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Abstract—Establishing dense correspondences betweenmultiple images is a fundamental task in many applications. However, finding

a reliable correspondence betweenmulti-modal or multi-spectral images still remains unsolved due to their challenging photometric and

geometric variations. In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate

densemulti-modal andmulti-spectral correspondences. Based on an observation that self-similarity existing within images is robust to

imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches

sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The

computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to

address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that effectively

leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a novel

multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding

performance of the DASC andGI-DASC inmany cases of densemulti-modal andmulti-spectral correspondences.

Index Terms—Dense correspondence, descriptor, multi-spectral, multi-modal, edge-aware filtering

Ç

1 INTRODUCTION

RECENTLY, many computer vision and computational
photography problems have been reformulated to over-

come their inherent limitations by leveraging multi-modal
and multi-spectral images. Typical examples of other imag-
ing modalities include near-infrared (NIR) image [1], [2],
depth image [3], and dark flash image [4]. More broadly,
flash and no-flash images [5], blurred images [6], [7], and
images taken under different radiometric conditions [8] can
also be considered as multi-modal [9].

Establishing dense visual correspondences formulti-modal
and multi-spectral images is a key enabler for realizing such
tasks. In general, the performance of correspondence algo-
rithms relies primarily on two components: appearance
descriptor and optimization scheme. Traditional dense corre-
spondence methods for estimating depth [10] or optical flow
[11], [12] fields, inwhich input images are acquired in a similar
imaging condition, have been dramatically advanced in recent
studies. To define a matching fidelity term, they typically

assume that multiple images share a similar visual pattern,
e.g., color, gradient, and structural similarity. However, when
it comes tomulti-spectral andmulti-modal images, such prop-
erties do not hold as shown in Fig. 1, and thus conventional
descriptors or similarity measures often fail to capture reliable
matching evidence. This leads to a poor matching quality as
shown in Fig. 2. Furthermore, substantial geometric variations,
which often appear in images captured under wide-baseline
conditions, make the matching task even more challenging.
Although employing a powerful optimization technique could
help estimate a reliable solution with a spatial context [14],
[15], [16], an optimizer itself cannot address an inherent limita-
tionwithout suitablematching descriptors [17].

Our method starts from an observation that a local inter-
nal layout of self-similarities is less sensitive to photometric
distortions, even when an intensity distribution of an ana-
tomical structure is not maintained across different imaging
modalities [18]. That is, the local self-similarity (LSS)
descriptor would be beneficial to overcoming inherent limi-
tations of existing descriptors in establishing correspond-
ences between multi-modal or multi-spectral images.
Several approaches based on the LSS have been presented
for multi-modal and multi-spectral image registration [19],
[20], but they do not scale well to estimating dense corre-
spondences for multi-modal and multi-spectral images, and
their matching performance is still poor.

In this paper, we propose a novel local descriptor, called
dense adaptive self-correlation (DASC), designed for estab-
lishing dense multi-modal and multi-spectral correspond-
ences. It is defined with a series of patch-wise similarities
within a local support window. The similarity is computed
with an adaptive self-correlation (ASC) measure, which
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encodes an intrinsic structure while providing the robust-
ness against modality variations. To further improve the
matching quality and runtime efficiency, we propose a ran-
domized receptive field pooling strategy using sampling
patterns that select two patches within the local support
window. A linear discriminative learning is employed for
obtaining an optimal sampling pattern. The computational
redundancy that arises when computing densely sampled
descriptors over an entire image is dramatically reduced by
applying fast edge-aware filtering [21].

Furthermore, in order to address geometric variation
problems, we propose the geometry-invariant DASC (GI-
DASC) descriptor that leverages the efficiency and effective-
ness of the DASC through a superpixel-based representa-
tion. Specifically, we infer an initial geometric field with
corresponding scale and rotation of reliable sparse key-
points obtained using weighted maximally self-dissimilar-
ity (WMSD), and then propagate the initial geometric field
on a superpixel graph. After transforming sampling pat-
terns according to geometric fields on each superpixel, the
DASC is efficiently computed with the transformed sam-
pling patterns on each superpixel extended subimage.
Compared to conventional geometry-invariant methods
[22], [23], which have been focusing on employing powerful
optimization schemes, the GI-DASC provides geometric
and photometric robustness on the descriptor itself.

