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Abstract—This paper proposes a generic framework that
enables a multiscale interaction in the cost aggregation step
of stereo matching algorithms. Inspired by the formulation
of image filters, we first reformulate cost aggregation from a
weighted least-squares (WLS) optimization perspective and show
that different cost aggregation methods essentially differ in the
choices of similarity kernels. Our key motivation is that while
the human stereo vision system processes information at both
coarse and fine scales interactively for the correspondence search,
state-of-the-art approaches aggregate costs at the finest scale of
the input stereo images only, ignoring inter-consistency across
multiple scales. This motivation leads us to introduce an inter-
scale regularizer into the WLS optimization objective to enforce
the consistency of the cost volume among the neighboring scales.
The new optimization objective with the inter-scale regularization
is convex, and thus, it is easily and analytically solved. Minimizing
this new objective leads to the proposed framework. Since the reg-
ularization term is independent of the similarity kernel, various
cost aggregation approaches, including discrete and continuous
parameterization methods, can be easily integrated into the
proposed framework. We show that the cross-scale framework is
important as it effectively and efficiently expands state-of-the-art
cost aggregation methods and leads to significant improvements,
when evaluated on Middlebury, Middlebury Third, KITTI, and
New Tsukuba data sets.
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I. INTRODUCTION

STABLISHING dense correspondence between two
images is one of the most important problems in com-
puter vision [19]. When it comes to the case of using two
images taken at the same scene, the dense correspondence
task becomes the well-known stereo matching problem [33].
A stereo matching algorithm generally takes four steps:
1) cost computation; 2) cost (support) aggregation; 3) disparity
computation; and 4) disparity refinement [33]. In the cost
computation, a 3D cost volume (also known as the disparity
space image [33]) is generated by computing matching costs
for each pixel at all possible disparity levels. In the cost
aggregation, the costs are then aggregated, which enforces
piecewise coherency of a resultant disparity map, over the
support region of each pixel. Then, disparity for each pixel
is computed with local or global optimization methods and
refined by various postprocessing methods in the last two
steps, respectively. Among these steps, the quality of cost
aggregation has a significant impact on the success of stereo
algorithms. It is a key ingredient for state-of-the-art local
algorithms [4], [24], [29], [44], [47] and a primary building
block for some top-performing global algorithms [42], [45].
In this paper, we primarily concentrate on cost aggregation.
Most cost aggregation methods can be viewed as joint
filtering over the cost volume [29]. Actually, even simple linear
image filters such as box or Gaussian filter can be used for
cost aggregation, but as isotropic diffusion filters, they tend to
blur the depth boundaries [33]. To avoid such oversmoothing
artifacts, a number of edge-preserving filters such as bilateral
filter (BF) [39] and guided image filter [13] were introduced
for cost aggregation. Yoon and Kweon [47] adopted the
BF into cost aggregation, which generated appealing disparity
maps on the Middlebury data set [33]. However, their method
is computationally expensive due to a straightforward aggre-
gation over a large kernel size (e.g., 35 x 35). To address
the computational limitation of the BF, Rhemann et al. [29]
introduced the guided image filter into cost aggregation, whose
computational complexity is independent of the kernel size.
Recently, Yang [44] proposed a nonlocal (NL) cost aggrega-
tion method, which extends the kernel size to the entire image.
By computing a minimum spanning tree (MST) over the image
graph, the NL cost aggregation can be performed extremely
fast. Mei et al. [24] extended the NL cost aggregation idea by
constructing the MST over the segment graph instead of the
image graph, and they showed that better disparity maps are
obtained.
All these state-of-the-art cost aggregation methods have
made great contributions to stereo vision. A common property
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Fig. 1. Cross-scale cost aggregation. Top-left: enlarged view of a scan-line subsegment from Middlebury [33] Teddy stereo pair. Top-right: cost
volumes ({CS}SS 0) after cost computation at different scales, where the intensity + gradient cost function is adopted as in [24], [29], and [44]. The horizontal

axis x indicates different pixels along the subsegment, and the vertical axis L represents different disparity labels. The red line indicates disparity generated by
current cost volume while the green line is the ground truth. Bottom-right: cost volumes after applying different cost aggregation methods at the finest scale

(from top to bottom: NL [44], ST [24], BF [47], and GF [29]). Bottom-left: cost volumes after integrating different methods into our cross-scale cost aggregation

framework, where cost volumes at different scales are adopted for aggregation. (Best viewed in color.)

of these methods is that costs are aggregated at the finest
scale of the input stereo images. However, human beings
generally process stereoscopic correspondence across multiple
scales [22], [23], [25]. According to [22], information at coarse
and fine scales is processed interactively in the correspondence
search of the human stereo vision system. Thus, from this
bioinspiration, it is reasonable that costs should be aggregated
across multiple scales rather than the finest scale as done in
conventional methods (Fig. 1).

In this paper, a general cross-scale cost aggregation frame-
work is proposed. First, inspired by the formulation of image
filters in [26], we show that various cost aggregation methods
can be uniformly formulated as weighted least-squares (WLS)
optimization problems. Then, from this unified optimization
perspective, by adding a generalized Tikhonov regularizer into
the WLS optimization objective, we enforce the consistency of
the cost volume among the neighboring scales, i.e., inter-scale
consistency. The new optimization objective with inter-scale
regularization is convex and can be easily and analytically
solved. As conventional cost aggregation methods can preserve
the intra-scale consistency of the cost volume, many of them
can be integrated into our framework to generate more robust
cost volumes and better disparity maps.

