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Reliability-Based Multiview Depth Enhancement
Considering Interview Coherence

Jinwook Choi, Student Member, IEEE, Dongbo Min, Member, IEEE,
and Kwanghoon Sohn, Senior Member, IEEE

Abstract—Color-plus-depth video format has been increasingly
popular in 3-D video applications, such as auto-stereoscopic 3-D
TV and freeview TV. The performance of these applications is
heavily dependent on the quality of depth maps since intermedi-
ate views are synthesized using the corresponding depth maps.
This paper presents a novel framework for obtaining high-quality
multiview color-plus-depth video using a hybrid sensor, which
consists of multiple color cameras and depth sensors. Given mul-
tiple high-resolution color images and low quality depth maps ob-
tained from the color cameras and depth sensors, we improve the
quality of the depth map corresponding to each color view by in-
creasing its spatial resolution and enforcing interview coherence.
Specifically, a new up-sampling method considering the interview
coherence is proposed to enhance multiview depth maps. This ap-
proach can improve the performance of the existing up-sampling
algorithms, such as joint bilateral up-sampling and weighted
mode filtering, which have been developed to enhance a single-
view depth map only. In addition, an adaptive approach of fusing
multiple input low-resolution depth maps is proposed based on
the reliability that considers camera geometry and depth validity.
The proposed framework can be extended into the temporal do-
main for temporally consistent depth maps. Experimental results
demonstrate that the proposed method provides better multiview
depth quality than the conventional single-view-based methods.
We also show that it provides comparable results, yet much more
efficiently, to other fusion approaches that employ both depth
sensors and stereo matching algorithm together. Moreover, it is
shown that the proposed method significantly reduces bit rates
required to compress the multiview color-plus-depth video.

Index Terms—Color camera, depth sensor, depth up-sampling,
interview coherence, reliability.

I. Introduction

IN THE NEAR future, TV audiences will be able to watch
multiview 3-D video without auxiliary devices as well as
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interact with auto-stereoscopic displays without dedicated con-
trollers. Obtaining high-quality depth map is one of the most
important techniques required to realize the next generation of
3-D broadcasting systems, since the depth map directly affects
the quality of 3-D video. To represent the depth maps, various
approaches have been proposed including color-plus-depth
and layered depth maps [1]–[3]. Multiview color/-depth video
coding methods are also required to efficiently compress and
transmit large quantities of 3-D video over a network [4]–[6].

Depth acquisition methods can be generally classified into
three categories: laser scanning methods, stereo matching
methods, and range sensing methods. Although the laser scan-
ning methods can provide highly accurate 3-D information,
its acquisition process is very time-consuming and thus, is
limited in a static scene only. Consequently, these methods are
typically used to reconstruct highly accurate 3-D model [7],
[8]. In contrast, the stereo matching methods estimate disparity
maps using multiple images taken by two or more cameras
[9], [10]. A number of algorithms have been proposed by
using cost aggregation methods [11]–[13] and global optimiza-
tion techniques [14]. However, their performance is still not
reliable due to many factors, such as a lighting condition and
an occlusion problem. Moreover, huge computational com-
plexity is the most critical problem. Especially, its complexity
increases linearly proportional to the number of color cameras
used in the multiview depth estimation.

Recently, new types of sensors have been developed to
overcome the limits of conventional methods [15]–[17]. The
range sensing methods utilize a time-of-flight (ToF) principle
to estimate a distance between a sensor and an object by
extracting phase information from a received pulse of light
[18], [19]. These methods are cheaper than the laser scanning-
based methods, and can be used in dynamic environments
since they provide depth data at video rate [20], [21]. However,
the depth information obtained from the ToF sensors may be
distressed with noise, and also frequently contains outliers due
to difficult illumination situations and the reflectivity of an
object [22]. Despite recent advances in optical technology,
these sensors cannot be applied directly due to their lower
resolution and higher noise in comparison to general color
cameras. Therefore, effective pre- or postprocessing and fusion
techniques using other types of high-resolution sensors (e.g.,
color cameras) are needed to yield high-quality depth data.

In this paper, we propose a novel up-sampling method that
enhances multiview depth maps provided from multiple ToF
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sensors by incorporating multiple color cameras. The color
cameras are employed to overcome the physical limits of
the ToF sensors. Choi et al. [23], [24] enhanced the depth
video in both spatial and temporal aspects by combining a
ToF sensor with a single color camera, and demonstrated
that it is very useful in the 3-D TV system based on single-
view color-plus-depth video. These algorithms, however, were
designed to obtain a single-view depth map only and thus,
are insufficient in an auto-stereoscopic 3-D display, which
requires the multiview color-plus-depth video. In contrast,
our approach aims at enhancing the quality of multiview
depth maps simultaneously. To achieve this goal, we consider
both the interview coherence and the reliability of multiple
warped depth maps in the hybrid 3-D video acquisition system
consisting of multiple ToF sensors and color cameras. For each
single color view, the initial depth maps warped from multiple
ToF sensors are adaptively fused based on their reliability.
The interview coherence is then explicitly enforced between
up-sampled depth maps corresponding to all the color views.
We will show that the proposed method provides an excellent
solution for the auto-stereoscopic 3-D TV system based on
multiview color-plus-depth representation.

This paper offers two major contributions. First, we propose
the depth reliability metric to improve the depth accuracy in
case of using multiple ToF sensors. The input low-resolution
depth maps obtained from multiple ToF sensors are warped
into each color view and then adaptively combined by using
their reliability measures, which are defined by using a depth
validity and a relative position of depth sensors. We will
show that such adaptive fusion approach effectively addresses
outliers and mismatches, which may exist on the multiple
input depth maps. It can also suppress misalignment artifacts
between color image and corresponding depth map. Second,
our approach, inspired by the recent success of joint bilateral
up-sampling (JBU) for depth up-sampling [23], describes how
to formulate the interview coherence in the joint filtering
framework. The interview consistency is enforced by adap-
tively considering all color views in the up-sampling process. It
also reduces bit rates required to compress the multiview (up-
sampled) depth maps. Note that our approach can be easily
combined with other filtering-based up-sampling methods,
such as the weighted mode filtering (WMF) [25], and extended
into the temporal domain by using temporal filtering methods
as in [26].

