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Abstract—The anisotropic diffusion has been known to be
closely related to the adaptive smoothing and be discretized in a
similar manner. This paper revisits a fundamental relationship
between two approaches. It is shown that the adaptive smoothing
and the anisotropic diffusion have different theoretical back-
grounds by exploring their characteristics with the perspective of
a normalization, an evolution step size and an energy flow. Based
on this principle, the adaptive smoothing is derived from a second
order partial differential equation (PDE), not a conventional
anisotropic diffusion, via the coupling of Fick’s law with a
generalized continuity equation where a ‘source’ or ‘sink’ exists,
which has not been extensively exploited. We show that the
‘source’ or ‘sink’ is closely related to the asymmetry of an energy
flow as well as the normalization term of the adaptive smoothing.
It enables us to analyze behaviors of the adaptive smoothing such
as the maximum principle and stability with a perspective of
a PDE. Ultimately, this relationship provides new insights into
application-specific filtering algorithm design. By modeling the
‘source’ or ‘sink’ in the PDE, we introduce two specific diffusion
filters, the robust anisotropic diffusion (RAD) and the robust
coherence enhancing diffusion (RCED), as novel instantiations
which are more robust against the outliers than the conventional
ones.

Index Terms—Adaptive smoothing, anisotropic diffusion, en-
ergy flow, normalization, generalized continuity equation, coher-
ence enhancing diffusion.

I. INTRODUCTION

IN low-level vision problems, there is a need to smooth
images, while preserving universal features such as edges

or boundaries, in order to find structures embedded in images
[1]. Linear smoothing averages all pixels evenly without
incorporating the local topology, leading to blurred features.
Over the last two decades, there have been many advances in
nonlinear smoothing in which prior knowledge is leveraged
for grouping with similar pixels only. There having been
many types of nonlinear smoothing [2], [3], partial differential
equation (PDE) based smoothing and kernel based smoothing
have been widely used. The typical examples of the PDE
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based smoothing are the anisotropic diffusion [4] and the
total variation diffusion [5], [6], which are also related to the
wavelet shrinkage and morphology [6], [7]. The most represen-
tative examples of the kernel based smoothing are the adaptive
smoothing [8], [9], the bilateral filter [10], the mean-shift filter
[11], and the non-local filter [12]. Nonlinear smoothing has
been successfully applied to the image denoising [13], [14],
segmentation [15], structure decomposition [1], optical flow
estimation [16], and manifold smoothing [17].

Many researchers have made efforts to investigate a funda-
mental relationship between the PDE based smoothing and the
kernel based smoothing [13], [17], [8], [12], [18], [19], [20],
[21], [22], [23]. Saint-Marc et al. showed that the adaptive
smoothing is equivalent to the anisotropic diffusion [8]. Barash
also derived a relationship between the adaptive smoothing
and the anisotropic diffusion, and showed that Saint-Marc’s
results are not consistent [19]. He also verified that the bilateral
filter [10] becomes a generalized formulation of the adaptive
smoothing by introducing 5-D pixels. Simoncelli and Hany
generalized a steerable filter, as a type of the adaptive filter,
such that the orientation and magnitude of local structures
can be captured and analyzed together [24]. Buades et al.
showed an asymptotic behavior of neighborhood filters as the
size of the neighborhood shrinks to zero, and proved that these
filters are asymptotically equivalent to the anisotropic diffusion
[13]. Singer et al. viewed the non-local filter as a diffusion
process, and analyzed a relationship between the non-local
filter and the random walk theory [20]. Elad showed how the
bilateral filter is improved and extended upon for handling
more sophisticated reconstruction problems [21]. In [22], it
was shown that the bilateral filter is the particular case of
the mean-shift filter and can be obtained by fixing the spatial
kernel of the mean-shift filter at each iteration. Motivated by
these works, Paris and Durand casted the bilateral filter into
a signal processing framework [25]. The intensity range was
quantized and sampled into a small set of channels, which
is similar to the channel smoothing [18], so that the compu-
tational efficiency could be dramatically improved. Recently,
Sevilla-Lara and Learned-Miller extended the channels from
an intensity range to an arbitrary feature space, enabling the
channel smoothing to be applicable to high-level vision fields
such as tracking [26].

In this paper, a traditional relationship between the adaptive
smoothing and the anisotropic diffusion is revisited. Rein-
terpreting two approaches in terms of a normalization, an
evolution step size and an energy flow, we show that the
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adaptive smoothing is equivalent to the anisotropic diffusion
only when special constraints are imposed. Specifically, the
energy flow of adaptive smoothing is asymmetric, whereas
that of anisotropic diffusion is always symmetric. Considering
an asymmetric energy flow, we derive the adaptive smoothing
from a second order PDE, not a conventional anisotropic
diffusion, via the coupling of Fick’s law with a generalized
continuity equation where a ‘source’ or ‘sink’ exists, which
has not been extensively exploited. Namely, the equivalence
between the adaptive smoothing and the second order PDE
with the ‘source’ or ‘sink’ is explicitly investigated. Based
on this fact, it is shown that the normalization term used in
the adaptive smoothing, a fundamental form of the weighted
average filter [19], comes from the ‘source’ or ‘sink’ in
the generalized continuity equation. We also show that the
adaptive smoothing satisfies a maximum principle and is
always stable with a perspective of a PDE. Furthermore,
the proposed PDE gives us new diffusion filters such as the
robust anisotropic diffusion (RAD) and the robust coherence
enhancing diffusion (RCED).