Fig. 1 shows the effect of the proposed framework. Slices
of the cost volumes of four representative cost aggrega-
tion methods, including the NL method [44], the segment
tree (ST) method [24], the BF method [47], and the guided
filter (GF) method [29], are visualized. We use red dots to

denote disparities generated by local winner-take-all (WTA)
optimization in each cost volume and green dots to denote
ground truth disparities. It can be found that more robust
cost volumes and more accurate disparities are produced by
adopting cross-scale cost aggregation. Extensive experiments
on Middlebury [33], Middlebury Third [30], KITTI [9], and
New Tsukuba [28] data sets also reveal that better disparity
maps can be obtained using cross-scale cost aggregation.

We extend our preliminary work [49] by applying our
framework into the patch match (PM) stereo algorithm [4],
and then evaluate this new method (named S + PM) on
various stereo benchmarks. The PM stereo method adopts
continuous parameterization for the solution space, unlike
existing cost aggregation approaches based on the piece-
wise constant assumption, thus alleviating staircase artifacts
on slanted surfaces. The disparity labeling task is defined
with continuous plane parameters, and the randomized search
algorithm, introduced by the original PM algorithm [3], is
employed to efficiently traverse such an infinite continuous
solution space. In short, the PM stereo performs the cost
aggregation (e.g., using the BF) on only a subset of label
candidates, while conventional local stereo approaches should
perform the cost aggregation on all (discretized) label candi-
dates. It should be noted that in the PM stereo [4], the subset of
label candidates varies for each pixel. We will show that our
framework is also applicable to the PM stereo method with
spatially varying, partial label hypotheses, and substantially
improves its disparity accuracy.
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In summary, the contributions of this paper are threefold:

1) a unified WLS formulation of various cost aggregation
methods, including discrete and continuous parameteri-
zation methods, from an optimization perspective;

2) a novel and effective cross-scale cost aggregation

framework;

3) quantitative evaluation of representative cost aggregation

methods on four data sets.

The remainder of this paper is organized as follows.
In Section II, we summarize the related work. The WLS
formulation for cost aggregation is given in Section III. Our
inter-scale regularization is described in Section IV. Then we
detail the implementation of our framework in Section V and
the formulation of cross-scale PM stereo is also shown in
this section. Finally, the experimental results and analyses are
presented in Section VI and the conclusive remarks are made
in Section VII.

II. RELATED WORK

Recent surveys [11], [16], [40] give sufficient comparison
and analysis for various cost aggregation methods. We refer
the reader to these surveys to get an overview of different cost
aggregation methods and we will focus on stereo matching
methods involving multiscale information, which are very
relevant to our idea but have substantial differences.

Early researchers of stereo vision adopted the coarse-to-
fine (CTF) strategy for stereo matching [23]. Disparity of
a coarse resolution was assigned first, and coarser disparity
was used to reduce the search space for calculating finer
disparity. This CTF (hierarchical) strategy has been widely
used in global stereo methods. Van Meerbergen er al. [41]
adopted the CTF strategy in dynamic programming, where
the disparity map of a coarser scale is used as offset
disparity map at a finer scale. Hermann and Klette [14]
proposed to calculate a disparity map from half-resolution
images and used this disparity map to restrict the disparity
search space for full-resolution semiglobal stereo matching.
Felzenszwalb and Huttenlocher [7] used the CTF strategy to
reduce the number of message passing iterations in belief
propagation and Yang er al. [45] adopted the same belief
propagation approach in their algorithm. Other global methods
like simulated annealing [6] and partial-differential-equation-
based approach [2] also utilize the CTF strategy for the
purpose of accelerating convergence and avoiding unexpected
local minima.

Not only global methods but also local methods adopt the
CTF strategy. Yang and Pollefeys [46] improved traditional
sum-of-square-differences (SSD) dissimilarity measure by
combining SSD measurements for windows of different
sizes, which can achieve real-time performance on GPU.
Hu et al. [17] proposed to reduce the search space of
local stereo matching by introducing a candidate set from
disparities of neighboring pixels of the corresponding coarser
scale pixel. Jen et al. [18] introduced an adaptive scale
selection mechanism by convolving the surface prior image
with a Laplacian of Gaussian kernel. The scale selection results
helped to determine the starting scale level for CTF approach.
Magarey and Dick [21] adopted the CTF framework

967

based on the complex discrete wavelet transform.
Sizintsev [35] proposed to perform CTF stereo matching
in a generalization of the Laplacian pyramid to solve the
problem of poor recovery of thin structures—a common
drawback of CTF approach [36]. Tang er al. [38] proposed
a robust multiscale stereo matching algorithm to handle
fundus images with radiometric differences. They invented
the multiscale pixel feature vector and performed matching
in the neighboring scales to generate a disparity map in each
scale. The main purpose of adopting the CTF strategy in local
stereo methods is to reduce the search space [17], [18] or
take the advantage of multiscale related image representati-
ons [35], [38], [46]. However, there is one exception in
local CTF approaches. Min and Sohn [27] modeled the cost
aggregation by anisotropic diffusion and solved the proposed
variational model efficiently by the multiscale approach. The
motivation of their model is to denoise the cost volume which
is very similar to our model, but our method enforces the
inter-scale consistency of cost volumes by regularization.

Overall, most CTF approaches share a similar property.
They explicitly or implicitly model the disparity evolution
process in the scale space [38], i.e., disparity consistency
across multiple scales. Different from previous CTF methods,
our method models the evolution of the cost volume in the
scale space, i.e., cost volume consistency across multiple
scales. From the optimization perspective, CTF approaches
narrow down the solution space by considering a subset
of the disparity search range in different scales, while our
method does not alter the solution space but adds inter-scale
regularization into the optimization objective. Thus, incorpo-
rating multiscale prior by regularization is the originality of
our approach. Another point worthy of mentioning is that
local CTF approaches perform no better than state-of-the-art
cost aggregation methods [17], [18], while our method
shows significant improvements over those cost aggregation
methods [24], [29], [44].