There are several methods that obtain accurate depth maps
by combining ToF sensors with stereo matching algorithms.
The stereo matching algorithms help resolve the weakness
of the ToF sensor to some extent, but the performance im-
provement would be relatively marginal, compared to its huge
computational overhead from the stereo matching method.
Therefore, we focus primarily on processing multiview depth
data obtained from multiple ToF sensors with no stereo
matching algorithm. Experimental results show that the pro-
posed method produces comparable results, yet much more
efficiently, to these fusion approaches utilizing the stereo
matching algorithms together.

The remainder of this paper is organized as follows. We in-
troduce the background and motivation about the sensor fusion

in Section II. We then describe the proposed multiple sensor
setup, and present the proposed framework that generates
high-quality multiview color-plus-depth video in Sections III
and IV, respectively. Finally, experimental results and conclu-
sion are shown in Sections V and VI, respectively.

II. Related Work and Motivation

Current trends in 3-D video technology have moved from
stereo-based to multiview-based video. Auto-stereoscopic 3-D
video applications benefit from the multiview video capturing
system, but such systems consisting of only color cameras
may require a large number of cameras and huge amount of
bandwidth. In order to address these problems, the European
3-D consortium, called 3D4YOU [27], has introduced various
3-D video formats, such as the color-plus-depth [2], [3] and the
layered depth image [1], and developed a practical multiview
color and depth capturing system consisting of five color
cameras and two ToF sensors for obtaining high-quality 3-D
video [28]. For wider field of view (FoV), which may be
important in the auto-stereoscopic 3-D system, the multiple
ToF sensors were used in the capturing system. Given low-
quality depth maps obtained from the depth sensors at video
rate, they proposed to utilize high-quality color images for
enhancing the depth maps, and to combine them with depth
results from a stereo matching method.

As the number of ToF sensors increases, disagreement
between depth values obtained from each sensor may occur.
Depth maps obtained from ToF sensors often suffer from
the presence of missing or incorrect regions due to poor
reflectivity, illumination, and optical limitation. It is also
important to consider the misalignment, which may occur in
the registration of depth maps and color images. The proposed
method addresses these issues by utilizing the reliability metric
defined with the depth accuracy and the relative position of
color cameras and depth sensors.

Generally, fusion approaches of depth maps and color
images assume that there exists a joint occurrence between
depth discontinuities and image edges. Homogeneous regions
in the color images are assumed to contain smoothly varying
geometry. In order to overcome the physical limit of the ToF
sensor, Kopf et al. [29] presented a JBU based on bilateral
filter by using the color information as a prior. Yang et al. [30]
proposed an iterative JBU by building a 3-D cost volume based
on the current disparity value and then applying the bilateral
filtering for each slice. A final depth is selected using the
winner-takes-all (WTA) method. The iterative bilateral filtering
on the cost domain results in better edge-preserving perfor-
mance, but is too computationally intensive. Yang et al. [31]
also proposed the hierarchical depth up-sampling method for
efficient depth enhancement; however, the complexity is still
high and the performance depends on the number of discrete
(quantized) depth search ranges. Chan et al. [32] proposed a
noise aware filter that adaptively blends standard up-sampling
and JBU for each pixel, depending on local characteristics of
depth maps. Another method based on nonlocal mean filters
was proposed by considering both intrapatch similarity and
color information [33]. Min et al. [25] proposed a weighted
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Fig. 1. Multiview color-plus-depth acquisition system: a hybrid structure
with two ToF depth sensors and three color cameras.

mode filtering based on a joint histogram computed using the
low resolution depth map and high resolution color image.
The weight based on similarity measure between reference
and neighborhood pixels is used to construct the histogram,
and a final solution is then determined by seeking a global
mode on the histogram.

Diebel and Thrun [34] proposed a Markov random field
(MRF)-based depth up-sampling method by fusing a low
resolution depth map and its high resolution color image. Park
et al. [35] further improved the MRF-based depth up-sampling
method by incorporating a nonlocal weighting term in the
MRF formulation and including an additional edge weighting
scheme to reinforce the preservation of fine texture.

Zhu et al. [36], [37] proposed a fusion algorithm based
on the ToF sensor and stereo camera. Data term is derived
by adaptively combining two cost functions calculated from
both ToF sensor and stereo matching method. A final energy
function, defined by an MRF model with a smoothness con-
straint, is solved by the loopy belief propagation (LBP) [14].
This method was extended into temporal fusion for generating
temporally consistent high-quality depth video [38]. However,
the global optimization used in these methods increases the
computational cost significantly.

In contrast to these fusion approaches using both the ToF
sensor and the stereo matching algorithms, our goal is to
generate high-quality multiview depth maps by using only
raw depth data from ToF sensors without a stereo matching
algorithm. To enforce the interview consistency, we consider
all color views, instead of up-sampling single-view depth map
independently. Interview coherence is a crucial factor in the
up-sampling process, since it seriously affects the compression
ratio as well as the quality of multiview color-plus-depth video.
In addition, we will show that comparable results to the fusion
techniques using stereo matching methods together can be
achieved with a much lower computational complexity.

III. Multisensor Setup

A. System Configuration

We built the acquisition system with three Point Grey Flead
color camera [39] and two MESA Imaging SR4000 ToF
sensors [15], as shown in Fig. 1. Note that this system can be
directly extendable with arbitrary number of color cameras and
ToF sensors. FoV can be adjusted using the baseline between
the cameras. Using more color cameras and depth sensors

Fig. 2. Example of multiview color images and depth maps obtained from
the system of Fig. 1. The color and depth images were resized for better
visualization. The actual size is 1024×768 for the color image and 176×144
for the depth map, respectively. The intensity image of each depth sensor is
not used in the up-sampling process.

enables a wider range of scene to be covered, which is essential
to producing high-quality auto-stereoscopic 3-D video.

The resolution of the color camera is 1024×768, and the
frame-rate is 30 frames/s. The resolution of the ToF sensor is
176×144, and the frame-rate is approximately 30 frames/s. In
this paper, the depth frame-rate was adjusted to 15 frames/s,
since a longer integration time tends to yield a more accurate
depth map by accumulating multiple data to reduce a noise.
All the cameras are connected with a single computer and syn-
chronized using a trigger signal. The baseline distance between
ToF depth sensor and color camera is approximately 70mm. In
order to prevent an interference between multiple ToF sensors,
their modulation frequency was set to 29 MHZ and 30 MHZ,
respectively. Temporally synchronized images, intensity (am-
plitude) images, and corresponding depth maps are obtained,
as shown in Fig. 2. Since the data captured from the multiple
cameras have different viewpoints, the low-resolution depth
maps should be warped into the color camera coordinates.
Note that the intensity image of each depth sensor is used only
in a camera calibration, and not in the up-sampling process.

