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Abstract—Inferring scene depth from a single monocular
image is a highly ill-posed problem in computer vision. This paper
presents a new gradient-domain approach, called depth analogy,
that makes use of analogy as a means for synthesizing a target
depth field, when a collection of RGB-D image pairs are given
as training data. Specifically, the proposed method employs a
non-parametric learning process that creates an analogous depth
field by sampling reliable depth gradients using visual correspon-
dence established on training image pairs. Unlike existing data-
driven approaches that directly select depth values from training
data, our framework transfers depth gradients as reconstruction
cues, which are then integrated by Poisson reconstruction. The
performance of most conventional approaches relies heavily on
the training RGB-D data used in the process, and such a
dependency severely degenerates the quality of reconstructed
depth maps when the desired depth distribution of an input
image is quite different from that of the training data, e.g.,
outdoor vs. indoor scenes. Our key observation is that using
depth gradients in the reconstruction is less sensitive to scene
characteristics, providing better cues for depth recovery. Thus,
our gradient-domain approach can support a great variety of
training range datasets that involve substantial appearance and
geometric variations. Experimental results demonstrate that our
(depth) gradient-domain approach outperforms existing data-
driven approaches directly working on depth domain, even when
only uncorrelated training datasets are available.

Index Terms—Depth estimation, 2D-to-3D conversion, gradient
transfer, non-parametric sampling, image analogy.

I. INTRODUCTION

UNDERSTANDING 3D structure of a scene undoubtedly
plays a fundamental role in perceiving a real world

scenery. Indeed, the human visual system (HVS) has no
difficulty in understanding its underlying 3D structure by
virtue of the ability to perceive a relative depth ordering
from pre-learned perceptual experiences as well as to measure
an absolute depth value of scenes from the binocular vision
system (BVS). In the BVS, two eyes receive slightly different
images of the scene, and an associated disparity is subse-
quently inferred through binocular fusion. This mechanism has
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widely been adopted in computational stereo approaches that
produce a disparity map by seeking two-view correspondence
[1]. Interestingly, even in monocular situations, the depth
perception still works in the HVS, with the exception of some
optical illusions. This is because a prior knowledge needed
for understanding a scene depth can be learned from various
monocular depth cues such as shading, motion, defocus, or
occlusion. In contrast, inferring a 3D structure from a single
2D image using computational approaches remains extremely
challenging due to its ill-posed characteristics.

While many depth estimation methods have been developed
for extracting plausible depth from a single image based on
parallax, motion, or shading cues [2], [3], strict assumptions
imposed on their prediction model limit their application up to
some restricted environments. To address this limitation, sev-
eral data-driven approaches have been developed by leveraging
the discriminative power of a large scale RGB-D database [4],
[5]. They typically attempt to solve a highly ill-posed depth
prediction problem by transferring plausible depth labels to
an input image from visually similar images retrieved from
RGB-D training database. These methods, however, run under
a strict assumption that the training RGB-D database contains
depth images with geometric characteristics similar to that of
an input color image, and thus they work well only when the
training data is highly correlated with the input image.

Fig. 1(a) shows the depth distribution computed from two
well-known RGB-D datasets (Make3D [6] and NYU Kinect
V2 [7]). Interestingly, the Make3D data (for outdoor scenes)
shows an exponential-like distribution with a peak near zero,
while the NYU Kinect data (for indoor scenes) has a nearly
uniform distribution across all depth ranges. It is because the
Make3D dataset was generated by a Laser scanner for outdoor
scenes, and thus foreground objects (with small depth values)
are biased in acquiring depth fields due to the wide coverage of
the Laser scanner. Please refer to [6], [8] for more details. This
indicates that the depth maps of the retrieved color images do
not always provide useful depth cues unless the database is
carefully established. Such a dependency severely degenerates
the quality of reconstructed depth maps when the desired depth
distribution of the input image is quite different from that of
the training RGB-D data, e.g., inferring a depth map of an
input image taken at outdoor with the NYU Kinect V2 data
(mostly capturing indoor scenes).

Even when the database with similar scene semantics is
used, transferring original depth values from the database
may cause a depth ambiguity. Fig. 2 shows two images from
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Fig. 1. Statistics of natural depth images. We measure (a) the probability of depth distribution and (b) the log10 probability of depth gradient distribution
using publicly available range datasets (Make3D [6] and NYU Kinect V2 [7]). For computing depth distribution, depth images are normalized in the range of
[0, 255]. For depth gradient distribution, first order depth gradients along x- and y-axis are measured from the normalized depth images. In (a), the Make3D
dataset shows a peak near zero, but the NYU dataset has nearly uniform distribution across all depth ranges. It is because the Make3D dataset is generated by
a Laser scanner for outdoor scenes, and that closest objects are more biased in acquiring depth fields due to the wide coverage of the Laser scanner. However,
both scenes show similar trends in the depth gradient distribution of (b) (i.e. heavy-tailed distribution), indicating that the depth gradient (contrast) is more
informative in describing natural depth structures.

the training RGB-D data. These images taken at the same
indoor scene exhibit abrupt depth variations for corresponding
objects, leading to depth ambiguities when superimposing
depth values from two images simultaneously. Although using
more sensitive features may help increase the possibility of
finding more proper depth candidates thanks to the scale
invariant property of the feature descriptors used, two slightly
different depth values from Fig. 2(b) and (d) are directly
superimposed and averaged to compute a final depth value.
This makes the depth reconstruction more challenging, and
thus additional constraints are usually introduced such as
scene-warping enforcement [4], [9] and/or sophisticated depth
interpolation techniques [4], [8]. Additionally, the depth am-
biguity becomes more serious when the training data is not
sufficiently correlated to an input image. In this case, depth
values collected from the training data through a dense scene
alignment [4], [9], e.g. using SIFT flow [10], may be not so
useful for depth recovery of an input image.