The significance of our work is as follows: First, we
distinguish the adaptive smoothing from the anisotropic dif-
fusion with the perspective of an energy flow, providing new
insights into application-specific filtering algorithm design. A
symmetric energy flow of the anisotropic diffusion implies that
the diffusion process conserves the total energy of an initial
image. Thus, the anisotropic diffusion should be differentiated
from the adaptive smoothing although they show similar
behavior. For instance, Gilboa and Osher [14] proposed a
non-local diffusion filter (PDE based smoothing) which is a
corresponding counterpart of the non-local filter (kernel based
smoothing) [12]. They showed that the proposed diffusion
filter is superior to the conventional non-local filter in some
applications such as image denoising and supervised image
segmentation, since the symmetric energy flow does not tend
to blur rare and singular regions [14]. Recently, Aubry et al.
proposed a variant of the bilateral filter in which the nor-
malization is removed [27]. This unnormalized version has a
weaker effect when the sum of weights become smaller, which
leads to generating slightly softer images, thus preventing
halos at strong edges. Second, the behavior of a weighted
average filter can be analyzed with the viewpoint of a PDE,
since the normalization term used in the weighted average
filter comes from the ‘source’ or ‘sink’ in the generalized
continuity equation. Third, a new filter can be designed by
properly modeling the ‘source’ or ‘sink’ in the proposed PDE
according to specific applications. One feasible example is the
RAD which is more robust against various outliers such as salt-
and-pepper noise, Gaussian noise, and their mixture [28]. In
this paper, as an extension of the RAD, the RCED is examined
as well.

The paper is organized as follows: Section II briefly sum-
marizes the adaptive smoothing and the anisotropic diffusion
followed by traditional relationship between them [8], [19],
[22]. Then, the adaptive smoothing is derived from a second
order PDE and its behavior is analyzed with the view point of
a PDE in Section III. In Section IV, the RAD and the RCED
are introduced from the proposed PDE. Finally, Section V

(a) (b)

Fig. 1. Stencil diagram used in (a) the adaptive smoothing with N , and (b)
the anisotropic diffusion with 4-neighborhood N4. White circles and black
circles denote the center node p and its neighborhood q, respectively. Note
that N includes the center node as well.

concludes the paper with a discussion.

II. ADAPTIVE SMOOTHING AND ANISOTROPIC DIFFUSION

A. Adaptive Smoothing
The adaptive smoothing aims to regularize an image while

preserving features. The image is repeatedly convolved with
a kernel weighted by a measure of the discontinuity [8].
Let I(t) (p) denote an intensity value of p = (x, y) at the
tth iteration. A signal, filtered by the adaptive smoothing, is
defined as follows.

I(t+1)(p) =
1

χ(t)(p)

∑
q∈N

I(t)(q)gs(d
(t)(q,p)) (1)

with
χ(t)(p) =

∑
q∈N

gs(d
(t)(q,p)), (2)

where gs(d
(t)(q,p)) is a monotonically decreasing function

according to the distance d(t)(q,p) = |I(t)(q)− I(t)(p)|
which discriminates the relative importance between points.
N is the set of neighboring pixels to the center node p as
shown in Fig. 1(a). Note that the center node is also included
in N .

B. Anisotropic Diffusion
The heat equation, or the diffusion, is a fundamental PDE

that models the distribution of heat or temperature on a given
domain over time. Perona and Malik applied this physics
model to image processing, especially for edge preserving
smoothing, with scale space theory [4]. They introduced a time
and spatially varying diffusivity function into the diffusion
model, which results in the anisotropic diffusion, as follows:

∂tI(p) = ∇ · [c(t)(p)∇I(t)(p)], (3)

where t denotes the time. ∇ and ∇· denote the gradient and
divergence operator, respectively. c(t) (p) defined as in (4) is a
thermal diffusivity function satisfying gd(x)→ 0 as x→∞.

c(t)(p) = gd(‖∇I(t)(p)‖) (4)

The 1-D counterpart of the anisotropic diffusion as in (3) is
discretized by an explicit finite difference method (FDM) as
follows [29].

∂tI(x) = ∂x[c(t)(x)∂xI
(t)(x)]

≈ 1

2

(
c(t)(x− 1) + c(t)(x)

)(
I(t)(x− 1)− I(t)(x)

)
+

1

2

(
c(t)(x+ 1) + c(t)(x)

)(
I(t)(x+ 1)− I(t)(x)

)
, (5)
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where

1

2

(
c(t)(x− 1) + c(t)(x)

)
≈ 1

2

[
gd(|I(t)(x− 1)− I(t)(x)|)
+gd(|I(t)(x− 1)− I(t)(x)|)

]
= gd(|I(t)(x− 1)− I(t)(x)|),

1

2

(
c(t)(x+ 1) + c(t)(x)

)
≈ 1

2

[
gd(|I(t)(x+ 1)− I(t)(x)|)
+gd(|I(t)(x+ 1)− I(t)(x)|)

]
= gd(|I(t)(x+ 1)− I(t)(x)|). (6)

Note that the first and second terms are approximated by
the backward and forward differences, respectively [30]. Then,
the 1D anisotropic diffusion is discretized by an explicit FDM
with a forward Euler approximation as follows.

[I(t+1)(x)− I(t)(x)]/τ =

= gd(|I(t)(x+ 1)− I(t)(x)|)[I(t)(x− 1)− I(t)(x)]

+ gd(|I(t)(x+ 1)− I(t)(x)|)[I(t)(x+ 1)− I(t)(x)], (7)

where τ is an evolution step size.
Similarly, the 2D anisotropic diffusion as in (3) is dis-

cretized as follows.