B. Depth Map Registration

To warp input depth maps into the color cameras, we
first calculate projection matrices Pc = Kc[Rc|tc] and Pd =
Kd[Rd |td] for multiple depth sensors and color cameras using
the Bouguet’s camera calibration toolbox [40]. K, R, and t rep-
resent intrinsic, rotation, and translation matrices, respectively.
Each point of the input depth map is first warped to 3-D world
coordinates using the projection matrix of the depth sensor as
follows:

Pw = R−1
d Kd

−1pdZd + td (1)

where Pw = (Xd, Yd, Zd, 1)T and pd = (xd, yd, 1)T are points
in the 3-D world coordinate and the image coordinate of depth
image, respectively. Then, Pw is back-projected onto the color
image coordinate using the projection matrix Pc of the color
camera as follows:

mc = Pc · Xd = KcRc(Pw − tc) (2)
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Fig. 3. 3-D warped depth map. (a) Low-resolution depth map. (b) High-
resolution color image. (c) High-resolution depth map matched to the color
image coordinate with holes.

Fig. 4. Overall framework of the proposed method. Multiview sensor cali-
bration is first performed to correct a lens distortion and warp initial multiview
depth maps into multiview color images. Our contributions consist of: 1)
reliability-based multiview depth fusion and 2) depth up-sampling based on
interview coherence.

where mc = (m1, m2, m3) is a 2-D homogeneous point in the
color image coordinate. The final 2-D point pc is computed
as (m1/m3, m2/m3). The depth map warped from each depth
sensor is used as an initial depth map for the up-sampling
process.

Fig. 3 shows an example of warping a depth map into
the color image coordinate. Note that due to the resolution
difference between two sensors, many holes occur in the
warped depth map as shown in Fig. 3(c).

IV. Proposed Framework

Fig. 4 presents an overall framework of the proposed
method. Multiview sensor calibration is applied to correct a
lens distortion and warp multiview depth data into each color
camera coordinate. This important warping process influences
the reliability-based multiview depth fusion and the interview
coherence of up-sampled multiview depth maps, which will
be explained later. The main algorithms are divided into two
steps: multiview depth fusion and depth up-sampling with
interview coherence. Our experimental setup consists of two
ToF depth sensors (D1 and D2) and three color cameras (C1,
C2, and C3). Thus, the depth maps from two ToF depth sensors
are warped into each color image coordinate (three color
views) and adaptively combined based on reliability as shown
in Fig. 5. The initial fused depth maps for the color images
are then simultaneously up-sampled by taking into account the
interview coherence between the color images. For the clarity
sake, we denote a method using the reliability-based fusion,
the interview coherence, and the combination of the two as
R-method, M-method, and RM-method, respectively.

Fig. 5. Initial depth fusion process. Ci and Dj represent ith color camera
and jth depth sensor, respectively. We obtain the multiple warped depth maps
of the number of depth sensors (here, two) for each color camera. The warped
depth maps into each color view are fused for generating the initial depth map
used in the up-sampling process.

Fig. 6. Problems of the depth maps obtained from multiple depth sensors.
(a) Unreliable depth acquisition. (b) Different depth values at the same
world point.

A. Reliability-Based Multiview Depth Fusion

Depth measurement values obtained from multiple
depth sensors might be slightly different, leading to some
perturbation in the warping process. Such difference between
calibrated depth values may occur due to the calibration
errors and the noise of input depth maps. To address these
problems, we introduce two reliability metrics: geometric
reliability and depth reliability. The geometric reliability
metric is defined by considering baseline distance between
color camera and depth sensor. The depth difference between
depth sensors is utilized as a criterion of the depth reliability.

Fig. 6 shows two problems related to the depth maps
obtained from multiple depth sensors. First, outliers may occur
due to the characteristics of the depth sensor, which is error-
prone to reflection as shown in the red box of Fig. 6(a).
In addition, 2-D points in the color views projected from
the same 3-D point may have different depth values, due
to the perturbation of depth values. For instance, A, A′ and
B, B′ should share the same point in world coordinate in
Fig. 6(b). However, the calibrated depth values with respect to
reference color view are slightly different from each other. The
normalized depth values of A and B (from depth sensor D1)
with respect to color camera C2 are 165 and 44, whereas those
of A′ and B′ (from depth sensor D2) are 167 and 48. These
errors usually occurs in the calibration and depth acquisition
stages.

Geometric reliability is defined by a baseline distance
between depth sensor and color camera. As this distance gets
larger, the geometric warping error on the color camera will
linearly increase due to depth measurement errors. In addition,
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the calibration error may lead to the misalignment in the depth
registration. This is especially true when a 3-D point in world
coordinate is warped away from a camera. Namely, as a depth
sensor is moved away from the color camera, the translation
components increase, causing more warping depth error.

For simplicity, let us assume that a camera setup is parallel
Rc, Rd = I in (1) and (2), and there are no calibration error
and radial distortion. Then, the 2-D homogeneous point mc in
the color image coordinate can be expressed as

mc = Kc(Kd
−1pdZd + td − tc). (3)

For further simplification, two intrinsic parameters are as-
sumed to be identical (Kc = Kd). It would be possible
since 2-D depth image can be resized so that its intrinsic
parameter becomes equal to that of the color camera. In the
parallel camera configuration, td − tc can be written as a
3-D vector tdc = (B, 0, 0)T, where B represents a baseline
distance between the color camera and the depth sensor. The
mc = (m1, m2, m3) is then written as pdZd + Kctdc. Finally,
2-D point pc in the color image coordinate can be derived as
follows:

pc = (m1/m3, m2/m3) = (xd + fB/Zd, yd) (4)

where f is a focal length of the color camera. This equation
represents a simple 1-D parallel stereo camera setup containing
1-D horizontal disparity fB/Zd only. It indicates that the
warping error ∇pc increases linearly proportional to the base-
line distance between the color camera and the depth sensor,
when there exists the depth measurement ∇Zd . In addition, the
calibration error ∇tdc = (∇B, 0, 0) leads to the warping error
∇pc = (∇xc, 0) in the color camera, where ∇xc = f∇B/Zd .