To tackle this problem, we propose a new gradient-domain
framework for single image depth estimation, called depth
analogy. Our approach was motivated by the image analogy
[11] that explores the coincidence of statistical relations behind
training image pairs. By utilizing a statistical similarity with
a user-provided training data (e.g. two pairs of images or
patches), the image analogy can naturally produce various im-
age editing effects such as artistic filtering, texture transfer, and
super-resolution. Interestingly, many data-driven approaches
[4], [5] for single image depth estimation share similar prin-
ciples with the image analogy, but they transfer depth values
from a large scale RGB-D training data with no user interven-
tion. Similar to existing data-driven approaches, our method
also utilizes statistical similarities across a collection of RGB-
D image pairs, but we formulate the depth transfer task on
the gradient domain. Namely, instead of directly selecting
depth values from training data, our approach transfers depth

gradients as reconstruction cues, which are then integrated by
Poisson reconstruction. This new formulation enables over-
coming several limitations incurred by the strict dependency
assumption (between training data and input image) imposed
on existing data-driven approaches.

Our key insight is that utilizing depth gradients obtained
from nearest neighbor images is less sensitive to scene char-
acteristics than directly transferring depth values. We demon-
strate in Fig. 1(b) that the gradient distribution of depth images
is independent of scene characteristics. Specifically, it follows
a hyper Laplacian distribution, regardless of indoor or outdoor
scenes. This is also consistent with the fact that a relative
depth contrast (ordering) is one of the most important factors
for 3D depth perception of the HVS [12], [13]. With this
powerful reconstruction cue (depth gradient), our depth anal-
ogy algorithm is thus able to recover a plausible depth field,
even when accompanying with challenging training databases
exhibiting substantial photometric and geometric variations,
which cannot be addressed by existing methods [4], [5].

Our algorithm first synthesizes depth gradient fields by
transferring depth gradient values of nearest neighbor training
samples extracted from RGB-D database, and then adaptively
fusing them based on confidence measures. This gradient field
is then integrated with a Poisson surface reconstruction [14],
producing an initial depth estimate for an input image. The
initial depth map is further refined by smoothing it out with
a weighted median filter [15], since it might be often noisy
and sparse due to the incomplete reconstruction of the gradient
field.

This paper is organized as follows. Section II presents
the related work, and Section III explains the statistics of
natural depth images. The proposed depth analogy algorithm is
presented in Section IV. Then, the performance of the proposed
method is demonstrated in Section V. Finally, Section VI
discusses limitations and concludes this paper.
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Fig. 2. Examples of depth ambiguity caused by range variations. Both images
of (a) and (c) capture the same scene, but capturing positions are slightly
different. This incurs a perspective distortion in depth maps as in (b) and
(d). The signpost in red box has similar appearance in both images, but the
corresponding depths vary according to the perspective distortion. The lower
the intensity, the closer the object.

II. RELATED WORK

Early methods for single image depth estimation focus on
using user-annotations such as sparse depth scribbles [16]–[18]
and/or a priori geometric model [19], [20]. They require the
user to manually assign precise annotations to the input image,
thus making it difficult to apply the method to automatic
vision-related tasks.

In parallel, several automatic methods have been proposed
to directly estimate the scene depth from a single image
with no user intervention such as parallax-based methods
[2] and shape-from-shadings [3]. For instance, parallax-based
methods [21] typically require a translational camera motion
for a static scene. Some approaches [2] propose to simply
convert an object motion to a scene depth, but they do
not capture a realistic scene depth when no object motion
exists in the scene. Shape-from-shading methods [3] usually
require surfaces of an image to have fairly uniform color and
texture. In practice, most real images/videos do not always
meet such requirements. The depth data we wish to discover
is complicatedly coupled with various monocular depth cues
other than just a single one. Therefore, these approaches [2],
[3] relying on a single cue only do not scale well for general
scenes.

Alternatively, data-driven approaches [4], [5] significantly
advanced the performance of the single image depth estimation
by effectively leveraging the discriminative power of large
scale RGB-D databases (consisting of color images and as-
sociated ground truth depth maps). They assume that scenes
with similar semantics should have roughly similar depth
distributions. This assumption on appearance-depth correlation
enables using candidate depth samples from RGB-D training

data by linking them with the input image through appearance-
based correspondence.

As a pioneering work, Konrad et al. [5] proposed to use
depth maps of K color images that are retrieved by the
histograms of oriented gradients (HOG) descriptor [22]. They
fuse K depth maps by computing a median depth value
for each pixel. This initial depth estimate is then refined
by performing a joint bilateral filtering [23]. This method is
fast and easy to implement. However, the K depth maps are
directly fused with no pixel-level dense alignment, and thus
local properties of retrieved K depth maps are not considered.

More recently, Karsch et al. devised the depth transfer algo-
rithm that uses a global form of depth fusion to automatically
recover scene depth from a single image. In contrast to [5],
the retrieved images are densely warped to the input image
by making use of a generic dense scene alignment like SIFT
Flow [10]. With this, the depth transfer method achieves rela-
tively good depth results even when locally different training
samples yet having sufficiently similar global characteristics
are provided, although the SIFT flow-based warping of all
retrieved images requires a very expensive operation.

There are also several approaches for single image depth
estimation. The Make3D [6] algorithm was also proposed to
provide realistic depth maps by modeling monocular cues and
the relation among multiple regions inside an input image
based on a Markov Random Field (MRF). Depth (e.g. plane)
parameters are trained with a ground truth RGB-D dataset.
In [24] and [25], semantic object labels are integrated with
monocular depth features to improve depth estimation quality.
Eigen et al. [26] uses multi scale deep neural networks.
The methods [27], [28] proposed to incorporate additional
geometry information such as surface normal vectors in order
to improve an overall performance of depth map prediction.

Note that the methods in [4] and [6] also used depth
gradients as well as depth values in their inference process.
Contrarily, we use depth gradients only in order to address
an even more challenging scenario: estimating depth using a
training dataset with quite different depth distribution from
that of an input image. Our approach does not employ any
candidate’s depth values in the inference procedure, focusing
only on the candidate’s depth gradients obtained by localized
matching. We demonstrate in experiments that this approach
can cope with the problems regarding the depth ambiguity and
strict dependency on training data.