I(t+1)(p) = I(t)(p)

+ τ
∑

q∈N4

gd(|I(t)(q)− I(t)(p)|)(I(t)(q)− I(t)(p)) (8)

where N4 represents the 4-neighborhood of the center node
p, as shown in Fig. 1(b).

C. Traditional Relationship between Adaptive Smoothing and
Anisotropic Diffusion

We review the traditional relationship between the adaptive
smoothing and the anisotropic diffusion. We assume that,
without loss of generality, the functions gs(·) in (1) and
gd(·) in (4) is identical in that they play the same role, i.e.,
preventing the diffusion across different features. From here
on, we hence denote these functions as g(·). The general
relationship between two functions c(t)(·) and d(t)(·) can then
be derived as follows.

1

2

(
c(t)(q) + c(t)(p)

)
≈ g(|I(t)(q)− I(t)(p)|) = g(d(t)(q,p)) (9)

Saint-Marc et al. formulated the 1-D case of the adaptive
smoothing in (1) as follows [8].

I(t+1)(x) = c(t)(x− 1)I(t)(x− 1)

+ c(t)(x)I(t)(x) + c(t)(x+ 1)I(t)(x+ 1) (10)

with
c(t)(x− 1) + c(t)(x) + c(t)(x+ 1) = 1. (11)

After plugging (11) into (10) and rearranging the equation,
the following equation can be derived:

I(t+1)(x)− I(t)(x)

= c(t)(x− 1)[I(t)(x− 1)− I(t)(x)]

+ c(t)(x+ 1)[I(t)(x+ 1)− I(t)(x)] (12)

It is similar to the 1-D discrete implementation of the
anisotropic diffusion in (7). Later, Barash showed that this
is an inconsistent approximation of anisotropic diffusion in
(7), since an extra term remains when the terms c(t)(x + 1),
c(t)(x − 1) and I(t)(x + 1), I(t)(x − 1) are expanded with
respect to c(t)(x) and I(t)(x), respectively, by using a Taylor
series [19]. (See for more details in appendix of [19].) In order
to address the inconsistency problem, Barash re-formulated the
1-D adaptive smoothing of (1) as follows [19]:

I(t+1)(x) =
c(t)(x− 1)I(t)(x− 1) + c(t)(x)I(t)(x− 1)

2
+ c(t)(x)I(t)(x)

+
c(t)(x+ 1)I(t)(x+ 1) + c(t)(x)I(t)(x+ 1)

2
, (13)

with

c(t)(x− 1) + c(t)(x)

2
+ c(t)(x) +

c(t)(x+ 1) + c(t)(x)

2
= 1.

(14)
That is,

g(|I(t)(x− 1)− I(t)(x)|) + g (0) (15)

+ g(|I(t)(x+ 1)− I(t)(x)|) = χ(t) (x) = 1.

After similar manipulation to (12), we can derive the
following equation:

I(t+1)(x)− I(t)(x) =

c(t)(x− 1) + c(t)(x)

2

[
I(t)(x− 1)− I(t)(x)

]
+
c(t)(x+ 1) + c(t)(x)

2

[
I(t)(x+ 1)− I(t)(x)

]
. (16)

Obviously, (16) can be referred to as the 1-D discrete
implementation of the anisotropic diffusion as in (7) [19].
However, this result is validated only when (14) or (15) is
satisfied, i.e., the sum of weights is equal to 1, since the
normalization used in the adaptive smoothing of (1) is not
considered in (13), which will be explained in the next section.

III. DERIVATION OF ADAPTIVE SMOOTHING FROM A
SECOND ORDER PDE

A. Problem Statement

In this section, we show that the adaptive smoothing is
not equivalent to the anisotropic diffusion by exploring the
characteristics of two approaches with the perspective of a
normalization, an evolution step size, and an energy flow.
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(a) Original image (b) Anisotropic diffusion (0.1)

(c) Anisotropic diffusion (0.25) (d) Anisotropic diffusion (1.5)

(e) Anisotropic diffusion (3.0) (f) Adaptive smoothing

Fig. 2. Comparison of the anisotropic diffusion and the adaptive smoothing:
(a) An original ‘cat’ image [10], the anisotropic diffusion when the evolution
step size is set to (b) 0.10, (c) 0.25, (d) 1.50, and (e) 3.0, (f) the adaptive
smoothing. The number of iteration is fixed to 50 in both anisotropic diffusion
and adaptive smoothing. Gaussian kernel with an amplitude 1 and a fixed
standard deviation 0.01, is used as g(·) in both methods. Note that the result
of the anisotropic diffusion diverges when the evolution step size is larger
than 0.25, i.e., the filtered results become noisy when the evolution step size
is set to 1.5 or 3.0. Please see the electronic version for better visibility.

1) Normalization: The metric d(t)(q,p) in (1) is generally
defined by an intensity similarity between two pixels, and
meets following conditions.

d(t)(q,p) ≥ 0 (non− negativity) (17)

d(t)(q,p) = 0 if and only if q = p (identity) (18)

d(t)(q,p) = d(t)(p,q) (symmetry) (19)

d(t)(q,p) ≤ d(t)(q, r) + d(t)(r,p) (triangle inequality)
(20)

Since the weight function g(d(t)(q,p)) is calculated by the
distance metric d(t)(q,p) whose value is always positive, the
sum of weights in (14) or (15) is spatially varying according to
the characteristics of the distance metric d(t)(q,p), not being
fixed to 1.