Experimental results show that the DASC outperforms
conventional area-based and feature-based approaches on
various benchmarks including modality variations; (1) Mid-
dlebury stereo benchmark containing illumination and expo-
sure variations [24], (2) multi-modal and multi-spectral
dataset including RGB-NIR images [1], [9], different expo-
sure [8], [9], flash-noflash images [8], blurry images [6], [7],
and RGB-depth images [9], (3) non-rigid deformation bench-
mark [25], and (4) MPI optical flow benchmark containing
specular reflections, motion blur, and defocus blur [11]. We
also show that the GI-DASC outperforms existing geometry-
invariant methods on a novel multi-modal benchmark.

1.1 Contribution

The contributions of this paper can be summarized as
follows. First, to the best of our knowledge, our approach
is the first attempt to design an efficient, dense descriptor
for matching multi-modal and multi-spectral images, even
under varying geometric conditions. Second, unlike a center-
biased dense max pooling, we propose a randomized recep-
tive field poolingwith sampling patterns optimized via a dis-
criminative learning, making the descriptor more robust to
matching outliers incurred by different imaging modalities.
Third, we propose an efficient computational scheme
that significantly improves the runtime efficiency of the pro-
posed dense descriptor. Fourth, a geometry-invariant dense
descriptor is also proposed, which provides a geometric
robustness as a descriptor itself.

This manuscript extends its preliminary version [26]. It
newly adds (1) a scale and rotation invariant extension
of the DASC, called GI-DASC; (2) a newmulti-modal bench-
mark with a ground truth annotation, captured under
varying photometric and geometric conditions; and (3) an
intensive comparative study with existing geometry invari-
ant methods using various datasets. The source code of our
work (including DASC and GI-DASC) and the new multi-
modal benchmark are available at our project webpage [27].

2 RELATED WORK

2.1 Feature Descriptors

As a pioneering work, the scale invariant feature transform
(SIFT) was first introduced by Lowe [28] to estimate robust
sparse feature correspondence under geometric and photo-
metric variations. Based on the intensity comparison, fast
binary descriptors, such as binary robust independent ele-
mentary features (BRIEF) [29] and fast retina keypoint
(FREAK) [30], have been proposed. Unlike these sparse
descriptors, Tola et al. developed a dense descriptor, called
DAISY [13], which re-designs conventional sparse descrip-
tors, i.e., SIFT, to efficiently compute densely sampled
descriptors over an entire image.Although these conventional
gradient-based and intensity comparison-based descriptors
show satisfactory performance for small photometric defor-
mation, they cannot properly describe multi-modal and

Fig. 2. Examples of matching cost comparison. Multi-spectral RGB and
NIR images have locally non-linear deformation as depicted in A, B,
and C. Matching costs computed with different descriptors along A, B,
and C’s scan-lines are plotted in (c)-(e). Unlike conventional descriptors,
the proposed DASC descriptor yields a reliable global minimum.

Fig. 1. Some challenging multi-modal and multi-spectral images such
as (from top to bottom) RGB-NIR, flash-noflash images, two images
with different exposures, and blur-sharp images. The images in the
third and fourth column are the results obtained by warping images in
the second column to images in the first column with dense correspon-
dence maps estimated by using DAISY [13] and our DASC descriptor,
respectively.
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multi-spectral images that often exhibit severe non-linear
deformation.

To estimate correspondences in multi-modal and
multi-spectral images, some variants of the SIFT have
been developed [31], but these gradient-based descriptors
have an inherent limitation similar to the SIFT, especially
when an image gradient varies across different modality
images. Simo-Serra et al. proposed the deformation
and light invariant (DaLI) descriptor [25], but it has a dif-
ficulty in providing dense descriptors due to its heavy
computational time. Schechtman and Irani introduced the
LSS descriptor [18] for the purpose of template matching,
and achieved impressive results in object detection and
retrieval. Torabi et al. employed the LSS as a multi-spec-
tral similarity metric to register human region of interests
(ROIs) [20]. The LSS also has been applied to the registra-
tion of multi-spectral remote sensing images [32]. For
multi-modal medical image registration, Heinrich et al.
proposed a modality independent neighborhood descrip-
tor (MIND) [19] inspired by the LSS. However, none of
these approaches scale very well to dense matching tasks
for multi-modal and multi-spectral images due to a low
discriminative power and a huge complexity.