As already explained in Section I, existing data-driven
approaches have two problems; 1) a strict dependency for
training data due to the statistical variations of depth dis-
tribution as in Fig. 1(a) and 2) a depth ambiguity due to
depth range variations in training RGB-D data as in Fig. 2.
In practice, finding appropriate training datasets with scene
depth semantics similar to that of an input image is non-
trivial in most cases. Thus, it is straightforward to expect
that existing data-driven approaches [4], [5] often fail when
the assumption on appearance-depth correlation is violated.
Although Karsch et al. [4] introduced a mean depth prior
as a constraint in their optimization formulation to relax
this limitation, the prior knowledge from the computed mean
depths also varies according to the scene categories of training
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datasets (e.g. indoor or outdoor). Moreover, if the training
images having different depth values in regions with similar
appearance are retrieved, then existing methods fail to produce
correct depth maps due to the depth ambiguity. Therefore,
a training database of RGB-D images should be carefully
defined due to their reliance on appearance-depth assumption.

Note that one could use information from the image itself or
associated metadata to infer the type (e.g. indoor or outdoor)
or mean depth of the scene [29]. This may help finding
appropriate training datasets.

III. STATISTICS OF NATURAL DEPTH IMAGES

In this section, we present a detailed description about
statistics of natural depth images. By inspecting the statistical
characteristics of natural depth images, it is not difficult to see
that the depth gradient distribution usually look statistically
invariant against scenes with different semantics, while the
depth distribution varies depending on capturing environments
and/or sensing devices. This offers a key insight into our
approach, which a depth contrast (gradient) cue is very crucial
to recovering a scene geometry.

A. Experimental setup

To verify the statistical characteristics of depth distributions,
we conducted experiments using several real-world depth
images from two different datasets with distinct semantic
characteristics: the Make3D dataset [6] and the NYU Kinect
V2 dataset [7] captured by a Laser scanner and a Kinect sensor,
respectively. Each depth image was normalized in the range
of [0, 255] so as to alleviate a scaling effect. We computed the
histogram of depth values and the log10 histogram of depth
gradients for each image, respectively. The histograms were
averaged and normalized for each dataset. The depth gradients
were computed for both x and y coordinates. Fig. 1 plots the
statistics of two semantically distinct datasets.

B. Analysis

As shown in Fig. 1(a), depth distributions computed from
different semantic scenes exhibit a significant global variation.
Namely, outdoor scenes (Make3D) show a peak near zero,
while indoor scenes (NYU) exhibit a nearly uniform distribu-
tion. In contrast, as shown in Fig. 1(b), each depth gradient
distribution shows a global consistency in the sense that both
distributions have sharp peaks at zero and heavy-tails. Only
a small local inconsistency are observed. This demonstrates
the statistical invariance property (up to a small error bound)
of natural depth gradients. Similar investigation can also be
found in the seminal work of [30]. In fact, the statistical
variation of spatial depth distribution stems from the spatially-
varying nature of scene structure. More specifically, depth
values may not be equally-comparable due to the diversity
that exists in capturing environments as well as in the sensible
range of depth sensing devices. While existing approaches [4],
[5] implicitly assume the appearance-depth correlation, this
is valid only when the depth characteristics of the training
data are closely matched to that of an input image. Thus,

the statistical variation of spatial depth distribution limits the
application of existing approaches to some restricted range
database.

C. Verification

To verify this, we conducted additional experiments by
measuring the distribution correlation between the ground truth
input depth image and its K nearest neighbor training depth
images. Given an input image with its ground truth depth
map, we retrieved top K = 40 nearest neighbor color images
for each dataset by using a GIST descriptor [31]. We have
measured the distribution correlation by using various scene
descriptors such as GIST [31], HOG [22], PHOG [32], and
GIST+PHOG (i.e. weighted combination of GIST and PHOG).
However, there were no considerable changes in the resultant
distribution correlation curves. We then computed depth and
its gradient histograms in a way similar to Section III-A.
We then measured a Bhattacharya similarity [33] between the
histograms obtained with depth maps corresponding to the
input and retrieved images.

For the input P and its retrieved Q(k) depth histograms
with b bins, the correlation score is defined by accumulating
similarity for k = 1 . . .K as follows:

c =
1

K

K∑
k=1

b∑
i=1

(
PiQ

(k)
i

) 1
2

, (1)

where the space is quantized into b = 127 bins.
Fig. 3 plots average correlation curves for depth and its

gradient distributions. We evaluated 100 test image pairs
randomly selected from the Make3D dataset. A significant
drop is visible in case 4) when highly uncorrelated dataset
(NYU) is given for the input image (selected from Make3D).
This indicates that existing approaches [4], [5] may fail to
capture useful depth cues from such an uncorrelated dataset.
Thus, they require establishing RGB-D training database very
carefully. For instance, indoor (or outdoor) training images
should be used accordingly for an indoor (or outdoor) input
image, leading to extra difficulties and demands in build-
ing the database. Even when using the correlated dataset
(Make3D) as in case 3), the correlation of depth distribution
decreases as K increases due to depth ambiguity problem
(see Fig. 2). In contrast, two correlation curves from case
1) and 2) demonstrate that statistical characteristics of depth
gradient are well preserved against depth variations incurred
by different training data as well as internal variations (i.e.
depth ambiguity) within the same training data.

IV. GRADIENT-DOMAIN DEPTH ANALOGY

Based on the statistical invariance property inherent in
natural depth images, it is intuitive to design a transfer model
in the gradient domain. This model allows our algorithm to
scale well for various training range data. We synthesize a
plausible depth gradient field with a set of depth gradients
locally-sampled from the retrieved training pairs. To this end,
we leverage recent works on fast dense nearest neighbor
field search and efficient edge-aware filter, and combine these
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Fig. 3. Distribution correlation curves for Make3D and NYU datasets. Given
a randomly selected input image from the Make3D dataset, we measure a
correlation of both depth and depth gradient distribution by computing a
Bhattacharya distance between histograms of the input ground truth depth map
and K nearest neighbor scene matches. Depth gradients are more consistent
against appearance variations in training data.

methods smartly in the non-parametric learning framework
defined in the gradient domain. This synergetic design makes
our approach an order of magnitude faster than existing non-
parametric methods [4], while mitigating the strict dependency
for RGB-D training data and resolving the depth ambiguity
problem.

A. Algorithm Overview

Suppose there is a database of RGB-D images I =
{(Ii, Di)|i = 1, . . . , N}, where Ii and Di denote respectively
a color image and its associated depth map. N is the size of
the database. Our objective is to infer a spatially coherent,
discontinuity-preserving depth field D∗ of an input image I
by learning depth from this database.