In conclusion, the baseline distance between the depth
sensor and the color camera affects the depth warping in the
presence of the depth measurement error. For instance, when
two depth sensors and three color cameras are used as shown
in Fig. 5, warping the depth map of depth sensor D2 to the
color camera C1 leads to worse warping results due to the
errors of the depth measurement and the camera calibration.

Fig. 7 demonstrates the influence of camera calibration er-
rors on depth registration accuracy. We analyzed the alignment
results by overlaying up-sampled depth maps on each color
image. Fig. 7(b) and (c), where the warping distance is larger
than that of Fig. 7(d) and (e), shows much worse alignment
results on the depth boundaries. Please refer to the regions
pointed out by arrows in the figure. The depth registration error
at the foot of bear is also worse than that of the pattered box
or background. Based on these observations, we propose the
reliability metric considering the baseline distance as follows:

Ri,j = exp(−||ci − cj||
σ

) (5)

(i = D1, ..., DN, j = C1, ..., CM)

where N and M represent the number of depth sensors and
color cameras, respectively. Ri,j is the geometric reliability
function between depth sensor i and color camera j. ci and
cj are center points of depth sensor i and color camera j, and
||ci−cj|| represents the baseline distance between depth sensor

Fig. 7. Influence of camera calibration and depth measurement errors on
depth registration accuracy. (a) Original color image from color camera
C1-C3 and low-resolution depth map from depth sensor D1-D2. (b) Up-
sampled depth maps from depth sensor D2 to color camera C1. (c) Up-sampled
depth maps from depth sensor D1 to color camera C3. (d) and (e) Up-sampled
depth maps to color camera C1 and C3 using reliability-based multiview depth
fusion. We could observe that better aligned depth maps are obtained around
the object boundaries. Please refer to the regions indicated by white arrows.
Note that the up-sampled depth maps were obtained by using (b) and (c) the
conventional JBU method and (d) and (e) the R-JBU method.

i and color camera j. In other words, the geometric reliability
Ri,j is inversely proportional to the baseline distance. σ

represents the control parameter of the reliability Ri,j .
Depth values warped from multiple depth sensors are used

to define the depth reliability. Finally, a depth fusion method
using both the geometric and depth reliability can be defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dini
j (p) =

DN∑
i=D1

Ri,jd
w
i,j(p)/

DN∑
i=D1

Ri,j,

if
DN−1∑
i=D1

DN∑
k=i+1

|dw
i,j(p) − dw

k,j(p)| < N(N−1)
2 dTH1

dini
j (p) = null,

otherwise

(6)

where dw
i,j(p) represents the depth map of the color image

j warped from depth sensor i. dini
j (p) is an initial depth

map on the high-resolution corresponding to color camera
j (C1, · · · , CM). This is calculated from a weighted sum of
dw

i,j(p) using the geometric reliability Ri,j when the condition
of depth difference meets. Note that dTH1 is a threshold value
in the case of using only two depth sensors, i.e., N=2, and is
determined empirically. As shown in the condition of (6), the
threshold determining the depth difference increases according
to the number of depth sensors N. Namely, when more than
two depth sensors are used, the total number of cases for
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Fig. 8. Up-sampled depth maps by various methods for verifying the per-
formance of the R-method (up-sampling ratio = 4). (a) Input depth map from
Middlebury Cone image. (b) Original WMF. (c) Original WMF + outlier
rejection. (d) R-WMF without outlier rejection. (e) R-WMF.

TABLE I

Performance Analysis of Proposed Reliability Metric on the

Depth Up-Sampling (O.R.: Outlier Rejection)

measuring the depth difference should be considered (here,
N(N − 1)/2). When the total distortion (difference) between
multiple depth measurements is larger than the threshold, they
are not used in the next up-sampling process. Fig. 7 shows
that the proposed reliability-based multiview depth fusion
can considerably reduce the misalignment in the depth up-
sampling process. Note that the up-sampled depth maps were
obtained by using Fig. 7(b) and (c) the conventional JBU
method, and Fig. 7(d) and (e) the R-JBU method.

In Fig. 8, the proposed reliability metric of (6) is analyzed in
more details. The outlier rejection and reliability-based fusion
of (6) are verified using the WMF method. The outlier rejec-
tion condition plays an important role in successfully removing
dense error regions inside the red box of Fig. 8. Furthermore,
we also found that the depth quality is even further improved
by using the proposed reliability metric as shown in Fig. 8(e).
In conclusion, the depth accuracy of the original R-WMF
method is the best, meaning that the outlier rejection and
the proposed reliability metric are complementary to each
other. Table I shows the objective performance evaluation for
depth maps up-sampled by various methods. We can find
that the R-WMF method always outperforms other methods.
More detailed analysis will be provided in the experimental
section.

B. Depth Map Up-Sampling Based on Interview Coherence

After applying depth registration and multiple depth fusion
for all color views, we up-sample each depth map considering
an interview coherence. It is important to maintain the inter-
view coherence of up-sampled depth maps, as it may directly
influence the quality of 3-D video. In order to improve the
resolution of the ToF sensor, a number of JBU-based methods

Fig. 9. Warped window concept used in the proposed framework.

have been proposed to up-sample the depth map accurately by
using an associated color image. In general, the JBU [29] is
expressed as follows:

d̃(p) =
1

k(p)

∑
q∈�

d(p)f (p − q)g(I(p) − I(q)). (7)

Given a color image I(p) and a depth map d(p), we can
obtain a solution d̃(p) by using spatial f and range g kernels
centered at the pixel p. Here, two kernels are defined as
the Gaussian functions with standard deviation σs and σI ,
respectively. � is the spatial support of the kernel f , and k(p)
represents a normalization factor.