Recently, several approaches started to employ deep
convolutional neural networks (CNNs) [33] for estimating
correspondences. For designing explicit, discriminative
feature descriptors, intermediate activations from CNN
architecture are extracted [34], [35], [36], [37], and they
have been shown to be effective for patch-level tasks.
However, even though CNN-based descriptors encode a
discriminative structure with a deep architecture, they
have inherent limitations in multi-modal images, since
they use shared convolutional kernels across images
which lead to inconsistent responses similar to conven-
tional descriptor [37], [38]. Furthermore, they are unable
to provide dense descriptors in the image due to a pro-
hibitively high computational complexity.

2.2 Area-Based Similarity Measures

As surveyed in [39], the mutual information (MI), leverag-
ing the entropy of the joint probability distribution function
(PDF), has been popularly applied to a registration of multi-
modal medical images. However, the MI is sensitive to local
radiometric variation since it formulates the intensity varia-
tion in a global manner using the joint entropy computed
over an entire image. In [40], this issue can be alleviated to
some extent by leveraging a locally adaptive weight
obtained from SIFT matching, called MI+SIFT in this paper,
but its performance is still limited against the multi-modal
variation [41]. Although cross-correlation based methods
such as an adaptive normalized cross-correlation (ANCC)
[42] show satisfactory results for locally linear variations,
they show a limitation under severe modality variations.
Irani et al. employed the cross-correlation on the Laplacian
energy map for measuring multi-sensor image similarity
[43], but it also shows a limitation for general image match-
ing tasks. A robust selective normalized cross-correlation
(RSNCC) [9] was proposed for the dense alignment between
multi-modal images, but its performance is still unsatisfac-
tory due to an inherent limitation of intensity based similar-
ity measure.

2.3 Geometry-Invariant Dense Correspondences

Based on the SIFT flow (SF) [14] optimization, many meth-
ods have been proposed to alleviate geometric variation
problems, including deformable spatial pyramid (DSP) [15],
scale-less SIFT flow (SLS) [44], scale-space SIFT flow (SSF)
[45], and generalized DSP (GDSP) [23]. However, they have
a critical limitation as huge computational complexity
derived from dramatically large search space in geometry-
invariant dense correspondence. A generalized PatchMatch
(GPM) [46] was proposed for efficient matching leveraging
a randomized search scheme. The DAISY Filter Flow (DFF)
[22], which exploits DAISY descriptor [13] with PatchMatch
Filter (PMF) [47], was proposed to provide geometric invari-
ance. However, their weak spatial smoothness often induces
mismatched results. The scale invariant descriptor (SID)
[48] was proposed to encode geometric robustness on the
descriptor itself, but it is not tailored to multi-modal match-
ing. Segmentation-aware approach [49] was proposed to
provide geometric robustness for descriptors, e.g., SIFT [28]
or SID [48], but it may have a negative effect on the discrimi-
native power of the descriptor.

3 BACKGROUND

Let us define an image as fi : I ! R for pixel i, where

I � N2 is a discrete image domain. Given the image fi, a

dense descriptor Di : I ! RL is defined on a local support
window Ri centered at pixel i with a feature dimension L.
Conventionally, many descriptors were computed based on
the assumption that there is a common underlying visual
pattern which is shared by two images. However, as shown
in Fig. 2, multi-spectral images such as a pair of RGB-NIR
have a nonlinear photometric deformation even within a
small window, e.g., gradient reverse and intensity order
variation. More seriously, there are outliers including struc-
ture divergence caused by shadow or highlight. In these
cases, conventional descriptors using an image gradient
(SIFT [28]) or an intensity comparison (BRIEF [29]) cannot
capture coherent matching evidences, resulting erroneous
local minima in estimating dense correspondences.

Unlike these conventional descriptors, the LSS descriptor

Dlss
i measures a correlation between two patches F i and F j

centered at two pixels i and jwithin a local support window
Ri [18]. As shown in Fig. 3a, it discretizes the correlation
surface on a log-polar grid, generates a set of bins, and then
stores a maximum correlation value within each bin.