Our approach consists of four steps. We first retrieve
K � N training pairs C = {(Ik, Dk)|k = 1, . . . ,K} from
a database of RGB-D images I (Sec. IV-B). For simplic-
ity, we re-index the retrieved color and depth maps using
k = 1, . . . ,K. Then, we sample hypothetical depth gradients
by performing a local correspondence search between an
input image and each of the retrieved images, resulting in K
depth gradient samples for all pixels in the input image. A
depth gradient for each pixel is determined from K gradient
samples, based on the matching confidence (Sec. IV-C). We
then reconstruct the initial depth field D from the gradient
field by solving Poisson equations (Sec. IV-D), and finally the
spatial smoothness constraint is implicitly enforced on D by
applying edge-aware median filter (Sec. IV-E), producing a
desired depth field D∗.

B. Retrieval of Training RGB-D Images

To select training pairs C = {(Ik, Dk)|k = 1, . . . ,K} from
the large scale database I, we retrieve similar images by means
of high-level image features. In our approach, visual similarity
between two images is measured using the Pyramid of His-
tograms of Orientation Gradients (PHOG) descriptor [32].

Let us denote FI ∈ Rn as an n-dimensional PHOG feature
vector for image I . We adopt the default setting used in
[32]: L = 3 pyramid levels and B = 8 bins for gradient

(a) Input (b) Ground truth

(c) PM-WM (d) SF-WM

Fig. 4. Depth reconstruction using locally- and globally-aligned training
pairs (PatchMatch vs. SIFT Flow). (a) Input image and (b) its ground truth
depth map. The depth fields of (c) and (d) are reconstructed by solving the
Poisson equation [14] (see Sec. IV-D) for depth gradients obtained using (c)
PatchMatch-based (PM) and (d) SIFT Flow-based (SF) sampling approaches.
Note that post-processing (Sec. IV-E) is not applied to these results for fair
comparison. The higher the intensity, the closer the object.

histograms, resulting in a 680-dimensional feature vector (i.e.
n = B

∑L
l=0 4l). The dissimilarity metric between the input

image I and the candidate image Ii from the database I is
defined by the sum of squared differences (SSD) between two
corresponding feature vectors as follows:

dist(Ii, I) = ‖FIi − FI‖22 . (2)

We then extract the lowest K matching pairs with respect to
the matching distance (2) and define them as the training pairs
C that are relevant for learning depth. Note that the PHOG
feature vectors for all images in the database are pre-computed
and stored for a fast retrieval.

C. Depth Gradient Reconstruction

As pointed out in Sections I and III, our method designs the
transfer model in the depth gradient domain considering the
statistical invariance property of depth gradients. In short, we
assume that two regions with similar appearances are likely to
have similar depth gradients, not similar depth values.

An analogous depth gradient field g is learned using gra-
dient samples locally aggregated from K training pairs C =
{(Ik, Dk)|k = 1, . . . ,K}. In other words, we want to estimate
an analogous depth gradient field g(p) = (gx(p), gy(p))T for
all pixels p that relates to the input image I in the same way
that the gradient field of Dk relates to Ik. We do this by estab-
lishing a dense visual correspondence between the input image
I and all training images Ik, and then aggregate hypothetical
depth gradients from corresponding depth fields Dk.
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1) Depth Gradient Sampling: Let us define a warping
function m : I → R2 over all possible pixel coordinates
in image I . Then, the correspondence search from I to Ik
can be expressed as finding a warping function mk(p) for
k = 1 . . .K:

mk(p) = arg min
m

‖fI(p)− fk(p+m)‖22 , (3)

where fI(p) is a feature vector for image I reflecting ap-
pearance characteristics around pixel p. Similarly, fk(p) is a
feature vector for training image Ik around pixel p. Regarding
appearance variations that exist on natural images, we employ
dense SIFT features [34], [35] that properly describe image
appearance properties. To efficiently compute the warping
function for each training image, we use approximated nearest
neighbor (ANN) search algorithm, PatchMatch (PM) [36],
[37], as a means for gradient sampling process. The random-
ized search adopted in the PM enables a fast correspondence
estimation over an entire image, thus increasing the likelihood
of finding suitable depth gradients.

It should be noted that unlike previous works relying on
global correspondence algorithms (e.g. SIFT Flow [10]), we
impose no smoothness constraints on computing a correspon-
dence field and find the best match independent of neighboring
matches. We observed in Fig. 6 that depth gradient fields are
sparse where meaningful gradients are mostly located at image
boundaries while the rest has a (near-) zero magnitude. This
implies that, when aligning candidate training pairs in terms
of image appearance, the global smoothness prior commonly
adopted in global dense warping algorithms like [10] is not so
effective in warping hypothetical depth gradients. Moreover,
due to a heavy computational load, they typically constrain
the search range to a small local window, not an entire image.
Figs. 4(c) and (d) show the depth fields reconstructed using
locally- and globally-aligned training pairs (PatchMatch vs.
SIFT Flow) in our framework. In Fig. 4(d), the method fails
to capture fine details of objects due to spatial regularization
of SIFT Flow algorithm. In contrast, the method using the
PatchMatch recovers appropriate depth structures as shown in
Fig. 4(c).

Using the warping functions computed from all training
images, we sample depth gradients g(k)(p) from kth warped
training pair (Ik, Dk) as follows:

g(k)(p) = (∇xDk(p+mk(p)),∇yDk(p+mk(p)))T , (4)

where ∇q is a gradient operator along q-coordinate. Since
some of these estimates may be inaccurate, we also measure
the sampling confidence for all pixels based on matching
distance. The confidence wk(p) is defined as the normalized
matching distance, which is the form of

wk(p) = 1−
‖fI(p)− fk(p+mk(p))‖22

K∑
t=1
‖fI(p)− ft(p+mk(p))‖22

. (5)

The confidence term wk(p) gives a higher weight to the pixel
p, when two patches centered at p and p+mk(p) match more
closely in the feature space.

(a) Input (b) PM-WTA (c) PM-WM

Fig. 5. Depth reconstruction using two depth gradient voting methods:
PatchMatch-based (PM) sampling with (b) winner-takes-all (WTA) and (c)
our weighted median (WM) voting. Similar to Fig. 4, the depth fields of (b)
and (c) are reconstructed by solving the Poisson equation (see Sec. IV-D).
The higher the intensity, the closer the object.