1) Multiview-JBU: Directly applying this up-sampling
method to multiview depth maps may cause an interview
inconsistency due to its view-independent processing. The
local characteristics of the multiview color images (e.g., edge
and color) may vary slightly according to several factors such
as noise, lighting conditions, and reflectivity, which often lead
to serious visual artifacts in the up-sampled depth maps. To
address this problem, we propose a novel algorithm, called
multiview-JBU (M-JBU), which produces multiple depth maps
that are consistent between neighboring views. Specifically,
the interview information as well as the spatially-neighboring
color information inside each view are considered in the range
kernel as follows:

d̃
(t+1)
j (p) =

1

k(p)

CM∑
k=C1

∑
q∈�

dj
(t)(p)f (p − q)

× wk(p) · gk(Ik(πj,k(p)) − Ik(πj,k(q))) (8)

dj
(t+1)(p) =

{
d̃

(t+1)
j (p) if |d̃(t+1)

j (p) − dj
(t)(p)| ≤ dTH2

dj
(t)(p) otherwise

where d
(0)
j (p) = dini

j (p), and wk (k = C1, ..., CM) represents
the weight of the range filter corresponding to each view.

The range filter kernel g is replaced with a set of gk

(k = C1 · · · CM) consisting of partial range filter kernels
corresponding to all the color views. As explained in Fig. 9,
πj,k(p) represent a pixel warped onto the color camera k from
the reference color camera j. A final solution dj represents the
up-sampled depth map corresponding to color view j. Note
that the proposed method iteratively reduces the interview
inconsistency on the up-sampled depth maps. A texture-
copying problem [32] usually occurs in the regions where
neighboring pixels inside an object have different color values,
leading to wrong results on the up-sampled (filtered) depth
map by deforming initial depth values. This problem can
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Fig. 10. Refinement using the range kernel and weights. gC1 (p, q ∈ �)
and gC2 (πC1,C2 (p), πC1,C2 (q) ∈ �) represent real range filter kernel values
calculated in each color view (C1 and C2). wC1 (p) and wC2 (p) represent real
weights calculated according to gC1 and gC2 in M-JBU. Two depth values dC1
and dC2 independently filtered using each range kernel shows very different
results, though they are from the same 3-D point. In contrast, our method
effectively handles the view inconsistency on the up-sampled depth maps (d′

C1
and d′

C2
) by using the new range kernel wC1 gC1 + wC2 gC2 . (a) Partial results

of Fig. 11(b) (conventional JBU). (b) Partial results of Fig. 11(c) (M-JBU).

also be addressed by considering the difference between two
consecutive results d(t+1) and d(t) in the iteration. When the
difference is larger than a threshold value, new depth value
d(t+1) is decided as outlier distorted by the texture-copying
artifact, so are not used to update the depth result. It is
because the initial depth maps (dini) do not suffer from the
texture-copying problem, though corrupted by several outliers.
A threshold value dTH2 is selected empirically.

Now, we will explain how the weighting function wk(p)
is derived. The underlying assumption to define the weight
function wk(p) is that the interview inconsistency can be
measured by using the difference between the partial range
filter kernel values on the color images. Ideally, all the corre-
sponding pixels from different color views should contain the
same color value. However, in practice, the color inconsistency
between multiple views often produces the different range
kernel functions in (7), resulting in inconsistent results in
the single-view depth up-sampling. In order to handle this
problem, we take into account all color view together to define
the new range kernel function in (8). To combine a set of
kernel functions adaptively, the weight wk(p) for a pixel p is
defined using a ratio of partial range filter kernel values of the
kth view as follows:

wk(p) =

∑
l∈�\k

∑
q∈�

gl(Il(πk,l(p)) − Il(πk,l(q)))

∑
l∈�

∑
q∈�

gl(Il(πk,l(p)) − Il(πk,l(q)))
(9)

(� = {Ci|i = 1 · · · N}).
All the color views are considered simultaneously by utiliz-

ing the proportion of weights. When all the weights are similar
to each other, it becomes similar to the result of conventional
JBU. Otherwise, the partial range filter kernel values of each
view have a different effect on filtering of the corresponding
points. For example, when the partial range filter kernel for
one view is large enough to smoothen the image, whereas the

Fig. 11. Example of results with or without interview coherence. (a) Original
image. (b) Depth maps up-sampled by the conventional JBU. (c) Depth maps
up-sampled by the M-JBU.

corresponding range filter kernel for other view is relatively
small so preserves edges, the proposed weights make all
the range filter kernels preserve edges. This can help reduce
the inconsistency between up-sampled multiview depth maps,
particularly around the depth discontinuities.

In Fig. 10, we also analyzed the role of weights in the
M-JBU. In this example, we use only one depth sensor and
two color cameras, i.e., N=1 and M=2, in order to show the
effect of the interview coherence more easily. In the single-
view-based JBU, the range filter kernel values gC1 (p, q ∈ �)
and gC2 (πC1,C2 (p), πC1,C2 (q) ∈ �) for each color camera C1

and C2 are very different, leading to incoherent filtered depth
outputs dC1 (p) and dC2 (πC1,C2 (p)) between the corresponding
points. This problem is effectively handled by considering two
weight functions wC1 (p) and wC2 (p) according to the partial
range filter kernel values. The weight functions are decided
by using the range filter kernel values calculated from each
color view C1 and C2 as explained in (9). Therefore, in the
M-JBU method, the depth values on two views become more
consistent by a new range filter kernel value, wC1gC1 +wC2gC2 .
In conclusion, the interview coherence is achieved by using
variable weights according to the partial range filter kernel
values used in the M-JBU.

Fig. 11 shows the effect of enforcing the interview coher-
ence. We found that the result of the M-JBU is more consistent
than that of the conventional JBU, especially in face, arm and
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Fig. 12. Results of synthesized view by Fig. 11(b) and (c). (a) Conventional
JBU. (b) M-JBU.

fist. Fig. 12 demonstrates how the interview coherence affects
the performance of virtual view synthesis.

2) Extension to M-WMF: The proposed up-sampling
framework can also be applied to the WMF [25], which
proposes to seek a global mode on the histogram by leveraging
the similarity measure between the data of two pixels. When
the histogram HG(p, d) is generated for each pixel p and its
disparity variable d, the data (depth) of pixels inside a window
centered at p is adaptively counted on its corresponding bin d

by using the data similarity between reference and neighboring
pixels as

HG(p, d) =
∑
q∈�

f (p − q)g(I(p) − I(q))Gr(d − d(q)) (10)

where Gr(x) is defined as the Gaussian function with σr.
I(p) and d(p) represent the color image and the input low-
resolution depth map. The final solution dG(p) for the WMF
can be computed as follows:

dG(p) = arg max
d

HG(p, d). (11)

Similarly, the WMF is extended into the multiview depth
up-sampling method by taking into account the interview
coherence as follows:

HG,j(p, d) =
∑
k

∑
q∈�

f (p − q)Gr(d − d(q))

×wk(p)gk(Ik(πj,k(p)) − Ik(πj,k(q))).
(12)

The weight function wk(p) is computed in the manner sim-
ilar to the M-JBU. Note that the edge-preserving performance
of the WMF was shown to be superior to that of the JBU,
because the JBU provides a mean value through an adaptive
summation, while the WMF selects an output value that has
the largest histogram value. Please refer to [25] for more
information. In the experiments, we will show that the WMF,
which is the state-of-the art method in the depth up-sampling
method, can also be improved in case of up-sampling the
multiview depth maps.