Proposition 1: The adaptive smoothing is equivalent to the
anisotropic diffusion only when the sum of weights χ is equal
to 1.

(a) Energy exchange in anisotropic diffusion

(b) Energy exchange in adaptive smoothing

Fig. 3. Energy flow diagram: (a) An energy exchange between pixels adjoined
is symmetry in the anisotropic diffusion. (b) In contrast to the anisotropic
diffusion, the energy exchange is asymmetric in the adaptive smoothing due
to the normalization. Solid-arrows indicate the energy flow in a corresponding
direction, which is influenced by the dotted-arrows. The dotted-arrows indicate
the influence of normalization.

Proof: Let us consider the following case.

c(t)(x− 1) + c(t)(x)

2
+ c(t)(x)

+
c(t)(x+ 1) + c(t)(x)

2
= χ(t)(x), (21)

where χ(t)(x) is a normalization factor, and is an arbitrary
constant that satisfies χ(t)(x) > 0.

After the same manipulation as (16), the following equation
is derived:

I(t+1)(x)− I(t)(x) =

c(t)(x− 1) + c(t)(x)

2

[
I(t)(x− 1)− I(t)(x)

]
+
c(t)(x+ 1) + c(t)(x)

2

[
I(t)(x+ 1)− I(t)(x)

]
+(χ(t)(x)− 1)I(t)(x), (22)

Thus, the adaptive smoothing is equivalent to the anisotropic
diffusion only when the sum of weights χ(t)(x) is equal to 1.

2) Evolution Step Size: It is assumed that the evolution step
size of the anisotropic diffusion in (16) is 1, making it unstable.
In general, when 1-D anisotropic diffusion is discretized by an
explicit FDM, the evolution step size should be smaller than
0.5 (0.25 in 2-D case) in order to ensure its numerical stability
[31]. Fig. 2 shows images filtered by (b)-(e) the anisotropic
diffusion where the evolution step size varies from 0.10 to 3.0,
and (f) the adaptive smoothing, respectively. We found that the
result diverges, when the evolution step size of the anisotropic
diffusion is larger than 0.25, i.e., the filtered results become
noisy when the evolution step size is set to 1.5 or 3.0.

Recently, it was shown that each iteration of the adaptive
smoothing can be referred to as one step of the anisotropic
diffusion [23]. This relationship, however, still shares the same
problems as described above, i.e., the anisotropic diffusion
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Fig. 4. Normalized mean value of the results filtered by the anisotropic
diffusion and the adaptive smoothing according to the iteration with an initial
condition as in Fig. 2(a). Gaussian kernel with an amplitude 1 and a fixed
variance 0.01 is used as g(·) in both methods. It should be noted that the
mean value of the image filtered by the anisotropic diffusion is preserved
thanks to its symmetric energy flow.

derived from the adaptive smoothing in [23] is unstable since
the evolution step size of the anisotropic diffusion is assumed
to become 1.

3) Energy Flow: The energy of the anisotropic diffusion in
(8) is exchanged in a symmetric manner, that is, the energy
flow between two nodes p and q is determined by the center
node itself, as shown in Fig. 3(a). In contrast, the energy
of the adaptive smoothing is exchanged in an asymmetric
manner due to the normalization [14], [32], and the energy
flow is determined by their neighborhood nodes as well as
the current node, as plotted by the dotted-arrows in Fig.
3(b). Fig. 4 shows the normalized mean value of the results
filtered by the anisotropic diffusion and the adaptive smoothing
according to iteration with an initial condition as in Fig. 2(a).
The anisotropic diffusion preserves the mean of an initial
image regardless of time, whereas the adaptive smoothing
does not. However, (16) derived by Barash [19] does not
reflect the asymmetric energy flow of the adaptive smoothing,
i.e., the flow of (16) is always symmetric although it is
derived from the adaptive smoothing, leading to the conclusion
that the equivalence between the adaptive smoothing and the
anisotropic diffusion is not valid.

B. Derivation of Adaptive Smoothing From a Second Order
PDE

In this section, we first examine the origin of the anisotropic
diffusion, and re-derive the adaptive smoothing from a second
order PDE, considering the asymmetric energy flow.

The anisotropic diffusion is derived via the coupling of
Fick’s law with the continuity equation. Fick’s law states that
a concentration gradient causes a diffusion flux that aims to
compensate for this concentration field as follows [33]:

J(p) = −c(t)(p)∇I(p). (23)

The generalized continuity equation is then expressed by:

∂tI(p) = −∇ · J(p) + s, (24)

where s is a function that describes the generation or removal
of I , so-called ‘source’ or ‘sink’. Plugging Fick’s law into
the general continuity equation and setting s to 0, we derive

(a) (b) (c)

Fig. 5. Three cases of an energy flow in the adaptive smoothing. (a)
the energy flow of the adaptive smoothing is exactly the same as that of
the anisotropic diffusion. In case of (b) and (c), the energy flow of the
adaptive smoothing is smaller, and larger than that of the anisotropic diffusion,
respectively.

the anisotropic diffusion as in (3). The anisotropic diffusion is
hence adiabatic as shown in Fig. 4 since the ‘source’ or ‘sink’
in the continuity equation is eliminated, making the energy
flow symmetric, as shown in Fig. 3(a).