2) Weighted Median Voting: A final gradient is then se-
lected by computing a weighted median value among K
gradient samples. For each pixel p, we first sort out confidence
values in an ascending order, and then compute an index k∗

in which the sum of corresponding weights is approximately
a half of the sum of all the weights. Formally, we find the
index k∗ that satisfies the following process:

k∗ = min t s.t.

t∑
q=1

w̄q(p) ≥1

2

K∑
q=1

w̄q(p), (6)

where w̄ denotes an ordered confidence value. We create
a final gradient field g by transferring a gradient sample
corresponding to the index k∗:

g(p) = ḡ(k∗)(p), (7)

where ḡ is the ordered depth gradient samples of g in (4).
This weighted median voting process mitigates the outlier

that may occur when simply selecting a gradient sample with
the highest confidence from the training pairs, since having the
highest confidence does not necessarily mean the most correct
gradient sample. Fig. 5(b) shows the result estimated using the
winner-takes-all (WTA) approach, where the gradient field is
synthesized by selecting a gradient sample with the highest
confidence. The WTA approach produces inaccurate results,
while the proposed weighted median (WM) approach greatly
alleviates the outliers as in Fig. 5(c).

Fig. 6 shows the gradient field estimated using K = 7
nearest neighbor training pairs. In the training pairs of Figs.
6(b) and (c), most homogeneous regions have almost zero gra-
dients, while useful (strong) gradients are locally distributed
around region boundaries that coincide with boundaries in the
color image. This sparsity property inherent in the training
pairs can also be observed in the estimated gradient field of
Fig. 6(a). It should be noted that such a sparsity property of
depth gradient fields helps improve a reconstruction perfor-
mance, even when overall semantics of training data are not
tightly correlated with those of an input image.

D. Depth from Gradients

The depth field D can be obtained by integrating the esti-
mated gradient field g. For this, it is required that the gradient
field should have zero curl or should be integrable [14].
Numerous sophisticated algorithms have been developed in
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(a) I , g, and ground truth

(b) C1 (c) C2

Fig. 6. Estimated depth gradient field using K = 7 nearest neighbor training
pairs: (a) input image and its estimated and ground truth gradient field. (b)-(c)
Some of retrieved top K = 7 training pairs. For a better visualization, we
drew the depth gradient maps in such a way that a lower intensity indicates
a higher magnitude.

the field of surface-from-gradients [38] to address integrability
enforcement issues. In our work, the least square approach
proposed in [14] was employed.

For completeness of algorithm exposition, we briefly review
[14]. When g(p) = (gx(p), gy(p))T is given, a surface
(depth field) D can be obtained by minimizing the following
objective:

min
D

∫ ∫ [
(Dx − gx)

2
+ (Dy − gy)

2
]
dxdy (8)

where Dx and Dy denote respectively the gradient field of
D along x- and y-axis. It is well known that the solution of
(8) can be obtained by solving the Poisson equation with the
Neumann boundary conditions, which is the form of

∇2D = div g with ∇D · n̂ = 0 (9)

where div is a divergence operator and n̂ is a normal vector
perpendicular to the surface D. For numerical solution of (9),
we refer readers to [14]. The surface D reconstructed using
the Poisson solver [14] is shown in Fig. 7(b). The method
captures a reasonable, natural depth field D in a global sense.

Note that many depth images D can be induced from
the same gradient map g(p) = (gx(p), gy(p))T , since our
approach transfers a set of depth gradients only from the
training RGB-D database. Thus, we intentionally scale the
resulting depth field to be in the range of [0, 255]. In this
way, a relative depth order is still preserved, while satisfying
standard depth encoding.

E. Post-processing Based on Joint Filtering

The depth estimate in Fig. 7(b) is, however, still noisy
around some homogeneous regions, and region boundaries

(a) Ground truth (b) Poisson (PM-WM) (c) Refined using WMF

Fig. 7. Depth reconstruction of Fig. 5(a) with post-processing: (a) ground
truth depth map, (b) Poisson reconstruction [14], and (c) refined using the
weighted median filter (WMF) [15]. The higher the intensity, the closer the
object.

are slightly inconsistent with those of the input image due to
outliers in the depth gradient field. Here, we enhance it through
a simple post-processing based on a joint filtering approach,
which has been proved to be effective in improving labeling
maps (e.g. depth or optical flow) [15], [39]–[41].

We employ modern edge-aware filters for smoothing the
reconstructed depth image with the guidance of the input color
image. In particular, we adopt a highly efficient weighted
median filter (WMF) recently proposed in [15]. It is natural
to use the weighted median filter, considering our observation
about depth gradient statistics. The derivative statistics shown
in Fig. 1(b) has a heavy-tailed distribution. Such a derivative
prior can be better modeled by a Laplacian function rather
than a Gaussian one [42]. Thus, the weighted median-based
refinement makes the gradient distribution of resulting depth
fields being matched more closely to that of natural images.
Interestingly, similar observations were made by Saxena et
al. [42] in the context of monocular depth estimation. They
proposed to use Laplacian potentials in designing conditional
random fields (CRFs) for max-margin parameter learning.

This naturally leads to using the weighted median filter that
effectively solves the following L1 minimization problem [43]:

min
D∗

∑
q∈N (p)

ψ(p, q)‖D∗(p)−D(q)‖1 (10)

where D∗ is the filtered depth field and ψ(p, q) =
exp{−‖I(p)− I(q)‖2 /σ} is a weighting function based on
the affinity of two pixels p and q in the guide image I . N (p)
is a set of neighboring pixels around p. Fig. 7(c) shows the
depth field refined using the WMF [15]. Inconsistent regions
are smoothed out, and the overall region boundaries are better
aligned to those of the color image.