Formally, Dlss
i ¼

S
ld

lss
i;l for l ¼ 1; . . . ; Llss is a Llss � 1 feature

vector, and dlssi;l can be computed as follows:

dlssi;l ¼ max
j2biniðlÞ

fCði; jÞg; (1)

where biniðlÞ ¼ fjjj 2 Ri; rr�1 < ji� jj � rr; ua�1 < ffði� jÞ �
uag with a log radius rr for r 2 f1; . . . ; Nrg and a quantized
angle ua for a 2 f1; . . . ;Nug with r0 ¼ 0 and u0 ¼ 0. In that

case, Llss ¼ Nr �Nu. The correlation surface Cði; jÞ is typically
computed using a simple similarity metric such as the sum of
squared difference (SSD)with a normalization factor ss

Cði; jÞ ¼ exp �SSD F i;F j

� �
=ss

� �
: (2)
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This LSS descriptor has been shown to be robust in cross-
domain object detection [18], but it provides unsatisfactory
results in densely matching multi-modal images as shown
in Fig. 2. It is because the max pooling strategy performed
in each biniðlÞ loses matching details, leading to a poor dis-
criminative power. Furthermore, the center-biased correla-
tion measure cannot handle severe outliers effectively,
which frequently exist in multi-modal and multi-spectral
images. In terms of a computational complexity, there exists
no efficient computational scheme designed for dense
matching descriptor.

4 THE DASC DESCRIPTOR

4.1 Randomized Receptive Field Pooling

Instead of using a center-biased max pooling of the LSS
descriptor in Fig. 3a, our DASC descriptor incorporates a
randomized receptive field pooling with sampling patterns
in such a way that a pair of two patches are randomly
selected within a local support window. It is motivated by
three observations; 1) In multi-spectral and multi-modal
images, there frequently exist non-informative regions
which are locally degraded, e.g., shadows or outliers.
2) Center-biased pooling is very sensitive to a degradation
of a center patch, and cannot deal with a homogeneous or
salient center pixel which does not contain self-similarities
[18]. 3) From the relationship between Census transform
[50] and BRIEF [29] descriptor, it is shown that the random-
ness enables a descriptor to encode structural information
more robustly.

Our approach encodes a similarity between patch-wise
receptive fields sampled from log-polar circular point set Gi

as shown in Fig. 3b. It is defined as Gi ¼ fjjj 2 Ri; ji� jj ¼
rr; ffði� jÞ ¼ uag where the number of points is defined as
Nc ¼ Nr �Nu þ 1, and has a higher density of points near a
center pixel, similar to DAISY descriptor [13]. Given Nc

points in Gi, there exist Npc ¼ fNc � ðNc � 1Þg=2 candidate
sampling patterns, leading to a dramatically high-dimen-
sion descriptor. However, many of the sampling pattern
pairs might not be useful in describing a local support win-
dow. Therefore, we employ a randomized approach to

extract Ldasc sampling patterns from Npc pattern candidates.

Our descriptorDdasc
i ¼

S
ld

dasc
i;l for l ¼ 1; . . . ; Ldasc is encoded

with a set of patch similarity between two patches based on
sampling patterns that are selected from Gi

ddasci;l ¼ Cðsi;l; ti;lÞ; si;l; ti;l 2 Gi; (3)

where si;l and ti;l are lth selected sampling patterns at pixel
i. Note that the sampling patterns are fixed for all pixels in
an image. Namely, all pixels share the same set of offset vec-

tors ti;l � si;l for l ¼ 1; . . . ; Ldasc, enabling a fast computation
of dense descriptors, which will be detailed in Section 4.3.
Although the DASC descriptor uses only sparse patch-wise
pairs in a local support window, many of patches are over-
lapped when computing patch similarities between the
sparse pairs, allowing the descriptor to consider the major-
ity of pixels in the support window and reflect original
image attributes effectively.

4.1.1 Sampling Pattern Learning

Finding an optimal sampling pattern is a critical issue in the
DASC descriptor. With the assumption that there is no sin-
gle hand-craft feature that always provides the robustness
to all circumstances [51], we employ a discriminative
learning to obtain optimal sampling patterns within a local
support window. Given candidate sampling patterns Li ¼
fðsi;l; ti;lÞjl ¼ 1; . . . ; Npcg, our goal is to select the best sam-
pling patterns which derive an important spatial layout.

Our approach exploits support vector machines (SVMs)
with a linear kernel [52]. For learning, we build a dataset

P ¼ fðR1
h;R2

h; yhÞjh ¼ 1; . . . ; Ntrg, where ðR1;R2Þ are sup-
port window pairs in multi-modal or multi-spectral images,
andNtr is the number of training samples. y is a binary label
that becomes 1 if two patches are matched, or 0 otherwise.
The training data set P was built with images captured
under varying illumination conditions and/or with imaging
devices [9], [11], [24]. In experiments,Ntr ¼ 10;000.