3) Extension to Temporal Domain: In multiview depth up-
sampling procedure, the temporal coherence of a depth video
is also an important factor in producing high-quality multiview
3-D video. Both RM-JBU and RM-WMF methods can be
easily extended into the temporal aspect using the 3-D filtering
concept in [26] as follows:

d̃j(pt) =
1

k(pt)

CM∑
k=C1

∑
m∈N(t)

∑
qm∈�(pm)

dj(pt)f (||pt − qm||)

× wk(pt) · gk(||Ik(πj,k(pt)) − Ik(πj,k(qm))||) (13)

Fig. 13. Example of results with or without temporal coherence. (a) Con-
secutive depth maps up-sampled by RM-WMF without temporal coherence.
(b) With temporal coherence. (c) Difference image of (a). (d) Difference image
of (b). For better visualization, the contrast of the results was enhanced. The
temporally consistent results were obtained in (b). Note that there are moving
objects (e.g., arm) in the depth video.

HG,j(pt, d) =
∑
k

∑
m∈N(t)

∑
qm∈�(pm)

f (pt − qm)Gr(d − d(qm))

×wk(pt)gk(Ik(πj,k(pt))) − Ik(πj,k(qm)))
(14)

where t and N(t) represent the reference frame and the
number of neighborhood frames, respectively. pm represents
a corresponding pixel of pt in the mth frame, and qm is a
neighboring pixel of pm. This correspondence can be obtained
using various motion estimation methods such as the full-
search block matching algorithm (FBMA) and the optical flow
method. Here, the FBMA method was used for experiments.
Equations (13) and (14) additionally use the neighbors of the
temporally neighboring frames in the joint filtering algorithm.
Using such temporal neighbors together in the filtering can
reduce the temporal fluctuation effectively. Fig. 13 shows the
effectiveness of the 3-D filtering. The difference images be-
tween consecutive frames were used to show the improvement
on temporal aspect. We found that temporally consistent depth
values were obtained in most parts of Fig. 13(d), except for
moving objects such as arm, compared to Fig. 13(c). Please
refer to an electric version for better visibility. In addition,
in the context of video coding, the reduction of the temporal
fluctuation can help save the bit rate. Please refer to [26] for
more information.

V. Experimental Results

The proposed method was implemented using the Visual
Studio 2010, with the exception of the depth image acquisition
which used MATLAB, and was tested on an Intel Core i7
2.8 GHz processor with 4 GB RAM. Input images are multiple
color images and depth maps obtained from our acquisition
system, which consists of two depth sensors and three color
cameras. In our experiments, the operation range of depth
sensor set from 0.5m to 5.0m. Out of range data (depth) means
invalid information and is excluded from depth fusion and
up-sampling process. The proposed method is tested with the
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Fig. 14. Depth up-sampling results of cone images on color view C6 with an up-sampling factor of four. (a), (b), (f), and (g) Input color images and
noisy low-resolution depth maps (C2, C6 color cameras and D2, D6 depth sensors). (c) and (h) Up-sampled depth maps by conventional JBU and WMF.
(d) and (i) Up-sampled depth maps considering the reliability-based fusion (R-JBU and R-WMF). (e) and (j) Up-sampled depth maps considering the
reliability-based fusion and interview coherence (RM-JBU and RM-WMF).

TABLE II

Objective Performance Evaluation for Depth Maps Up-Sampled

by Various Methods

same parameters for all images. The control parameter σ in (5)
is set to 2.8 by considering an actual distance between sensors
(e.g., 6.0cm in our setup). Following the original WMF paper
[25], the weighting parameters σI , σs and σr in (8) and (12) are
set to 5, 7, and 12, respectively. The threshold values dTH1 and
dTH2 in (6) and (8) are usually determined by the measurement
range of the active depth sensor used in the experiments. In
our experiments, it ranges from 0.5m to 5.0m, and the two
threshold values are set to 0.1m and 0.3m. These values are
converted into five and 15, considering that the range data is
normalized from 0 to 255. We also empirically found that (8)
converges within three iterations for all the experiments. The
size of window � varies according to the image size. In our
experiments, it is set to 7×7 and 13×13 for the Middlebury
data sets and the real images, respectively.

A. Objective Evaluation With Middlebury Datasets
For quantitative evaluation, we first performed experiments

using the Middlebury data sets. Two views (C2 and C6) of
cone image with image size of 450 × 375 were used in this
experiment since only two depth maps (D2 and D6) among all
the color views (C1 ∼ C9) were provided, i.e., N, M = 2. To
verify the effectiveness of the reliability fusion, these input
depth maps were obtained by down-sampling ground truth
depth maps with factors of two, three, and four for each
dimension, and then by adding several types of noise such as
the additive white Gaussian noise (AWGN) where a standard
deviation is 20, impulsive noise where a density is 0.03, and
reflective noise generated by considering the depth sensor
characteristics. Fig. 14(a), (b), (f), and (g) shows examples
of the input color images and low-quality depth maps.

In Table II, we first performed an objective evaluation for
the depth maps up-sampled by various methods. Note that
the Tsukuba image was excluded from this evaluation, since
only single-view depth map is provided. The depth accuracy
was measured using the percent (%) of bad matching pixels
(where the absolute disparity error is greater than 1 pixel)
for all (all pixels in the image) and disc (the visible pixels
near the occluded regions) regions [41]. We could find that
the R-methods and RM-methods based on the JBU and WMF
approaches always outperform the conventional methods. In-
terestingly, even the original WMF method [25], proven as
the state-of-the-art methods in the depth up-sampling, showed
only relatively marginal improvement in the presence of
various types of noise and color distortion. In addition, as
already explained in Fig. 10, the RM-methods outperform the
R-methods around depth discontinuities (disc).