V. EXPERIMENTAL RESULTS

We validated the performance of the proposed method
against two competing algorithms qualitatively and quantita-
tively: the Depth Transfer (DT) algorithm [4] and the Depth
Fusion (DF) algorithm [5]. All methods including ours are
data-driven approaches using a large scale RGB-D training
database. Note that the work of [8] also utilizes a large-scale
RGB-D databases to infer a depth map, and showed that
the accuracy of the depth estimation is slightly better than
that of the DT method [4]. However, this work still relies
on the appearance-depth assumption (by using mean values
from RGB-D datasets), and thus it is expected to suffer from
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TABLE I
DESCRIPTION OF RGB-D DATASETS USED IN EXPERIMENT

RGB-D Dataset Abbreviation Size Usage

Make3D [6] M3D134 134 Testing
M3D 400 Training

NYU Kinect V2 [7] NYU 1449 Training
Middlebury [44], [45] MID 31 Testing

similar problems to the DT method, when training database
is not tightly correlated with an input image. We obtained the
results of DT by using the authors’ MATLAB code1, while
the results for DF and ours were obtained using our own
MATLAB implementation. All experiments were simulated on
a PC with Quad-core CPU 2.93GHz. The codes and more
results for various test images will be released at our project
page later2.

Regarding the number of training pairs K, we found that in
our method, using more training pairs improves a depth recon-
struction accuracy (see Fig. 12), but considering the trade-off
between accuracy and runtime efficiency, we retrieved K = 7
training pairs in all experiments. For DT [4] and DF [5], we set
K with the optimal setting reported in their papers: K = 45
in DF [5] and K = 7 in DT [4]. For post-processing, we set
σ = 20.0 and the size of window N as 3×3. With this setting,
the WMF post-processing is applied 5 times.

We designed training databases and test images with three
publicly available RGB-D datasets consisting of real world
color images and depth maps: the Make3D range dataset [6],
the NYU Kinect V2 dataset [7], and the Middlebury stereo
dataset (MID) [44]–[46]. The Make3D dataset (534 images)
was taken from outdoor environment, while the NYU dataset
(1449 images) and the Middlebury stereo dataset (31 images)
were taken from indoor scenes. Table I summarizes the RGB-
D datasets used in the experiment. By following standard
practices used in the Make3D dataset [6], we define a set of
400 training images (M3D) as a database of RGB-D images
I and the rest of 134 images (M3D134) as test images. Note
that the Make3D color images are of 1704× 2272 resolution,
but the corresponding depth maps are of 305× 55 resolution.
We thus resized both color and depth images to the spatial
resolution of 345×460 using the bilinear interpolation. For the
NYU dataset, we define the entire 1449 images as a database
of RGB-D images I. While both color and depth images from
the NYU dataset are of the same resolution of 640× 480, the
depth maps contain hole regions with no valid depth values.
We thus neglected such hole pixels during the inference. The
Middlebury stereo dataset (MID) are used as test images. Note
that the MID dataset provides the disparity map, while the
M3D and NYU training databases contain the depth maps.
In our MID experiment, the ground truth disparity maps of
the Middlebury dataset are acquired under a parallel stereo
configuration. Thus, we can simply convert the Middlebury
depth maps estimated using our approach in a form of the
disparity map with a simple division, and then evaluate the

1http://www.kevinkarsch.com/
2http://sites.google.com/site/depthanalogy/

accuracy with the ground truth Middlebury disparity maps.
The depth maps of the test images (consisting of indoor
and outdoor scenes) are synthesized using the outdoor M3D
dataset or the indoor NYU dataset. This type of evaluation
clearly shows the advantage of our approach, which is less
sensitive to the training dataset used and resolves the depth
ambiguity problem very well.

A. Qualitative Evaluation

We first evaluated the proposed method with 31 test images
from the Middlebury indoor dataset (MID). Fig. 8 shows
results obtained using two training databases. Figs. 8(b)-
(d) present results using indoor training data (NYU), while
Figs. 8(f)-(h) show results using outdoor training data (M3D).
By using the NYU database, both competing algorithms
produce a globally-correct depth map, but the result of DT
as in Fig. 8(c) tends to be over-smoothed due to spatial
regularization employed in depth interpolation process. In
addition, locally inconsistent estimates are observed from the
result of DF approach as in Fig. 8(b), due to their strict
reliance on the appearance-depth correlation assumption and
depth ambiguities in the training data. In contrast, our results
better respect the discontinuities in the scene, demonstrating
the superiority of locally-sampled depth gradients for recon-
struction. When the outdoor M3D database is given, both
competing algorithms fail to estimate desired depth structures
due to different scene characteristics, as shown in Figs. 8(f)
and (g). In contrast, our approach still produces a comparable
depth field to the ground truth one.

In Fig. 9, we performed the experiments with test images
from M3D134 dataset. Similar to the first experiment, we
cross-validated our method by alternating the NYU and the
M3D datasets for training. The outperformance of our method
is easily confirmed by visually comparing overall structures of
reconstructed depth maps. By comparing Figs. 9(d) and (h), it
can be verified that our method does not severely depend on
the training dataset. This also implies that the local gradient
sampling process better aggregates useful depth cues.

Note that our gradient sampling process locally aggregates
hypothetical cues by traversing the entire training data. This
increases the possibility of finding useful reconstruction cues.
The DT method [4] does this in a similar manner using
the SIFT Flow [10], but a large 2D displacement vector is
penalized in the objective used in the SIFT flow. Additionally,
the SIFT flow constrains a search range within a predefined
distance due to a heavy computational burden of the global
optimization algorithm used. Such a dense alignment may lose
the chance of getting more coherent candidates over a whole
image (see Fig. 4(d)). Contrarily, our method achieves very
convincing depth maps and does not severely depend on the
training dataset thanks to 1) the gradient transfer model based
on the PatchMatch local search and 2) a synergetic combina-
tion of surface-from-gradients methods and joint filtering. For
qualitative evaluation, we also report stereo rendering results
in Fig. 10 and Fig. 11.
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(a) Input (b) DF-NYU (c) DT-NYU (d) Ours-NYU (e) GT (f) DF-M3D (g) DT-M3D (h) Ours-M3D

Fig. 8. Qualitative comparison: (a) input images from the MID dataset, (b)-(d) depth maps obtained by DF, DT, and ours using the NYU training dataset, (e)
ground truth depth maps, and (f)-(h) depth maps obtained by DF, DT, and ours using the M3D training dataset. The higher the intensity, the closer the object.