After publication of the conference version of [49],
Tan et al. [37] proposed a multiscale cost aggregation approach
which is conceptually similar to ours. A key difference is
that they employ a soft fusion scheme based on a min
convolution [8], which iteratively aggregates costs from dif-
ferent scales. It is worth noting that their computational com-
plexity is larger than ours due to the min convolution operator.

III. COST AGGREGATION AS OPTIMIZATION

In this section, we show that the cost aggregation can
be formulated as a WLS optimization problem. Under this
formulation, different choices of similarity kernels [26] in
the optimization objective lead to different cost aggregation
methods.

First, the cost computation step is formulated as a function
f: RWxHX3 o RWxHX3 |, RWxHXL ywhere W and H
are the width and height of input images, 3 represents color
channels, and L denotes the number of disparity levels. Thus,
for a stereo color pair: LT € RW*H>x3 by applying cost
computation

C=/LI) e
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we can get the cost volume C € RW>*H#*L which represents

matching costs for each pixel at all possible disparity levels.
For a single pixel i = (x;, y;), where x; and y; are pixel
locations, its cost at the disparity level / can be denoted as
a scalar, C(i,/). Various methods can be used to compute
the cost volume. For example, the intensity + gradient cost
function [24], [29], [44] can be formulated as

C@, 1) = (1 —a) - min(|IG) = Y@l 71)
+a - min(||V,IG@) — VI @), 22). )

Here, I(i) denotes the color vector of the pixel i. V, is the
grayscale gradient in the x-direction. i; is the corresponding
pixel of i with a disparity /, i.e., i = (x; — [, y;). o balances
the color and gradient terms and 7; and 7 are truncation
values.

The cost volume C is typically very noisy (Fig. 1). Inspired
by the WLS formulation of the denoising problem [26], the
cost aggregation can be formulated with the noisy input C as

~ 1 .. .
CGi, 1) = argmin — > K, j)le = CGLOIP (3)
N Lien;

where N; defines a neighboring system of i. K(i, j) is
the similarity kernel [26], which measures the similarity
between pixels i and j, and C is the (denoised) cost volume.
Zi=> jen, K (i, j) is a normalization constant. The solution

of this WLS problem is

CGi, 1) = Zi > K, )CU. D). “)

L jen;

Thus, like image filters [26], a cost aggregation method
corresponds to a particular instance of the similarity kernel.
For example, the BF method [47] adopted the spatial and
photometric distances between two pixels to measure the
similarity, which is the same as the kernel function used in
the BF [39]. Rhemann et al. [29] (GF) adopted the kernel
defined in the GF [13], whose computational complexity is
independent of the kernel size. The NL method [44] defined
a kernel based on a geodesic distance between two pixels
in a tree structure. This approach was further enhanced by
making use of color segments, called an ST approach [24].
A major difference between filter-based [29], [47] and
tree-based [24], [44] aggregation approaches is the action
scope of the similarity kernel, i.e., N; in (4). In filter-based
methods, N; is a local window centered at i, but in tree-based
methods, N; is a whole image. Fig. 1 visualizes the effect of
different action scopes. The filter-based methods hold some
local similarity after the cost aggregation, while tree-based
methods tend to produce hard edges between different regions
in the cost volume.

After showing that representative cost aggregation methods
can be formulated within a unified framework, let us recheck
the cost volume slices in Fig. 1. The slice, coming from
Teddy stereo pair in the Middlebury data set [34], consists of
three typical scenarios: 1) low-texture; 2) high-texture; and
3) near textureless regions (from left to right). The four
state-of-the-art cost aggregation methods all perform very well

Cross-Scale
Cost Aggregation

[

Ve

— intra-scale consistency
X +--» inter-scale consistency

Fig. 2. Flowchart of cross-scale cost aggregation. {CS}SS

utilizing a set of input cost volumes, {C* }520’ together. Corresponding
variables {is}f:O, { j“}f:O, and {l“}f:O are visualized. The blue arrow rep-
resents an intra-scale consistency (commonly used in the conventional cost
aggregation approaches), while the green dashed arrow denotes an inter-scale
consistency. (Best viewed in color.)

o is obtained by

in the high-texture area, but most of them fail in either low-
texture or near textureless regions. To yield highly accu-
rate correspondence in those low-texture and near textureless
regions, the correspondence search should be performed at the
coarse scale [25]. However, under the formulation of (3), costs
are always aggregated at the finest scale, making it impossible
to adaptively utilize information from multiple scales. Hence,
we need to reformulate the WLS optimization objective from
the scale space perspective.

IV. CROSS-SCALE COST AGGREGATION FRAMEWORK

It is obvious that directly using (3) to tackle multiscale cost
volumes is equivalent to performing cost aggregation at each
scale separately. First, we add a superscript s to C, and denote
the cost volumes at different scales of a stereo pair as C*,
where s € {0, 1,..., S} is the scale parameter. C represents
the cost volume at the finest scale. The multiscale cost volume
C* is computed using the downsampled images with a factor
of #*. Note that this approach also reduces the search range
of the disparity. The multiscale version of (3) can be easily
expressed as

S
_ . 1 y .
V=argmind —o > K@ I - CGLOP O)

()5 s=0 71 jseN

Here, Z} = zjseNis
{i S}fzo and {ls}§:O denote a sequence of corresponding vari-
ables at each scale (Fig. 2), where i® denotes a single pixel at
scale s and [® represents the disparity level. The relationships
of these variables across different scales are i**! = i*/y and
ls+1 — IS/’,]

N;s is a set of neighboring pixels at the sth scale. In our
work, the size of N;s remains the same for all the scales to
enforce more smoothing at the coarser scale.