As mentioned in previous section, the energy flow in the
adaptive smoothing is asymmetric, which enables us to classify
the energy flow in the adaptive smoothing into three cases as
shown in Fig. 5.
• First, the energy flow of the adaptive smoothing is exactly

the same as that of the anisotropic diffusion as shown in
Fig. 5(a), so there is no additional flow in the adaptive
smoothing.

• Second, the energy flow of the adaptive smoothing can be
smaller or larger than that of the anisotropic diffusion as
shown in Fig. 5(b) and (c), corresponding that the sum of
weights χ in (1) is larger or smaller than 1, respectively. It
also implies that an additional flow exists in the adaptive
smoothing. Specifically, p in Fig. 5(b) and (c) can be
considered as the ‘sink’ and ‘source’, respectively.

It leads to the conclusion that s in (24) exists in the adaptive
smoothing as in (25).

∂tI(p) = ∇ · [c(t)(p)∇I(p)] + s(p), (25)

where s(p) is a spatially-varying function. It is worthy of
noting that one can design a new filter by appropriately
modeling s (p) according to specific applications [28].

Then, what function should be given as s(p) in the adaptive
smoothing? By considering the energy flow in the adaptive
smoothing as described in Fig. 5, s(p) should meet the
following criteria.
• First, it should scale the magnitude of the original flux
∇ ·
(
c(t) (p)∇I (p)

)
only while preserving its direction.

It is worthy of noting that a rotation field can create
an asymmetric flow as well, but it changes the direc-
tion/angle as well as the magnitude of a flow, which does
not correspond to the adaptive smoothing.

• Second, its scaling strength depends on not only the
current pixel but its neighboring pixels. When the current
pixel is similar to the neighboring pixels, i.e., χ(t)(p) is
high, the flux decreases as shown in Fig. 5(b), correspond-
ing that a scaling strength becomes smaller than 1 when
the scaling strength is assumed to be 1 in case of Fig.
5(a), and vice versa. In summary, the scaling strength is
inversely proportional to the sum of weights χ(t)(p).

The following proposition can then be derived.
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TABLE I
RELATION BETWEEN s(p) AND κ(p)

Fig.5(a) Fig.5(b) Fig.5(c)

p − sink source

χ(t)(p) 1 > 1 0 < · < 1

κ(p) 1 0 < · < 1 > 1

s(p) 0 < 0 > 0

ln[κ(p)] 0 < 0 > 0

Anisotropic diffusion O − −
Adaptive smoothing O O O

Proposition 2: In the adaptive smoothing, s(p) is a function
of the original flux ∇· [c(t)(p)∇I(p)] and the sum of weights
χ(t)(p).

Proof: Equation (25) can be re-formulated by introducing
a new function κ.

∂tI(p) = κ(p)∇ · [c(t)(p)∇I(p)] (26)

where

κ(p) =
∇ · [c(t)(p)∇I(p)] + s(p)

∇ · [c(t)(p)∇I(p)]
. (27)

In the adaptive smoothing, the scaling strength of κ(p) is
equal to the reciprocal of the sum of weights χ(t)(p) by the
second criterion. By arranging (27) with respective to s (p),
the following equation is derived.

s(p) = (κ(p)− 1)∇ · [c(t)(p)∇I(p)] (28)

=

(
1

χ(t)(p)
− 1

)
∇ · [c(t)(p)∇I(p)]

It is worth noting that the scaling factor κ(p) in (26) is
always larger than 0 since it should adjust the magnitude of
flux only as in the first criterion.

Corollary 1: κ(p) is a ‘source’ or ‘sink’ in the log diffusion
equation.

Proof: Since κ(p) > 0, without loss of generality, we
analyze (26) in the log domain by assuming that it becomes
an equilibrium state as time t goes infinite.

ln[∂tI (p)] = ln
[
∇ · [c(t) (p)∇I (p)]

]
+ ln[κ(p)] (29)

By comparing (29) with (25), one can notice that (29) is
the anisotropic diffusion in the log domain. ln [κ(p)] is hence
called the ‘source’ or ‘sink’ in the log diffusion equation,
which can be defined by

ln[κ(p)] = ln

[
1 +

s(p)

∇ · [c(t)(p)∇I(p)]

]
. (30)

When s(p) becomes 0 as in Fig. 5(a), i.e., p is neither a
‘source’ nor ‘sink’, it corresponds ln[κ(p)] is 0. In contrast,
when p is a ‘sink’ (s(p) < 0) in Fig. 5(b) or a ‘source’
(s(p) > 0) in Fig. 5(c), it corresponds to ln[κ(p)] < 0 or
ln[κ(p)] > 0, respectively. Table I summarizes three cases of
Fig. 5.

Equation (26) is then re-written by incorporating χ(t)(p),
which leads to the second order PDE as follows:

χ(t)(p)∂tI(p) = ∇ · [c(t)(p)∇I(p)]. (31)

Note that when χ(t)(p) is set to 1, i.e. s(p) = 0, as in Fig.
5(a), the adaptive smoothing in (31) becomes the anisotropic
diffusion in (3), and this exactly coincides with the constraint
(14) or (15), i.e., sum of weights becomes 1. Therefore, the
proposition 1 is supported once more.

Equation (31) is then discretized by an explicit FDM with
a forward Euler approximation as follows.

I(t+1)(p) = I(t)(p)

+ τ

∑
q∈N4

g
(∣∣I(t)(q)− I(t)(p)

∣∣) (I(t)(q)− I(t)(p)
)

g (0) +
∑

q∈N4
g
(∣∣I(t)(q)− I(t)(p)

∣∣)
(32)

Proposition 3: The adaptive smoothing in (1) is equivalent
to (32) when the evolution step size τ is 1.