TABLE II
COMPARISON OF DEPTH ESTIMATION ERRORS

Method K
MID M3D134

M3D NYU M3D NYU
MS-SSIM MGE RMS∗ MS-SSIM MGE RMS∗ MS-SSIM MGE RMS∗ MS-SSIM MGE RMS∗

Baseline All 0.702 4.17 28.7 0.742 4.14 29.1 0.805 3.19 16.0 0.786 3.19 16.7
DF [5] 0.726 4.22 30.9 0.730 4.15 29.8 0.800 3.24 16.5 0.787 3.21 16.5
DT [4] 7 0.721 4.20 30.4 0.734 4.23 33.1 0.829 3.21 13.5 0.787 3.19 16.9
Ours 0.767 4.10 26.3 0.761 4.12 28.5 0.803 3.20 15.8 0.791 3.20 16.6
DF [5] 0.720 4.22 32.5 0.745 4.12 28.1 0.795 3.23 17.5 0.792 3.20 16.4
DT [4] 45 0.741 4.13 29.1 0.746 4.16 30.2 0.823 3.18 14.0 0.787 3.19 17.2
Ours 0.774 4.07 25.3 0.774 4.10 27.2 0.805 3.20 15.4 0.798 3.20 16.0

B. Quantitative Evaluation

For a quantitative evaluation, we computed similarity scores
between an estimated depth map and a ground truth depth
map. Note that our approach produces a final depth map
reconstructed from a relative depth order (gradient), whereas
competing algorithms directly estimate absolute depth values,
making it difficult to use existing evaluation metrics, e.g., using
relative error (REL), log10 error, and root mean squared (RMS)
error. Interestingly, it was also reported in [4] that these metrics
do not fully reflect an estimation quality of data-driven depth
reconstruction algorithms.

Thus, we employ three different metrics for a quantitative

evaluation. First, for direct comparison with competing algo-
rithms, we report a scaled RMS error of an estimated depth
map D∗ computed from DF, DT, and ours against a ground
truth depth map DT :

RMS∗ =

(∑N

p=1

(
αD∗(p) + β −DT (p)

)2
/N

) 1
2

,

where N is the number of pixels and α and β are parameters to
reduce the effect of a scaling bias in the estimated depth map.
We introduce free scaling parameters of α and β into the RMS
metric in order to scale each relative (estimated) depth map to
an absolute (ground truth) depth map, which best optimizes
the RMS error metric. We determine α and β as the solution
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(a) Input (b) DF-M3D (c) DT-M3D (d) Ours-M3D (e) GT (f) DF-NYU (g) DT-NYU (h) Ours-NYU

Fig. 9. Qualitative comparison: (a) input images from the M3D134 dataset, (b)-(d) depth maps obtained by DF, DT, and ours using the M3D training dataset,
(e) ground truth depth maps, and (f)-(h) depth maps obtained by DF, DT, and ours using the NYU training dataset. The lower the intensity, the closer the
object.

of min
∑

p

(
αD∗(p) + β −DT (p)

)2
which can be given by

linear regression [47]. In this way, direct comparison with
competing algorithms can be reported. Second, we measure
a root mean gradient error (MGE) in order to provide how
well the estimated gradient field matches the ground truth:

MGE =

(∑N

p=1

∥∥α∇D∗(p)−∇DT (p)
∥∥2 /N) 1

2

,

where N is the number of pixels and α is the parameter esti-
mated in RMS∗. Third, instead of measuring residual errors
in the depth domain, we measure the multi-scale structural
similarity (MS-SSIM) [48] between the scaled version of test
depth maps, αD∗ + β, and the ground truth ones. Evaluation
scores are averaged over all images in the test dataset. It
should be noted that this kind of scaling method has also been
employed in DF [5] and DT [4] for ensuring that resultant
depth values are in the range of original training depth maps.
For a fair comparison, we applied such a scaling method to
the results of competing methods as well as ours.

Table II reports correlation scores for the MS-SSIM metric
and residual errors for the MGE and RMS∗ metrics. A higher
score indicates a better quality for MS-SSIM, while a lower
one is better for MGE and RMS∗ metrics. Here, the results

of a baseline algorithm were obtained by simply averaging all
depth maps (from each dataset) pixel-by-pixel. We compared
our method with two competing algorithms, DF [5] and DT
[4], by varying K. Note that the optimal parameter K reported
in their papers is K = 45 in DF [5] and K = 7 in DT [4],
respectively. In all experiments except the M3D134 test using
the M3D dataset, the proposed method achieves a higher MS-
SSIM value than competing algorithms. Also, our method is
as good as or better than the competing algorithms for both
MGE and RMS∗ metrics.

In the MID experiment, it should be noted that the scene
semantics of the test images can be regarded as those of indoor
scenes (NYU). However, the depth distribution of both test
and training images does not match closely, causing depth
ambiguities in competing algorithms. As a result, existing
methods yield evaluation scores around 0.73, 4.18, 31 for MS-
SSIM, MGE, and RMS∗ in all training datasets, while our
method achieves 0.77, 4.10, 27 for these metrics. Our method
outperforms existing methods in both K = 7 and K = 45.

In the M3D134 experiment, the scene characteristic of both
the test image and the M3D training data matches closely.
This satisfies the assumption of appearance-depth correlation
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(a) Ground truth (b) Ours-M3D (c) Ours-NYU

Fig. 10. Stereo rendering results on the MID dataset. The anaglyph images are
produced using the depth image-based rendering algorithm proposed in [4]. (a)
Rendering results using the ground truth depth maps, (b)-(c) rendering results
using depth maps obtained by ours with M3D and NYU training datasets.

used in DF [5] and DT [4]. When K = 7, the DT provides
the best results. However, our gradient-domain approach also
produces comparable results to the state-of-the-art methods.
Interestingly, it was reported in the DT [4] that K = 7 is
optimal for the M3D134 dataset, and thus using more than
K = 7 does not significantly improve results. In our approach,
however, slightly better results can be achieved when using
K = 45. When using an obviously uncorrelated training
database (NYU), the proposed method shows slightly better
performance than the existing methods, but no significant
gains are observed when compared to the MID cases. It is
because the ground truth depth maps of M3D134 dataset are of
low resolution and coarsely quantized (see Fig. 9(e)), making
an objective evaluation hard. But, we can find a significant
improvement in Fig. 9 in terms of visual quality. We reserve
a new metric better measuring the quality of depth maps as a
future work. Although all the methods including ours perform
worse than the previous case using the M3D training database,
our method is less sensitive to the training dataset used than
existing methods, and produces realistic depth maps (see Fig.
9(h)). This demonstrates that the depth gradient is a more
informative cue than the depth value.