We use the vector v = [C0i0,1%),CIGL 1Y, ...,
CS@i5,19)]" with S + 1 components to denote the aggregated

K (i, j%) is a normalization constant.
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cost at each scale. The solution of (5) is obtained by perform-
ing cost aggregation at each scale independently as follows:

vs, C5 (i, 15) = zis > K@, jHCGLE). (6)
¥ jSeN;s

Previous CTF approaches typically constrain the disparity
search space at the current scale using a disparity map esti-
mated from the cost volume at the coarser scale, which often
provokes the loss of small disparity details. Alternatively, we
directly enforce the inter-scale consistency on the cost volume
by adding a generalized Tikhonov regularizer into (5), leading

to the following optimization objective:
Vv = argmin

N
1 5 .
Yoo X K@ - OGP

)5 \s=0 71 jsen
S
+i )l =P @)
=1
where 1 is a constant parameter to control the
amount of regularization. Similar to Vv, the vector
voo= (€060, 10, C N1, ..., C5GS, 19T also  has

S + 1 components to denote the costs at each scale. The
above optimization problem is convex. Hence, we can get the
solution by finding the stationary point of the optimization
objective. Let F ({zs}fzo) represent the optimization objective
in (7). For s € {1,2,...,S — 1}, the partial derivative of F
with respect to z° is

aF 2 .S Ny s S8 N

P Z K@, j) @ = C (5, 1))

JS€N;s
+21(:° =27 =20 = 2%)
=222V (120 =17 =G0, %), (8)

Setting (0F/6z*) = 0 and using steN[S K@ *, j%) = Z,
we get

27T (20 — AT = COG0, ). )

It is easy to get similar equations for s = 0 and s = S.
Thus, we have S + 1 linear equations in total, which can be
expressed concisely as

AV = V. (10)

The matrix A is an (S + 1) x (S 4+ 1) tridiagonal constant
matrix, which can be easily derived from (9). Since A is
tridiagonal, its inverse always exists. Thus

V=413 (11)
The final cost volume is obtained through the adaptive
combination of the results of cost aggregation performed at
different scales. Such an adaptive combination enables the
multiscale interaction of the cost aggregation in the context
of optimization.

Fig. 3 shows the effect of inter-scale regularization. In this
example, without cross-scale cost aggregation, there are many
local minima in the cost vector, yielding erroneous disparity.
Information from the finest scale is not enough to estimate
an accurate disparity, but when the inter-scale regularization
is adopted, useful information from coarse scales reshapes the
cost vector, generating disparity closer to the ground truth.

969

—NL —S+NL —NL-3

e ___

Cost Value

S+NL

Disparity Level

Fig. 3.  Effect of inter-scale regularization. Right: we visualize three cost
vectors (one in coarse scale) of a single pixel [pixel location (295, 49)]
of Teddy stereo pair. The blue line denotes the cost vector computed by
NL method [44]. The green line is the cost vector after applying cross-scale
cost aggregation (S + NL). The cyan line is the cost vector of NL in the
fourth (S = 3) scale, which is interpolated to have a size equal to that of the
finest scale cost vectors. The red cross represents the minimal cost location
for each cost vector and the vertical dashed line denotes the ground truth
disparity. Left: image and disparity patches centering on this pixel are shown.
(Best viewed in color.)

Algorithm 1 Pseudocode for Cross-Scale Cost Aggregation

Input: Stereo Color Image I, T'.

1) Build Gaussian pyramid of input IS, I, s €
{0,1,...,S}.

2) Generate initial cost volume C* for each scale by cost
computation according to Equation (1).

3) Aggregate costs at each scale separately according to
Equation (6) to get cost volume C*.

4) Aggregate costs across multiple scales according to
Equation (11) to get final cost volume Cs.

Qutput: Robust cost volume: CO.

V. IMPLEMENTATION AND COMPLEXITY
A. Scale Space Implementation

To build cost volumes for different scales (Fig. 2), we
need to extract stereo image pairs at different scales. In our
implementation, we choose the Gaussian pyramid [5], which
is a classical representation in the scale space theory. The
Gaussian pyramid is obtained by successive smoothing and
subsampling (7 = 2). One advantage of this representation is
that the image size decreases exponentially as the scale level
increases, and thus the computational cost of cost aggregation
is reduced at the coarser scale exponentially.

One may want to adopt other multiscale representations to
build cost volumes for different scales. During our experi-
ments, we also test the nonlinear scale space utilized in [1].
The quality gain of the nonlinear scale space [1] over the linear
Gaussian pyramid is, however, less than 1%, while it is much
slower than the linear Gaussian pyramid. Thus, we choose to
use the Gaussian pyramid for scale space representation, when
considering both the computational complexity and accuracy
improvement.

B. Computational Complexity

The basic workflow of the cross-scale cost aggregation is
shown in Algorithm 1, in which we can utilize any existing
cost aggregation method at Step 3. Note that the complexity
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analysis explained here is for the methods that employ the
discrete front-parallel formulation for performing cost aggre-
gation, e.g., NL, ST, BF, or GF. The continuous approach
assuming a slanted surface, e.g., cross-scale PM stereo, which
will be explained in Section V-C, may have a different
complexity due to practical implementation issues like the
memory requirement.