First, the feature rh ¼
S

lrh;l that describes two support

window pairsR1
h andR2

h is defined

rh;l ¼ exp � ddasc;1h;l � ddasc;2h;l

� �2
=2s2

r

� �
; (4)

where sr is a Gaussian parameter, and ddasch;l is the DASC
descriptor. The decision function Q to classify training
dataset P into matching and non-matching can be repre-
sented as

QðrhÞ ¼ vT rh þ b; (5)

where the weight v ¼
S

lvl indicates an amount of contri-
bution of each candidate sampling pattern, and b is a bias.
Learning v can be formulated as minimizing

EsvmðvÞ ¼ kvk2 þ Csvm

XNtr

h¼1

lhinge yh � QðrhÞð Þ; (6)

where the hinge loss function lhingeðxÞ ¼ maxð0; 1� xÞ and
Csvm represents a regularization parameter. We use LIBSVM
[52] to minimize this objective function. The jvlj encodes the
importance of corresponding sampling pattern towards the

final decision [53]. Therefore, we rank top Ldasc sampling
patterns based on jvlj value, and use them in our descriptor,

which is denoted as Ldasc
i .

Fig. 3. Demonstration of the LSS [18] and the DASC descriptor. Within
the support window, solid and dotted line box depict source and target
patch, respectively. Unlike a center-biased dense max pooling on each
biniðlÞ in the LSS descriptor, the DASC descriptor incorporates a ran-

domized receptive field pooling using sampling pattern ðsi;l; ti;lÞ 2 Ldasc
i

on Gi, optimized by a discriminative learning.
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Fig. 4 visualizes learned patch-wise receptive fields of the
DASC. It looks similar to the Gaussian weighting, which has
been proven to be effective in terms of a structural encoding
of descriptor in many literatures [51], [54]. According to
training set, it learns optimal receptive fields.

4.2 Adaptive Self-Correlation Measure

With estimated sampling patterns ðsi;l; ti;lÞ, the DASC
descriptor measures a patch similarity using an adaptive
self-correlation measure in order to robustly encode a local
internal layout of self-similarities. For the sake of simplicity,
we omit ði; lÞ in the correlation metric from here on, as it is

repeatedly computed for all ði; lÞ. For ðs; tÞ 2 Ldasc, the adap-
tive self-correlation Cðs; tÞ between two patches F s and F t

centered at pixels s and t is computed as follows:

Cðs; tÞ ¼
P

s0;t0 vs;s0vt;t0 ðfs0 � GsÞðft0 � GtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s0 fvs;s0 ðfs0 � GsÞg2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t0 fvt;t0 ðft0 � GtÞg2

q ; (7)

where s0 2 F s and t0 2 F t and weighted averages on F s and
F t are defined as Gs ¼

P
s0 vs;s0fs0 and Gt ¼

P
t0 vt;t0ft0 .

The weight vs;s0 represents how similar two pixels s and
s0 are, and is normalized, i.e.,

P
s0 vs;s0 ¼ 1. It can be defined

with any kind of edge-aware weights [21], [55], [56]. This
weighted sum better handles outliers and local variations in
patches compared to other patch-wise similarity metrics. It
is worth noting that the adaptive self-correlation used here
is conceptually similar to the ANCC [42], but our descriptor
employs the correlation metric for measuring self-similarity
within a single image which is used for matching two or
more images later, while the ANCC is used to directly mea-
sure inter-similarity between different images.

Finally, our patch-wise similarity between F s and F t is
computed with a truncated exponential function, which has
been widely used in the robust estimator [57]

Cðs; tÞ ¼ maxðexpð�ð1� Cðs; tÞj jÞ=scÞ; tcÞ; (8)

where sc is a bandwidth of Gaussian kernel and tc is a trun-
cation parameter. Here, a absolute value of Cðs; tÞ is used to
mitigate the effect of intensity reverses. The correlation
Cðsi;l; ti;lÞ for i is normalized with an unit norm for all l.

Fig. 5 represents examples of visualizing the results of
various descriptors. The conventional descriptors show the
sensitivity to modality variations, however the DASC shows
the robustness against multi-modal variations.

