other images such as ‘Mans’
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(a) (b) (c)

Fig. 22. Results for 2D and 3D virtual views: (from left to right) (a) (1.5, 0.0, 0.0),
(b) (1.5, 0.0, 1.0), (c) (1.5, 0.0,−0.5).
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Fig. 23. Trinocular camera configuration.

(640 × 480 pixels). The ‘Mans’ image pairs were captured by the Digiclops
camera of Point Grey Research Inc. [26]. The search range was 35. Since the
Digiclops is the trinocular camera which consists of the left, center and top
views, the virtual views were synthesized in 3D volume, that is x, y and z
axes. Fig. 23 shows the trinocular camera configuration. The novel view from
the virtual camera can be synthesized in the volume which is encircled by the
dotted lines. The estimated disparity maps and synthesized 2D and 3D views
are shown in Fig. 24 and 25, respectively. The virtual baseline distance was
set to 0.3, and the sensor shift was 0. The quality of the synthesized images
was satisfactory, especially, in the occluded parts or object boundaries.
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Fig. 24. Disparity maps for ‘Mans’ (640× 480 pixels) image pairs captured by the
Digiclops camera of Point Grey Research Inc. [26]: (from left to right) Left, center,
and top views.

Fig. 25. Results for 2D and 3D virtual views: (from left to right) (0.7, 0.5, 0.0)
(0.7, 0.5, 2.0) (0.7, 0.5,−1.0).

6 Conclusions

In this paper, we have presented a novel approach for generating 2D/3D free-
view video in multiview camera configurations. By using the estimated cost
functions of neighboring images, the redundancy of estimating disparity maps
in multiview images was reduced in the semi N -view & N -depth framework.
The disparity maps in the reference images, which were estimated by the pro-
posed method, were accurate and robust to occlusion. Since the cost functions
on the target images were computed by the proposed warping technique, the
computation loads were reduced significantly. The occlusion problem was effi-
ciently handled by using the cost functions of multiview images. Novel views
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could be selected among the 2D or 3D stereoscopic images according to user se-
lection. In further work, we will investigate virtual view rendering systems for
various camera configurations, and investigate the backward warping method,
which is more robust to disparity map errors.
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