The computational complexity of our algorithm using the
discrete front-parallel formulation just increases by a small
constant factor, compared with conventional cost aggrega-
tion methods. Specifically, let us denote the computational
complexity of conventional cost aggregation methods as
O(mWHL), where m differs for different cost aggregation
methods. The number of pixels and disparities at the scale
s is [(WH/4%)] and |(L/2%)], respectively. Thus, the com-
putational complexity of Step 3 increases at most by (1/7),
compared with conventional cost aggregation methods, as
explained in the following:

5 WHL . S mWHLY 8
Z m < lim Z = —mWHL.
8 S—00 85 7

s=0 s=0

(12)

Step 4 involves the inversion of the matrix A with a size of
(S4+ 1) x (S+ 1), but A is a spatially invariant matrix, with
each row consisting of at most three nonzero elements, and
thus its inverse can be precomputed. Also, in (11), the cost
volume at the finest scale, Co(i 0, lO), is used to yield a final
disparity map, and thus we need to compute only

s
OG0, 1% => A0, 9)C G, 1) (13)
s=0
and not ¥ = A~!V. This cost aggregation across multiple

scales requires only a small amount of extra computational
load. In the following section, we will analyze the runtime
efficiency of our method in more detail.

C. Cross-Scale Patch Match Stereo Algorithm

So far, we have studied the cross-scale cost aggregation
using the discrete front-parallel formulation. As mentioned
in Section I, we can also integrate the PM stereo method [4]
with continuous plane parameters into our framework. The key
difference in employing discrete front-parallel and continuous
slanted surfaces lies in the formulation of cost computation
and aggregation.

For conciseness, we just show the continuous version of (2)
and (4). Let us denote the continuous plane parameter as
f = (a,b,c). We first build a cost volume C(i, f) using
I(i), V. I(i), I'(if), and V,I'(if) in a way similar to (2).
Here, iy = (x; — (ax; + by; + ¢), y;) is the corresponding
pixel of i in the right view. Since the x-coordinate of i s lies
in the continuous domain, the original PM stereo method [4]
calculates I'(i y) and V,I'(is) with a linear interpolation. The
aggregated cost Ca, f) is then obtained through the single-
scale cost aggregation using (4). The similarity kernel is
defined with a bilateral kernel K (i, j) = e~ (ITO-IGD/7) g
in [4].

The extension into the multiscale version is similar to the
previous derivation, so we omit its details here. There is,
however, one implementation issue due to the tradeoff between
the memory requirement and computational complexity. To be
specific, in the conventional discrete approaches using the
front-parallel assumption, when the disparity [© = [ is given
at the finest scale, a set of 2D cost slices Cs(is,ls) for
all i (s = 1 ~ § — 1) can be reused to compute the
final cost slice éo(io,lo) at the finest scale. Contrarily, the
PM stereo algorithm evaluates the cost volume C(i, f) only
on the subset consisting of partial disparity hypotheses f,
and this subset varies for each pixel i. Thus, the cross-scale
PM stereo algorithm requires saving a set of 3D cost volumes
Cs(i%, %) for all i* and the partial candidates f* evaluated
(s =0~ S—1), but it is too memory intensive. In our imple-
mentation, we hence decide to recalculate C* @@*, 1), when-
ever the pixel i and the label f* are reached at each scale s.
Therefore, when the computational complexity of single-scale
PM stereo is O(mWHlog(L)) [20], the complexity of cross-
scale PM stereo becomes O(m(S + 1)WHlog(L)) in our
implementation. Actually, this issue is related to a tradeoff
between memory requirement and computational complexity.
A better design choice would be possible, but we reserve this
for future work. In the following section, we will show
that the cross-scale PM stereo method substantially improves
the disparity accuracy on three data sets. Our code of the
PM stereo and cross-scale PM stereo methods is publicly
available.!

VI. EXPERIMENTAL RESULT AND ANALYSIS

In this section, we use Middlebury [33], KITTI [9], and
New Tsukuba [28] data sets to validate that when integrating
state-of-the-art cost aggregation methods, such as BF [47],
GF [29], NL [44], ST [24], and their continuous counterpart
PM stereo method [4], into our framework, there will be
significant performance improvements. Furthermore, we also
implement the simple box filter aggregation method (named
BOX, window size is 7 x 7) to serve as a baseline, which also
becomes very powerful when integrated into our framework.
For NL and ST, we directly use the C++ codes provided
by the authors,>® and thus all the parameter settings are
identical as those used in their implementations. For GF, we
implement our own C++ code by referring to the author-
provided software (implemented in MATLAB)* in order to
process high-resolution images from KITTI and New Tsukuba
data sets efficiently. For BF, we implement the asymmetric
version as suggested by [16]. For the PM stereo method,
we implement our own C++ code by referring to [4]. The
local WTA strategy is adopted to generate a disparity map.
In order to compare different cost aggregation methods fairly,
no disparity refinement technique is employed, unless we
explicitly declare. S is set to 4, i.e., totally five scales are
used in our framework. For the regularization parameter A,

1 https://github.com/rookiepig/CrossScalePatchMatch
2http://www.cs.cityu.edu.hk/~qiyang/publications/cvpr— 12/code/
3 http://xing-mei.net/resource/page/segment-tree.html
4https://www.ims.tuwien.ac.aﬂpublications/tuw—202()88
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Fig. 4. Disparity maps of Teddy for all cost aggregation methods (with no disparity refinement techniques). The non-occ error rate is shown in each subtitle,
where the absolute disparity error is larger than 1. Red indicates all error. Green indicates non-occ error and blue indicates disc error. (Best viewed in color.)
(a) BOX (14.23%). (b) NL (8.60%). (c) ST (9.78%). (d) BF (10.24%). (e) GF (8.25%). (f) S + BOX (11.18%). (g) S + NL (5.74%). (h) S + ST (6.22%).