C. Analysis on Varying K

We evaluated the performance of our method according
to varying the number of training images K. We used the
M3D134 dataset as inputs, and alternated the M3D and NYU
datasets for training.

Using the M3D134 outdoor test images as inputs, we
evaluated the correlation score based on the MS-SSIM metric
[48] averaged over all test images when using different values
of K = 1 . . . 50. Fig. 12 shows the correlation curves with
varying K. As we can see the blue dashed line in Fig. 12,

(a) DF (b) DT (c) Ours (d) GT

Fig. 11. Results of depth image-based rendering on the MID dataset. Right
images are synthesized using left color images and their estimated depth maps.
(a)-(c) Synthesized results using depth maps obtained by (a) DF, (b) DT, and
(c) ours with the M3D training dataset. (d) The ground truth right image.
Note that hole regions are displayed in black.
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Fig. 12. Correlation curves with varying the number of training images K.
Correlation scores are measured by using the MS-SSIM metric [48]. Given
the M3D134 outdoor test images as input, scores are reported respectively on
the training database as the M3D (dashed line) dataset and the NYU (solid
line) dataset.

the correlation score slowly increases, when using correlated
training data (i.e. outdoor vs. outdoor). In the case of using
an uncorrelated training data as in the red solid line of Fig.
12, the correlation score abruptly increases by around K = 20
and slowly increases beyond K = 20. It is natural to expect
that using more relevant images likely increases the possibility
of finding useful reconstruction cues. Considering trade-off
between accuracy and runtime efficiency, we set K to 7 for
all experiments, but more accurate results are achievable with
K ≥ 7.

In DT [4], however, using more images from RGB-D
database does not necessarily increase an accuracy of depth
estimation. It is because all depth values aggregated from the
RGB-D database do not always provide useful cues for depth
reconstruction due to the strict assumption on appearance-
depth correlation and the depth ambiguity problem.

We also studied how depth gradients obtained from each
training depth map contribute to a final result. For instance,
for K = 3, an occurrence histogram bin k (= 1 ∼ 3) is incre-
mented by one, when the depth gradient of kth training depth
image is chosen in the final resultant depth map. Fig. 13 plots
contribution histograms regarding K = 3, 7, 10, 20, 30, 50.
Interestingly, the top matched (k = 1) training sample does
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(e) K = 30
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(f) K = 50

Fig. 13. Analysis of the contribution of training samples used in single image
depth estimation. All the training samples similarly contribute to the inference,
indicating that using more training samples likely increases the possibility of
aggregating proper depth cues.

TABLE III
ANALYSIS ON RUNNING TIME IN SECONDS (N.A.: NOT APPLICABLE)

Method (K = 7) DF [5] DT [4] Ours
Scene retrieval 0.33
Scene warping N.A 121.09 6.84
Reconstruction 0.17 8.34 0.92
Total 0.5 129.76 8.09

not contribute to the majority of inference for all experiments.
Instead, all the training samples similarly contribute to the
depth inference. This analysis is also consistent with the
intuition that using more training samples likely increases the
possibility of aggregating proper depth cues.

D. Computational Complexity

In Table III, we measure the runtime of the proposed method
and competing algorithms. The input image and training
database are of 345 × 460 resolution, and K = 7 training
image pairs are selected using the PHOG descriptor. The
proposed method is about 16x faster than the DT method,
while achieving a superior estimation quality. It is because
our gradient sampling process is performed locally without
using a global optimization. Most time-consuming part of the
DT algorithm is the scene warping via SIFT Flow [10]. Our
approach benefits from the computational efficiency of the
ANN search algorithm [37] and the fast filtering technique
[15]. This makes our approach a more efficient and practical
solution to estimating depth from a single image. Note that
the DF method does not employ a scene warping process.
Instead, it computes the median of candidate depth maps and
applies a fast bilateral filter from [49], taking 0.5 seconds
in our own implementation. However, this method does not
take into account local properties of retrieved K depth maps,
producing unsatisfactory results (see Fig. 8(b) and (f)).

(a) Repeated textures (b) Gradient-like depth field

Fig. 14. Failure case of our method. When the input image (a) has repeated
textures such as grass in background, our method is not able to estimate a
correct depth gradient field due to the duplication of similar gradients. This
results in a gradient-like linear structure as in (b).

VI. CONCLUSION

This paper has presented the gradient-domain single image
depth estimation method using large scale RGB-D images,
where depth gradients are sampled based on the visual cor-
respondence mechanism. The locally-aligned depth gradient
sampling strategy allows one to synthesize a plausible depth
gradient field by accurately identifying good gradient samples
from nearest neighbor training images. We have showed that
the depth gradient serves as a better cue for data-driven
depth inference. Our depth gradient aggregation approach is
beneficial to dealing with various training range images in-
volving substantial appearance and geometric variations. More
importantly, our method is less dependent on the appearance-
depth correlation assumption strictly imposed on previous
methods, and thus is capable of estimating scene depth from
limited training data in terms of a variety of scene semantics.
Also, the synergetic combination of the reconstruction method
based on Poisson solver and the edge-aware filter simplifies
the depth inference framework, leading to a faster runtime
efficiency, when compared to previous methods that require
solving complex optimization problems [9], [50].

There are some limitations in our approach, though. First, it
produces the relative depth order only, different from previous
methods. The depth map is obtained by solving the Poisson
equations. Thus, the reconstructed depth map has the scale
ambiguity. However, we would like to point out that our
primary goal is to estimate relative depth orderings, rather
than absolute depth values. Actually, the effect of the scale
ambiguity may vary depending on what applications the depth
map is used for. For example, in virtual view synthesis [51],
[52], the depth ordering is a more important factor than the
depth value itself. Second, our method is unable to produce
convincing results when an input image contains repeated
textures as in Fig. 14. Our transfer model is established on
the locally-aligned sampling strategy. Specifically, the patches
from repeated textures in the input image are likely to be
matched to a single patch in one of the training dataset. Then,
the same depth gradient value obtained from the matched
training data is assigned to these repetitive textures. This may
cause gradient-like depth structures as in Fig. 14(b), since
depth gradients in these regions monotonically increase or
decrease.
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