4.3 Efficient Computation for Dense Descriptor

For densely constructing our descriptor on an entire image,
we should compute Cðsi;l; ti;lÞ for all patch pairs belonging

to ðsi;l; ti;lÞ 2 Ldasc
i for each pixel i. Thus, a straightforward

computation can be extremely time-consuming. In this sec-
tion, we present an efficient method for computing the
DASC descriptor. To compute all weighted sums in (7) for
ðsi;l; ti;lÞ efficiently, we employ a constant-time edge-aware
filter (EAF), e.g., the guided filter (GF) [21]. However, the
symmetric weight ws;s0wt;t0 varies for each l, and thus com-

puting the numerator in (7) is still very time-consuming.
To alleviate these limitations, we simplify (7) by consid-

ering only the weight ws;s0 from the source patch F s so that
a fast computation of (7) using fast edge-aware filter is feasi-
ble. It should be noted that such an asymmetric weight
approximation also has been used in cost aggregation for
stereo matching [58]. We also found that in our descriptor, a
performance gap between using the asymmetric weight
ws;s0 and the symmetric weight ws;s0wt;t0 is negligible, which

will be shown in Section 6.2.5. For efficient description, we
also re-arrange the sampling pattern ðsi;l; ti;lÞ to referenced-
biased pairs ði; jÞ ¼ ði; iþ ti;l � si;lÞ. Eq. (7) is then approxi-
mated as follows:

~Cði; jÞ ¼
P

i0;j0 vi;i0 ðfi0 � GiÞðfj0 � Gi;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i0 vi;i0 ðfi0 � GiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i0;j0 vi;i0 ðfj0 � Gi;jÞ2

q ; (9)

where Gi ¼
P

i0 vi;i0fi0 . Furthermore, Gi;j ¼
P

i0;j0 vi;i0fj0 which
means weighted average of fj0 2 F j with a guidance image

Fig. 4. Visualization of patch-wise receptive fields of the DASC descrip-
tor learned from the training set P built with the Middlebury benchmark
[24], multi-modal benchmark [9], and the MPI SINTEL benchmark [11].
Similar to [51], we stacked all patch-wise receptive fields learned from
each training image, and normalized them with the maximal value.

Fig. 5. Visualization of support window pairs on multi-spectral RGB and
NIR images denoted as ‘A’ in Fig. 2 having gradient orientation varia-
tions, and descriptors for these window pairs. Conventional descriptors
such as DAISY [13], BRIEF [29], and LSS [18] vary across modality var-
iations. Unlike those methods, our DASC descriptor remains unchanged
to modality variations.
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fi0 2 F i. It is worth noting that the robustness ofCðs; tÞ can be

still applied to ~Cði; jÞ since their difference is just weight
factors.

We then decompose numerator and denominator in (9)
after some arithmetic derivations such that

Gi;ij � Gi � Gi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi2 � G2

i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi;j2 � G2

i;j

q ; (10)

where Gi2 ¼
P

i0 vi;i0f
2
i0 , Gi;ij ¼

P
i0;j0 vi;i0fi0fj0 , and Gi;j2 ¼P

i0;j0 vi;i0f
2
j0 . While the Gi and Gi2 can be computed on image

domain once, Gi;ij, Gi;j, and Gi;j2 should be computed on

each offset. However, the weight vi;i0 is fixed for all offsets,

thus it can be shared in all offsets. All these components can
be efficiently computed using a constant-time edge-aware

filter [21]. Finally, the dense descriptor Ddasc
i is computed

with re-indexing as ddasci;l ¼ Cðsi;l; ti;lÞ though the robust func-

tion in (8). Fig. 6 describes our efficient method for com-
puting the DASC descriptor. Algorithm 1 summarizes the
efficient computation of the DASC descriptor.

Algorithm 1. Dense Adaptive Self-Correlation (DASC)

Input: image fi, candidate sampling patterns Li, training
patch pairs dataset P.

Output: the DASC descriptor volume Ddasc
i .

=	 Offline Procedure 	=
1: Compute rh using (4) for possible candidate sampling

patterns Li on training support window pairs P.
2: Learn a weight v by optimizing (6).
3: Select the maximal Ldasc sampling patterns ðsi;l; ti;lÞ in

terms of vlj j, denoted as Ldasc
i . dasc.

=	 Online Procedure 	=
4: Compute Gi ¼

P
i0 vi;i0fi0 for all pixel i.

5: Compute Gi2 ¼
P

i0 vi;i0f
2
i0 .

for l ¼ 1 : Ldasc do

6: Re-arrange ðsi;l; ti;lÞ 2 Ldasc
i as ði; jÞ ¼ ði; iþ ti;l � si;lÞ.