(i) S + BF (8.17%). (j) S + GF (6.99%).

we set it to 0.3 for the Middlebury data set, and 1.0 on the
KITTI and New Tsukuba data sets for more regularization,
considering these two data sets contain a large portion of
textureless regions.

A. Middlebury Dataset

The Middlebury benchmark [34] is a de facto standard
for comparing existing stereo matching algorithms. In the
benchmark [34], four stereo pairs (Tsukuba, Venus, Teddy,
and Cones) are used to rank more than 100 stereo matching
algorithms. In our experiment, we adopt these four stereo pairs.
In addition, we use Middlebury 2005 [32] (6 stereo pairs)
and Middlebury 2006 [15] (21 stereo pairs) data sets, which
involve more complex scenes. Thus, we have 31 stereo pairs in
total, denoted as M31. It is worth mentioning that during our
experiments, all local cost aggregation methods perform rather
badly [error rate of nonocclusion (non-occ) area is more than
20%] in four stereo pairs from the Middlebury 2006 data set,
i.e., Middl, Midd2, Monopoly, and Plastic. A common prop-
erty of these four stereo pairs is that they all contain large tex-
tureless regions, making local stereo methods fragile. In order
to alleviate bias toward these four stereo pairs, we exclude
them from M3] to generate another collection of stereo
pairs, which we call M27. We evaluate all methods on both
M31 and M27 (Table I). We adopt the intensity + gradient
cost function in (2), which is widely used in state-of-the-art
cost aggregation methods [24], [29], [44].

In Table I, we show the average error rates of non-occ
regions for different discrete cost aggregation methods on both
M31 and M27 data sets. We use the prefix S+ to denote the
integration of existing cost aggregation methods into the cross-
scale cost aggregation framework. Avg Non-occ is an average
percentage of bad matching pixels in non-occ regions, where
the absolute disparity error is larger than 1. The results are
encouraging: all cost aggregation methods see an improvement
when using cross-scale cost aggregation, and even the simple
BOX method becomes very powerful (comparable with state

TABLE I

QUANTITATIVE EVALUATION OF COST AGGREGATION METHODS ON
MIDDLEBURY DATASET. PREFIX S+ DENOTES OUR CROSS-SCALE
COST AGGREGATION FRAMEWORK. FOR RANK PART (COLUMN
4~5), DISPARITY RESULTS WERE REFINED WITH THE SAME
DISPARITY REFINEMENT TECHNIQUE [44]

Method Avg Non-occ(%) Avg Avg Time
M31 M27 Rank  Err(%) (s)
BOX 15.45 10.7 59.6 6.2 0.11
S+BOX | 13.09 8.55 51.9 5.93 0.15
NL [44] | 12.22 9.44 41.2 5.48 0.29
S+NL 11.49 8.73 39.4 5.2 0.37
ST [24] 11.52 8.95 31.6 5.35 0.2
S+ST 10.51 8.07 27.9 4.97 0.29
BF [47] | 12.26 8.77 48.1 5.89 60.53
S+BF 10.95 8.04 40.7 5.56 70.62
GF [29] 10.5 6.84 40.5 5.64 1.16
S+GF 9.39 6.20 37.7 5.51 1.32

of the art on M27) when using cross-scale cost aggregation.
Disparity maps of Teddy stereo pair for all these methods are
shown in Fig. 4, while others are shown in the supplementary
material due to space limit.

Furthermore, to follow the standard evaluation metric of the
Middlebury benchmark [34], we show each cost aggregation
method’s rank on the website (evaluated at October 2013)
in Table I. Avg Rank and Avg Err indicate the average rank
and error rate measured using Tsukuba, Venus, Teddy, and
Cones images [34]. Here, each method is combined with the
state-of-the-art disparity refinement technique from [44] (for
ST [24], we list its original rank reported in the Middlebury
benchmark [34], since the same results were not reproduced
using the author’s C+4++ code). The rank also validates the
effectiveness of our framework. We also report the running
time for Tsukuba stereo pair on a PC with a 2.83-GHz CPU
and 8 GB of memory. As mentioned before, the computational
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Disparity maps of Motorcycle from the third version of the Middlebury stereo evaluation for all cost aggregation methods. Disparity maps are

visualized using HSV colormap. The non-occ error rate is shown in each subtitle, where the absolute disparity error is larger than 1. (Best viewed in color.)
(a) Left image. (b) BOX (12.74%). (c) NL (11.03%). (d) ST (13.31%). (e) BF (12.26%). (f) GF (7.21%). (g) PM (12.18%). (h) Right image.
(i) S + BOX (9.26%). (j) S + NL (8.96%). (k) S 4+ ST (10.61%). (1) S + BF (10.76%). (m) S + GF (6.66%). (n) S + PM (9.42%).

TABLE I

QUANTITATIVE EVALUATION OF PM AND S + PM ON
MIDDLEBURY DATASET. FOR RANK PART (COLUMN 4~5),
ERROR THRESHOLD IS 0.5, WHICH CAN REFLECT SUBPIXEL
DISPARITY ACCURACY [4] DIFFERENT FROM THAT OF
TABLE I, WHERE ERROR THRESHOLD Is 1.0.

AS MENTIONED BEFORE, WE DO NOT SAVE
A SET OF 3D COST VOLUMES. THUS,
COMPUTATIONAL COMPLEXITY OF
S + PM Is ABOUT S TIMES
LARGER THAN THAT OF PM

Method Avg Non-occ(%) Avg Avg Time
M31 M27 Rank  Err(%) (s)

PM [4] 11.92 7.29 244 9.91 61.32

S+PM 10.10 6.25 18.8 9.32 226.66

overhead is relatively small. To be specific, it consists of the
cost aggregation of (o3 (s €{0,1,...,S}) and the computation
of (13).