Proof: Let us re-formulate the 1-D case of the adaptive
smoothing in (1) in order to link it with the second order PDE,
considering the sum of weights χ. Note that the normalization
is considered in (33), different from (13).

I(t+1)(x) = αI(t)(x− 1) + βI(t)(x) + γI(t)(x+ 1), (33)

where

α =

(
c(t)(x− 1) + c(t)(x)

2

)/
χ(t)(x),

β =
(
c(t)(x)

)/
χ(t)(x), (34)

γ =

(
c(t)(x+ 1) + c(t)(x)

2

)/
χ(t)(x).

where

c(t)(x− 1) + c(t)(x)

2
+ c(t)(x)

+
c(t)(x+ 1) + c(t)(x)

2
= χ(t)(x). (35)

Note that α, β, and γ are derived by using (6). In contrast
to (22), the following equation is always satisfied regardless
of χ(t)(x) since the normalization is embedded in α, β, and
γ:

α+ β + γ = 1. (36)

By substituting α, β, and γ in (33) with (34), we derive the
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following equation:

I(t+1)(x)− I(t)(x)

=

(
c(t)(x− 1) + c(t)(x)

2χ(t)(x)

)(
I(t)(x− 1)− I(t)(x)

)
+

(
c(t)(x+ 1) + c(t)(x)

2χ(t)(x)

)(
I(t)(x+ 1)− I(t)(x)

)
=

g
(∣∣I(t)(x− 1)− I(t)(x)

∣∣)[
g
(∣∣I(t)(x− 1)− I(t)(x)

∣∣)
+g (0) + g

(∣∣I(t)(x+ 1)− I(t)(x)
∣∣) ]

·
(
I(t)(x− 1)− I(t)(x)

)
+

g
(∣∣I(t)(x+ 1)− I(t)(x)

∣∣)[
g
(∣∣I(t)(x− 1)− I(t)(x)

∣∣)
+g (0) + g

(∣∣I(t)(x+ 1)− I(t)(x)
∣∣) ]

·
(
I(t)(x+ 1)− I(t)(x)

)
. (37)

This represents the implementation of a second order PDE
in (32) with the evolution step size τ being 1, meaning that
the adaptive smoothing in (33) is linked with the second order
PDE with the ‘source’ or ‘sink’.

Remark 1: The normalization term of a weighted average
filter such as the adaptive smoothing [8] generates an asym-
metric energy flow, and comes from the generalized continuity
equation in which the ‘source’ or ‘sink’ exists.

Corollary 2: All p’s in the adaptive smoothing are ‘sink’
if g(0) = 1.

Proof: If g(0) = 1, κ(p) is always smaller than 1 as in
Fig. 5(b), which makes ln[κ(p)] < 0 (s(p) < 0).

Therefore, as shown in Fig. 4, the normalized mean value
of the results filtered by the adaptive smoothing, where g(0)
is set to 1, monotonically decreases.

C. The Behavior of Adaptive Smoothing

In this section, we will examine the behavior of the adap-
tive smoothing such as the maximum principle and stability
condition within the framework of a PDE.

1) The Maximum Principle: We verify that (32), which was
proven to be equivalent to the adaptive smoothing, satisfies the
maximum principle, i.e., no new maxima and minima appear
as an image is filtered. Although the anisotropic diffusion in
(8) also satisfies the maximum principle [4], the anisotropic
diffusion and the adaptive smoothing have a different theoret-
ical origin, as mentioned in section III-B.

Proposition 4: The adaptive smoothing satisfies the maxi-
mum principle.

Proof: When the 4-neighborhood is used, the maximum
and minimum values among the center node p and N4 are
defined by

M (t)(p) = max

{
I(t)(p), I(t)(q)

∣∣∣
q∈N4

}
, (38)

m(t)(p) = min

{
I(t)(p), I(t)(q)

∣∣∣
q∈N4

}
. (39)

Equation (32) can be modified as:

I(t+1)(p)

= I(t)(p)

(
1− τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)
g(0) +

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)

)

+ τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)I(t)(q)

g(0) +
∑

q∈N4
g(|I(t)(q)− I(t)(p)|)

≤M (t)(p)

(
1− τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)
g(0) +

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)

)

+ τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)M (t)(p)

g(0) +
∑

q∈N4
g(|I(t)(q)− I(t)(p)|)

= M (t)(p).

(40)

Similarly,

I(t+1)(p)

≥ m(t)(p)

(
1− τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)
g(0) +

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)

)

+ τ

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)m(t)(p)

g(0) +
∑

q∈N4
g(|I(t)(q)− I(t)(p)|)

= m(t)(p). (41)

Thus,
m(t)(p) ≤ I(t+1)(p) ≤M (t)(p). (42)

2) Stability: It is somewhat intuitive that the normalization
term prevents filtered images from diverging. It is related to
the maximum norm stability in graph theory [17]. To the best
of our knowledge, there have been no studies exploring this
observation in the viewpoint of a PDE.

Proposition 5: The adaptive smoothing is always stable.
Proof: The stability condition of (32) is 0 ≤ τ ≤ 5/4,

since the weight of the center node p should be between 0
and 1 in order to ensure the stability as follows:

τ < max

(
g(0) +

∑
q∈N4

g(|I(t)(q)− I(t)(p)|)∑
q∈N4

g(|I(t)(q)− I(t)(p)|)

)

= max

(
1 +

g(0)∑
q∈N4

g(|I(t)(q)− I(t)(p)|)

)
= 5/4. (43)

We showed that the adaptive smoothing is a discrete approx-
imation of (31) with the evolution step size being 1. Since the
evolution step size in the adaptive smoothing is always smaller
than 5/4 regardless of the function g (·), adaptive smoothing
is always stable.