Fig. 14 shows the depth maps up-sampled by various
methods. The results with the up-sampling factor of four
only were shown due to the lack of space. Note that the
warping-based registration was not used in this experiment,
since two color views (C2 and C6) and corresponding depth
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Fig. 15. Synthesized view results of cone image using depth maps of Fig. 14. (a) Conventional JBU. (b) R-JBU. (c) RM-JBU. (d) Conventional WMF.
(e) R-WMF. (f) RM-WMF. Please refer to an electronic version for better readability.

TABLE III

Performance on PSNR and SSIM for Synthesized View Results

by Various Methods

maps (D2 and D6) were already co-aligned. The depth maps
of the R-JBU and R-WMF methods are superior to those of
the conventional methods. Especially, our methods effectively
suppress the various noises through the proposed fusion using
the reliability metric, while the JBU and WMF methods still
suffer from serious noise, as shown in Fig. 14(c) and (h).

Furthermore, the results obtained from the RM-JBU and
RM-WMF methods showed that by using the interview coher-
ence, one can better preserve edges and maintain the interview
coherence for all color views (C2 and C6), even compared to
the R-JBU and R-WMF methods.

Fig. 15 shows the synthesized view results by the depth
maps of Fig. 14. We could find that R-methods and RM-
methods outperform the conventional methods on the object
boundaries. WMF-based results are also slightly better than
JBU-based results, since the WMF can better sharply preserve
the depth boundaries than the JBU as shown in Fig. 14. In
Table III, we calculated the PSNR and SSIM for evaluating
the objective performance. Synthesized view results were
compared with corresponding original image (C4).

B. Up-Sampled Depth Results on Real Data Sets

Next, we performed the depth up-sampling using the input
data sets obtained from our acquisition system in Fig. 1, i.e.,
N = 3 and M = 2. The spatial resolution of the input color
and depth image used in the experiments is 1024×768 and
176×144, respectively. Figs. 16 and 17 show the depth results
up-sampled using the reliability-based depth fusion and the
interview coherence. For better visualization, their contrast
was adjusted with a color mapping. Especially, by comparing
the results of Figs. 16 and 17, i.e., (M-method versus RM-
method), we could find that the proposed reliability measure
is very effective in fusing erroneous input depth maps. It was
also shown in Fig. 16(d) that when only the depth sensor D2

is used, the depth result up-sampled on the color camera C3

is more aligned than that up-sampled on the color camera C1,

Fig. 16. Effect of interview coherence on the up-sampled depth maps.
(a) Original depth maps obtained from the depth sensor D1 and D2.
(b) Original color images obtained from the color camera C1, C2, and C3.
(c) Conventional JBU results using the depth sensor D2 for each color view.
(d) M-JBU results using the depth sensor D2 for each color view: M-method
maintains boundaries of objects more consistently than the conventional
method, especially in the black boxes. However, up-sampled depth maps
are still misaligned, especially with the color camera C1 due to the baseline
distance.

since the warping distance of C3 is shorter (refer to Fig. 5). As
shown in Fig. 16, the M-JBU method can maintain the shape
of an object consistently in all views compared to conventional
JBU. Both methods, however, still suffer from outliers. Such
errors were effectively resolved in Fig. 17 using the reliability-
based fusion. The depth results were aligned very well with the
corresponding color image for all views, and reduced outliers
as shown in Fig. 17(b) and (c). As expected, we could also
confirm that the RM-WMF outperforms the RM-JBU in terms
of an edge-preserving capability.

Fig. 18 shows 3-D visualization of those results in Fig. 16.
The original low-resolution depth maps have many outliers
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Fig. 17. Effect of the reliability-based fusion on the up-sampled depth maps.
(a) Original color images obtained from the color camera C1, C2, and C3.
(b) RM-JBU results using the depth sensor D1 and D2. (c) RM-WMF
results using the depth sensor D1 and D2: RM-methods are aligned with
corresponding color images better than M-methods. In addition, outliers in
the black boxes were removed and objects were represented more accurately
than Fig. 16.

Fig. 18. 3-D visualization results of Figs. 16 and 17. Up-sampled depth maps
corresponding to color camera C1 and C2 using (a) conventional method
(3-D visualization results of the conventional JBU) and (b) RM-JBU (3-D
visualization results of the RM-JBU). Our results outperform those of the
conventional method. Please refer to the visualization results in the red boxes,
and an electronic version for better readability.

Fig. 19. Comparison of the RM-method with the conventional method.
(a) Original depth maps from depth sensor D1 and D2. (b) Original color im-
age from color camera C3. (c) Up-sampled depth map by conventional WMF
using only D1. (d) Up-sampled depth map by RM-WMF using D1 and D2.

Fig. 20. 3-D visualization results of Fig. 19(c) and (d). Up-sampled depth
maps corresponding to color camera C3 using (a) conventional WMF (3-D
visualization results of the conventional WMF) and (b) RM-WMF (3-D
visualization results of the RM-WMF). Our result outperforms that of the
conventional method. Please refer to the visualization results in the red boxes,
and an electronic version for better readability.

at many regions including the monitor, check patterned box,
and tumbler. We can verify that Fig. 18(b) is more interview
consistent than Fig. 18(a) in the aspect of reconstructed shape
and depth value for each view.

Figs. 19 and 20 also show the excellent performance of the
proposed method. Fig. 19(a) represents original color image
(C3) and depth map (D1 and D2). The result obtained from
the RM-WMF using D1 and D2 outperforms the conventional
WMF using only D1 as shown in Fig. 19(c) and (d). Fig. 20
shows 3-D visualization of the results in Fig. 19. We can
find that the proposed method is aligned better than the
conventional method, especially inside the red box. In addition,
the depth measurement error in the book of D1 is removed
by the reliability metric. Additional video results were also
provided in [42] to demonstrate the effectiveness of our
approach more clearly.