We show the evaluation results of PM and S + PM on the
Middlebury data set in a separate table (Table II) since their
rank results are based on a different error threshold. In Table II,
we adopt the postprocessing methods of the PM method to
get the rank results and the running time for Tsukuba pair
is reported. As can be seen from the table, cross-scale cost
aggregation improves PM stereo in all evaluation metrics, but
as mentioned before, the computational complexity of S + PM
is about § 4 1 times larger than that of the conventional
PM method.

Finally, the third version of the Middlebury stereo evaluation
has been released recently [30], [31]. The new benchmark
provides 30 stereo image pairs which are split into test and
training sets with 15 image pairs each. The new image pairs
contain more complex scenes and take the effect of rectifica-
tion error and radiometric changes into account, providing a
more challenging benchmark than the previous one. We eval-
vate all the cost aggregation methods on the training set of
the new benchmark, where we adopt the quarter resolution
input and the error threshold is 1. The evaluation results
are shown in Table III. Again all cost aggregation methods
are improved with cross-scale cost aggregation. Cross-scale
cost aggregation can consistently improve all cost aggregation

TABLE III

QUANTITATIVE EVALUATION OF COST AGGREGATION METHODS ON
THIRD VERSION OF MIDDLEBURY STEREO EVALUATION.
PREFIX S+ DENOTES OUR CROSS-SCALE
COST AGGREGATION FRAMEWORK

Method | Avg Non-occ (%)
BOX 32.18
S+BOX 26.59
NL [44] 24.46
S+NL 21.31
ST [24] 25.26
S+ST 22.27
BF [47] 24.87
S+BF 21.34
GF [29] 21.54
S+GF 21.34
PM [4] 30.19
S+PM 24.60

methods’ error rate by at least 3%, which can help to get better
performance on this more challenging evaluation benchmark.
Disparity maps of all methods on the Motorcycle stereo pairs
from this data set are shown in Fig. 5.

B. KITTI Dataset

The KITTI data set [9] contains 194 training image pairs and
195 test image pairs for evaluating stereo matching algorithms.
For the KITTI data set, image pairs are captured under
the real-world illumination condition and almost all image
pairs have a large portion of textureless regions, e.g., walls
and roads [9]. During our experiments, we use the whole
194 training image pairs with ground truth disparity maps
available. The evaluation metrics are the same as the KITTI
benchmark [10] with an error threshold 3. Besides, since BF is
too slow for high-resolution images (requiring more than one
hour to process one stereo pair), we omit BF from evaluation.

Considering the illumination variation on the KITTI data
set, we adopt census transform [48], which is proved to be
powerful for robust optical flow computation [12]. We show
the performance of different methods when integrated into
cross-scale cost aggregation in Table IV. Some interesting
points are worth noting. First, for BOX, GF, and PM, there



ZHANG et al.: CROSS-SCALE COST AGGREGATION FOR STEREO MATCHING

973

(a)
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Fig. 6. Disparity maps of frame No. 83 in KITTI training pairs. First row: left and right images. Disparity maps are visualized using HSV colormap and
evaluation results are shown in each subtitle. Left to right: the evaluation metrics are percentage of erroneous pixels in nonoccluded areas, percentage of
erroneous pixels in all areas, average disparity error in nonoccluded areas, and average disparity error in all areas. Note how the road and car regions are
improved by cross-scale cost aggregation. (a) No. 83 left image. (b) No. 83 right image. (c) BOX (26.84% 27.74% 14.50 px 15.21 px). (d) S + BOX
(16.52% 17.54% 4.93 px 5.81 px). (e) NL (28.71% 29.58% 4.04 px 5.01 px). (f) S + NL (26.87% 27.76% 3.44 px 4.42 px). (g) ST (28.96% 29.83%
4.31 px 5.24 px). (h) S + ST (28.12% 29.00% 3.57 px 4.53 px). (i) GF (16.04% 17.07% 5.08 px 5.95 px). (j) S + GF (13.99% 15.04% 2.92 px 3.86 px).
(k) PM (13.62% 14.68% 3.99 px 4.81 px). () S + PM (12.23% 13.31% 2.57 px 3.4 px).

are significant improvements when using cross-scale cost
aggregation. Again, like on the Middlebury data set, the
simple BOX method becomes very powerful using cross-scale
cost aggregation. However, for S + NL and S + ST, their

performances are almost the same as those without cross-
scale cost aggregation, which are even worse than that of
S 4+ BOX. This may be due to the NL property of tree-based
cost aggregation methods. As shown in Fig. 6, for textureless
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TABLE IV

QUANTITATIVE COMPARISON OF COST AGGREGATION METHODS ON
KITTI DATASET. OUT-NOC: PERCENTAGE OF ERRONEOUS PIXELS IN
NONOCCLUDED AREAS. OUT-ALL: PERCENTAGE OF ERRONEOUS
PIXELS IN TOTAL. AVG-NOC: AVERAGE DISPARITY ERROR IN
NONOCCLUDED AREAS. AVG-ALL: AVERAGE
DISPARITY ERROR IN TOTAL