IV. INSTANTIATIONS OF THE PROPOSED PDE: ROBUST
DIFFUSION

In this section, two specific diffusion methods are instanti-
ated by leveraging the asymmetric energy flow in the diffu-
sion. First, the RAD [28] is derived by differently modeling
the ‘source’ or ‘sink’ in the proposed PDE. Based on this
observation, the RCED is further proposed, which preserves
universal features and enhances coherence structures better
than the conventional one [34], [36], [37].
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(a) (b) (c)

Fig. 6. An example of the anisotropic diffusion [4] and the RAD. (a) a
degraded image, (b) the anisotropic diffusion, and (c) the RAD.

A. RAD

The RAD regularizes the image with an assumption that
the adiabatic process such as the diffusion is not suitable
in handling the outliers, e.g., impulsive noise [28]. Namely,
an additional flux exists in the RAD so that the ‘source’ or
‘sink’ s (p) in (25) is not 0, as opposed to the anisotropic
diffusion [4]. The additional flux plays a role in such a way
that the outlier signal is compensated by adaptively changing
the amount of flux according to the local topology of the
neighborhood, which results in reducing the influence of
outliers significantly.

Ham et al. modeled κ (p) as follows [28].

κ(p) =
1

χ(t)(p)− g(0)
. (44)

The quantity of χ(t)(p)− g(0) is an indicator of the outlier,
e.g., when this quantity is small, it implies that the center node
is likely to be an outlier.

Then, the RAD is defined as follows.

[χ(t)(p)− g(0)]∂tI(p) = ∇ · [c(t)(p)∇I(p)]. (45)

Note that the anisotropic diffusion [4] in (3), the adaptive
smoothing [8] in (31) and the RAD in (45) are all the special
case of the PDE of (26).

Fig. 6 shows an example of (b) the anisotropic diffusion
[4] and (c) the RAD with (a) a degraded image. The initial
‘cat’ image [10] was degraded by the Gaussian noise with a
standard deviation 0.1 and the impulsive noise with a density
of 0.05. All parameters were set equal in both methods: g(·) as
the Gaussian kernel with an amplitude 1 and a fixed standard
deviation 0.01, an evolution step size τ of 0.25, and the
number of iteration t of 500. It demonstrates that the RAD
can handle the mixture noise very well, in contrast to the
conventional anisotropic diffusion. Please refer to [28] for
more results and intensive analysis of the RAD.

B. RCED

In this section, we further propose the RCED by incorpo-
rating additional fluxes into coherence enhancing diffusion in
a similar manner to the RAD, making the proposed diffusion
more robust against outliers as well as better enhance coher-
ence structures.

(a) (b)

Fig. 7. Test sequences: (a) original images and (b) images corrupted by the
Gaussian noise with a standard deviation of 0.1, and the impulsive noise with
a density of 0.1.

1) RCED: Over the last two decades, there have been many
studies on analyzing and enhancing the flow-like structure in
the field of image processing [34], [35], [36], [37]. It has been
usually done by a well-established tool from texture analysis
based on the structure tensor (second moment matrix), the
eigenvalues and eigenvectors of which provide us with all
required information for speculating the structure embedded
in the image [39].

First, let us define the structure tensor as follows:

Jρ = Kρ(p) ∗
[
∇I(t)σ (p)∇I(t)σ (p)

T
]

= λ+θ+θ
T
+ + λ−θ−θ

T
−. (46)

where

Kσ(p) =
1

2πσ2
exp

(
−||p||

2

2σ2

)
, (47)

∇I(t)σ (p) = Kσ(p) ∗ ∇I(t)(p). (48)
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This matrix is symmetric and positive definite, thus has two
eigenvalues λ+, λ− and corresponding eigenvectors θ+, θ−
which are tangential and orthogonal to ∇I(t)σ (p), respectively.

The eigenvalues of Jρ =

(
j11 j12
j12 j22

)
are

λ± =
1

2
(j11 + j22 ±∆) , (49)

where

∆ =

√
(j11 − j22)

2
+ 4j212. (50)

Note that in a scalar image, the eigenvalues and eigenvectors
of J0 are

λ+ = ‖∇I‖2, λ− = 0 (51)

and

θ+ =
∇I
‖∇I‖

, θ− =
∇I⊥

‖∇I‖
. (52)

Directly employing the structure tensor Jρ as the diffusion
tensor will lead to fast diffusion across the edge and slow
diffusion along the edge, which is opposite to our intention
[40]. For enhancing coherence within the flow-like structure,
a regularization should act mainly along the flow direction.
Also, the smoothing should increase according to the strength
of its orientation which can be measured by some metric, e.g.,
(λ+ − λ−)

2 becomes large for strongly differing eigenvalues,
and tends to zero for isotropic structures. Therefore, the diffu-
sion tensor is constructed as in (53) with the same eigenvectors
as the structure tensor Jρ [41], [42]:

D(t) (p) = λ1θ+θ
T
+ + λ2θ−θ

T
− (53)

The diffusion tensor D(t) (p) =

(
d11 d12
d12 d22

)
is a 2 ×

2 symmetric and positive definite matrix with two positive
eigenvalues λ1, λ2 and two corresponding eigenvectors θ+,
θ−. Each component can be calculated as follows.

d11 =
1

2

[
λ1 + λ2 −

(λ2 − λ1)(j11 − j22)

∆

]
,

d12 =
(λ1 − λ2)j12

∆
, (54)

d22 =
1

2

[
λ1 + λ2 +

(λ2 − λ1)(j11 − j22)

∆

]
.

where the eigenvalues are

λ1 = ω

λ2 =

{
ω if λ+ = λ−

ω + (1− ω) exp
{
− C

(λ+−λ−)2

}
else

(55)

ω ∈ (0, 1) represents the regularization parameter which
keeps the diffusion tensor positive definite [34]. C > 0 serves
as a threshold parameter: λ2 ≈ 1 for (λ+ − λ−)2 � C, and
λ2 ≈ ω for (λ+ − λ−)2 � C.