C. Comparison With Other Hybrid Methods

Fig. 21 compares the results with those of hybrid system
[31], which consists of three views and one depth sensor.
This system is similar to our approach, but utilizes the stereo
matching algorithm together and adaptively combines two
results (from stereo matching and depth up-sampling methods)
for improving the depth quality. Note that the depth maps were
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Fig. 21. Comparison of the proposed method with the hybrid system. (a) Original color image. (b) Initial depth map. (c) Stereo matching result based on
[43] and [44]. (d) Depth map obtained by adaptive combination of the stereo matching and depth up-sampling results as in [31]. (e) Depth map up-sampled
by the RM-WMF. Note that in this figure, the depth maps were converted to disparity maps using stereo camera parameters (e.g., baseline and focal length)
since the stereo matching results are combined with the depth maps obtained from the depth sensor.

Fig. 22. Effect of the interview coherence on RD performance. (a) Total bit rates for three depth videos, corresponding to color views (C1, C2, and C3),
up-sampled using only depth sensor D1 (method versus M-method). (b) Total bit rates of three depth videos up-sampled using only depth sensor D2 (method
versus M-method). (c) Total bit rates of three depth videos up-sampled using the reliability-based fusion (D1 and D2) (R-method versus RM-method). Enforcing
the interview coherence on the up-sampling process leads to a significant bit rate saving in the depth video compression.

converted to disparity maps using stereo camera parameters
(e.g., baseline and focal length), since the stereo matching
results are combined with the depth maps obtained from the
depth sensor.

We could find that our results are comparable to those of
[31], even though the stereo matching is not utilized. In the
experiments, we substituted the stereo matching algorithm of
[31] with the method using the census transform [43] and the
belief propagation [44] for better stereo results. Especially,
the results of [31] preserve edges well, but severe depth errors
may occur frequently at homogeneous and repetitive patterned
regions as shown in Fig. 21(d). Such errors mainly come from
the outliers of the stereo matching, which leads to serious
artifacts in the final results despite the adaptive combination
based on the reliability [31]. Moreover, it is difficult to suitably
control the weights used to combine the results from the
depth sensor and the stereo matching method in a practical
environment.

The proposed method also has a computational advantage
over the stereo matching-based hybrid system. For instance,
our (unoptimzed) implementation takes about 12.94 s (for
three views) for up-sampling the low-resolution depth map
(176×144) to high-resolution (1024×768) on a single core

CPU, while the stereo matching-based hybrid method takes
about 97.29 s (for one view) due to the huge computational
complexity of the stereo matching on high resolution stereo
images with a large search range (e.g., 230 pixels). Most of the
runtime (89.64 s) is from the disparity estimation stage. Note
that our C implementation was not fully optimized, but such
complexity analysis would be a good indicator of verifying
the computational efficiency of our method.

Let us analyze the timing results from a computational
perspective. For instance, the complexity of a local stereo
matching can be defined as O(SML), where S, M, and L

represent an image size, a matching window size, and a
search range, respectively, while that of the proposed depth
up-sampling (filtering) method is O(SM). In the local stereo
matching methods, the nonlinear filtering should be applied
repeatedly for all the disparity hypotheses, leading to a huge
computational cost depending on the search range L. Although
many methods have been developed to reduce the compu-
tational complexity in terms of M and L, these techniques
solving a discrete labeling problem (defined on a discrete label
space with a size of L) are still much slower than the relatively
simple depth filtering approach such as our method. It should
also be noted that the global stereo approach (e.g., using belief
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TABLE IV

Performance on Bit Rates for Depth Videos Up-Sampled With

or Without Interview Coherence

TABLE V

Performance on PSNR for Depth Videos Up-Sampled With or

Without Interview Coherence

propagation), which was used in our experiment, is generally
much slower than the local stereo approach.

D. Improvement in Depth Video Coding

In many 3-D video applications (e.g., 3-D TV and freeview
TV), which often require transmitting the depth video over
network, the depth video should be compressed in an efficient
manner. In this section, we will show that the proposed
method also improves compression performance of the depth
video by maintaining the interview coherence. Experimental
results were obtained with various quantization parameters
(QP) ranging from 24 to 45, by using the reference software
for the MVC, the joint multiview video coding [45].

Fig. 22 shows that enforcing the interview coherence leads
to a significant bit rate saving in compressing the up-sampled
depth video. JBU1 (or 2) and WMF1 (or 2) represent total
amount of bit rates required to compress the depth maps
of three color views up-sampled by the JBU and the WMF
with the initial low-resolution depth maps from the depth
sensor D1 (or D2). Similarly, M-JBU1 (or 2) and M-WMF1
(or 2) represent total amount of bit rates of depth maps up-
sampled considering the interview coherence with the initial
low-resolution depth maps from the depth sensor D1 (or D2).
In Fig. 22(c), the effect of interview coherence on the R-
methods (using depth sensor D1 and D2) was also analyzed.
Table IV and V show that the results with the interview
coherence (the M-methods and the RM-methods) reduce the
bit rates of 6.22% and increase the PSNR of 0.41dB averagely,
compared to other results with no interview coherence. In this
experiment, we compared the M-methods with the conven-
tional methods and the RM-methods with R-methods in order
to fairly verify the effect of the interview coherence on the
multiview video coding.

VI. Conclusion

In this paper, a novel approach for producing high-quality
multiview depth maps was proposed. The proposed method
increased the depth quality by improving the interview con-
sistency on the up-sampled multiview depth maps as well as
by considering the reliability of initial multiple depth maps
obtained from multiple depth sensors. It was verified through
various experiments that the multiview depth maps up-sampled
by the proposed method were aligned with the corresponding
color images very well. The experimental results show that
the proposed method outperforms the existing up-sampling
methods, which have been usually developed to enhance
single depth map only. We also demonstrated that our method
also decreases the total amount of bit rates in compressing
multiview depth videos.

In comparison to the stereo matching-based hybrid ap-
proaches, our framework can be easily applied into rela-
tively low-cost up-sampling algorithms, such as the JBU
and the WMF. In the proposed framework, the convenient
adjustment of the sensors allows high-quality freeview video
to be obtained in a relatively compact manner, in that a
computationally-heavy stereo algorithm is not employed. In
terms of the computational complexity which is very crucial
to producing a high-resolution 3-D video, we showed that
the proposed method is more efficient than other hybrid
methods using stereo matching algorithms together, but with
comparable depth maps.

The proposed method will be implemented on graphics
processing units for obtaining a real-time performance in
future works. Moreover, the active depth sensor used in the
proposed method would be substituted with different type of
sensor such as Kinect [17], making the proposed system more
widely applicable. Further research will also include accurate
3-D reconstruction based on the proposed approach.
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