Method Out-Noc | Out-All | Avg-Noc | Avg-All
BOX 2251 % | 2428 % | 12.18 px | 12.95 px
S+BOX | 12.06 % | 14.07 % | 3.54 px 4.57 px
NL [44] | 24.69 % | 26.38 % | 4.36 px 5.54 px
S+NL 2541 % | 27.08 % | 4.00 px 5.20 px
ST [24] | 24.09 % | 25.81 % 4.31 px 5.47 px
S+ST 2451 % | 2622 % | 3.82 px 5.02 px
GF [29] | 1250 % | 1451 % | 4.64 px 5.69 px
S+GF 9.66 % 11.73 % | 2.19 px 3.36 px
PM [4] 9.11 % 11.19 % | 2.75 px 3.69 px
S+PM 7.09 % 9.21 % 1.58 px 2.50 px

slant planes, e.g., roads, tree-based methods tend to overuse the
piecewise constancy assumption and may generate erroneous
fronto-parallel planes. Thus, even though the cross-scale cost
aggregation is adopted, errors in textureless slanted planes are
not fully addressed. More results using other stereo pairs are
presented in the supplementary material.

C. New Tsukuba Dataset

The New Tsukuba data set [28] contains 1800 stereo pairs
with ground truth disparity maps. These pairs consist of a
1-min photorealistic stereo video, generated by moving a
stereo camera in a computer generated 3D scene. Besides,
there are four different illumination conditions: 1) Daylight;
2) Fluorescent; 3) Lamps; and 4) Flashlight. In our
experiments, we use the Daylight scene, which bears a
challenging real-world illumination condition [28]. Since
neighboring frames usually share similar scenes, we sample
the 1800 frames every second to get a subset of 60 stereo
pairs, which saves the evaluation time. We test both
intensity + gradient and census transform cost functions, and
intensity + gradient cost function gives better results on this
data set. Disparity level of this data set is the same as the
KITTI data set, i.e., 256 disparity levels, making BF [47] too
slow, so we omit BF from evaluation.

Table V shows evaluation results for different cost aggre-
gation methods on the New Tsukuba data set. We use the
same evaluation metrics as the KITTI benchmark [10] (error
threshold is 3). Again, all cost aggregation methods see an
improvement when using cross-scale cost aggregation.

D. Parameters Effect

The key parameter in (7) is the regularization parameter .
By adjusting this parameter, we can control the strength of
inter-scale regularization as shown in Fig. 7. The error rate is
evaluated on M31. When 1 is set to 0, inter-scale regularization
is prohibited, which is equivalent to performing cost aggre-
gation at the finest scale. When regularization is introduced,
there are improvements for all methods. As 4 becomes large,

TABLE V

QUANTITATIVE COMPARISON OF COST AGGREGATION
METHODS ON NEW TSUKUBA DATASET

Method Out-Noc | Out-All | Avg-Noc | Avg-All
BOX 31.08 % | 37.70 % | 7.37 px 10.72 px
S+BOX | 1882 % | 26.50 % | 3.92 px 7.44 px
NL [44] | 21.88 % | 26.72 % | 4.12 px 6.40 px
S+NL 19.84 % | 24.50 % | 3.65 px 5.73 px
ST [24] | 21.68 % | 27.07 % | 4.33 px 7.02 px
S+ST 18.99 % | 24.16 % | 3.60 px 5.96 px
GF [29] | 2342 % | 30.34 % | 6.35 px 9.86 px
S+GF 14.40 % | 21.78 % | 3.10 px 6.38 px
PM [4] 21.53 % | 28.55 % | 7.02 px 9.77 px
S+PM 17.05 % | 21.51 % 3.45 px 4.72 px
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Fig. 7. Effect of varying inter-scale regularization parameter for different
methods.
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Fig. 8. Effect of varying scale numbers for different methods.
the regularization term dominates the optimization, causing
the cost volume of each scale to be purely identical. As a
result, fine details of disparity maps are missing and error rate
increases. One may note that it will generate better results by
choosing different values of A for different cost aggregation
methods, though we use consistent A for all methods.
Another parameter that can influence the accuracy and
running speed of the proposed framework is the scale parame-
ter S. In Fig. 8, we vary the parameter from O to 4 and show
the average error rate on M3 1. It can be seen that when S = 1,
i.e., using two scales, all methods achieved significant quality
improvements compared with the original cost aggregation
methods. As more than two scales are used, the improvements
become rather marginal. The resolution of stereo images from
M31 is about 400 x 300, and thus, under the Gaussian pyramid
representation, coarser scale images (i.e., s > 2) become
too small to produce meaningful estimates. However, for
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stereo images from Middlebury Third version benchmark,
KITTI, and New Tsukuba, the resolution is bigger, and thus
coarser scales can produce meaningful estimates. Considering
the marginal computational overhead introduced using more
scales, we consistently set the scale parameter to 4, i.e., totally
five scales for all data sets.

VII. CONCLUSION

In this paper, we have proposed a cross-scale cost aggrega-
tion framework for stereo matching. This paper is not intended
to present a completely new cost aggregation method that
yields a highly accurate disparity map. Rather, we investigate
the scale space behavior of various cost aggregation methods.
Extensive experiments on three data sets validated the effect of
cross-scale cost aggregation. Almost all methods saw improve-
ments and even the simple box filtering method combined with
our framework achieved very good performance.

Recently, a new trend in stereo vision has been to solve
the correspondence problem in the continuous plane parameter
space rather than in the discrete disparity label space.

We have shown that the cross-scale cost aggregation further
improves the accuracy of the PM stereo method [4]. Along this
direction, it would be valuable to investigate how to integrate
multiscale information into other stereo approaches [20], [43]
that utilize the continuous plane parameters but employ more
complicated data structures, e.g., super-pixel-based represen-
tation. One possible solution is to adopt multiscale super-pixel
segmentation instead of the Gaussian pyramid used in our
approach.
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