Then, the RCED is defined as follows:

∂tI(p) = κ(p)∇ · [D(t)(p)∇I(p)]. (56)

Similar to RAD, the ‘source’ or ‘sink’ in (56) is modeled
as

κ(p) =
1

χ(t)(p)− g(0)
. (57)

Note that κ(p) is an isotropic since κ(p) which is an
indicator of the existence of the outliers, is irrelevant to an
orientation of the edges. In other words, it is assumed that a
probability of being corrupted by the outliers is independent
of the orientation of the edges.

2) Experimental Results: To verify the performance, we
compared the proposed method with the conventional co-
herence enhancing diffusion (CED) [34] and other related
methods such as the anisotropic Kuwahara filter (AKF) [36]
and the coherence enhancing shock filter (CES) [37]. These
were applied to original images and images degraded by
the mixture noises, i.e., the Gaussian noise with a standard
deviation of 0.1 and the impulsive noise with a density of
0.1, as shown in Fig. 7. All the parameters were fixed during
experiments. In the CED and the RCED, ρ = 5, σ = 0.7,
ω = 0.01 and C = 0.001. The number of iteration and the
evolution step size were set to 100 and 0.2, respectively. The
Gaussian kernel with a standard deviation 0.01 was used as
g(·). In the AKF and the CES, the parameters were set to
default values used in [36] and [37], respectively. Note that the
filtering results of the two methods were produced by authors-
provided softwares [38].

Fig. 8(a) shows that the Gaussian noise can be effectively
handled by the CED [34], but impulsive noise still exists
even after long evolution. Note that the vector ∇I0 and
the matrix J0 are regularized by the Gaussian kernel K
in constructing the diffusion tensor so some outliers have
been eliminated before the diffusion process. The AKF is
the anisotropic counterpart of the weighted Kuwahara filter
[43], thus artifacts which exist in the Kuwahara filter are
avoided while directional image features are better preserved
and emphasized. Fig. 8(b) shows that the AKF is robust against
the outliers [36], but the region boundaries are distorted. The
CES is not robust against the outliers, and even the outliers
are sharped and enhanced since the shock filter is embedded
in the CES. In contrast, the RCED handles the impulsive
noise as well as the Gaussian noise very well. Furthermore, it
can preserve singular features better than other methods, e.g.,
mandrill’s eye.

The same experiments were conducted with the noise-
free image as shown in Fig. 9. It also demonstrates the
proposed method is more capable of enhancing the flow-like
structures than other methods. Although the CED enhances
the coherence structure well, it also blurs some important
features. Meanwhile, the diffusion velocity of the proposed
method automatically decreases when the features begin to be
flattened, i.e., [χ(t)(p) − g(0)], an indicator of the existence
of the outliers, increases, thus leading to preserving important
features while enhancing the coherence structures. The CES
sharpens and enhances the coherence structure well, but the
additional procedure such as shock process is needed. We also
found that the coherence enhancing capability of the RCED
is better than that of the AKF (see mandrill’s fur).
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(a) (b) (c) (d)

Fig. 8. Filtering results for corrupted images of Fig. 7(b): (a) the coherence enhancing diffusion (CED) [34], (b) the anisotropic Kuwahara filter (AKF) [36],
(c) the coherence enhancing shock filter (CES) [37], and (d) the robust coherence enhancing diffusion (RCED). All parameters are fixed during experiments:
In the CED and the RCED, ρ = 5, σ = 0.7, ω = 0.01 and C = 0.001. The number of iteration and the evolution step size were set to 100 and 0.2,
respectively. In the AKF and the CES, the parameters are set to default values used in [36] and [37], respectively. Note that the results of both methods were
produced by using authors-provided softwares [38].

V. CONCLUSION

This paper differentiated the adaptive smoothing from the
anisotropic diffusion in the viewpoint of a normalization, an
evolution step size, and an energy flow. While the anisotropic
diffusion has a symmetric flow since the diffusion is theo-
retically an adiabatic process, the adaptive smoothing has an
asymmetric energy flow. Based on this principle, the adaptive
smoothing was drawn from the generalized second order PDE
where the ‘source’ or ‘sink’ exists. It provides new insights
into application-specific filtering algorithm design such as the
non-local diffusion [14] and the unnormalized bilateral filter
[27]. Also, the behavior of the adaptive smoothing such as the
maximum principle and stability has been examined with the
perspective of a PDE by leveraging that the ‘source’ or ‘sink’
is closely related to the normalization term of the adaptive

smoothing. Furthermore, new diffusion filters such as the RAD
and the RCED have been designed by properly modeling the
‘source’ or ‘sink’, thus generating the asymmetric diffusion
flow which is more robust against the outliers.
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