7: Compute Gi;ij ¼
P

i0 ;j0 vi;i0fi0fj0 .
8: Compute Gi;j ¼

P
i0;j0 vi;i0fj0 .

9: Compute Gi;j2 ¼
P

i0 ;j0 vi;i0f
2
j0 .

10: Estimate ~Cði; i0Þ and Cði; i0Þ using (9) and (8).
11: Compute the DASC descriptor Ddasc

i by re-indexing

sampling patterns such that ddasci;l ¼ Cðsi;l; ti;lÞ.
end for

4.3.1 Comparison of Symmetric and Asymmetric

Version of Adaptive Self-Correlation Measure

This section analyzes the performance of the DASC descrip-
tor when using the symmetric weight vs;s0vt;t0 of Cðs; tÞ in
(7) and with the asymmetric weight vi;i0 of ~Cði; jÞ in (9). The

symmetric weight case in the DASC can also be computed
similar to Section 4.3. After re-arranging the sampling pat-
tern as ði; jÞ ¼ ði; iþ ti;l � si;lÞ, the (7) can be then decom-
posed as similar in (10)

Cði; jÞ ¼ Gij;ij � Gij;i � Gij;j þ Gi � Gjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gi2 � G2

i

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gj2 � G2

j

q ; (11)

where Gij;ij ¼
P

i0 vi;i0vj;j0f
2
i0f

2
j0 , Gij;i ¼

P
i0;j0 vi;i0vj;j0fi0 , and

Gij;j ¼
P

i0;j0 vi;i0vj;j0fj0 . The denominator can be easily com-

puted on overall image once. However, compared to the
asymmetric measure in (9), vi;i0vj;j0 in Gij;ij, Gij;i, and Gij;j

varies for each l. Furthermore, it should be computed with a
range distance using 6-D vector (or 2-D vector), when an
input is a color image (or an intensity image). It significantly
increases a computational burden needed for employing
constant-time EAFs [21], [59]. A performance gap between
using the symmetric measure Cðs; tÞ and the asymmetric

measure ~Cði; jÞ in the DASC descriptor is negligible, which
will be shown in Section 6.2.5.

4.4 Computational Complexity Analysis

The computational complexity of the DASC descriptor on
the brute-force implementation becomes OðINLÞ, where I,
N , and L represent an image size, a patch size, and a
descriptor dimension, respectively. With our efficient com-
putation model, our approach removes the complexity
dependency on the patch size N , i.e., OðILÞ due to fast con-
stant-time EAF. Furthermore, since there exist repeated off-

sets, the complexity is further reduced as OðI ~LÞ for ~L < L.

5 GEOMETRY-INVARIANT DASC DESCRIPTOR

Similar to the DAISY [13], the DASC descriptor is not appro-
priate to deal with geometric variations. In this section, we
propose the geometry-invariant DASC descriptor, called
GI-DASC, that addresses severe geometric variations as
well as image modality variations. A key idea is to geomet-
rically transform sampling patterns used to measure the
patch similarity according to scale and rotation fields when
computing the DASC descriptor. To estimate the scale and
rotation fields, we first infer initial geometric fields only for
sparse points. These initial fields are then fitted and propa-
gated through a superpixel graph. Finally, the GI-DASC
descriptor is efficiently computed with geometrically trans-
formed sampling patterns in a manner similar to computing
the DASC descriptor, except the fact that the descriptor
computation is done for each superpixel independently.

Adopting the superpixel-based geometry field inference
has the following three reasons. First, the reliable geometry
field can be estimated reliably only at distinctive pixels. Sec-
ond, the geometric fields tend to vary smoothly, except
object boundaries. Third, the transformed sampling pat-
terns should be fixed for each superpixel so that the compu-
tational scheme based on the fast EAF [21] can be used for

Fig. 6. Efficient computation framework of the DASC descriptor. In order
to reduce a computational load in computing the adaptive self-correla-
tion, it re-arranges the sampling pattern and employs fast EAF scheme.
The DASC descriptor is then computed with re-indexing.
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efficiently obtaining the GI-DASC for each superpixel. Fig. 7
represents the overview of the GI-DASC.

5.1 Initial Sparse Geometric Field Inference

Conventional feature detectors, e.g., SIFT [28], are very
sensitive to multi-modal and multi-spectral deformation.
In order to extract sparse features with distinctive geo-
metric information available, we employ maximal self-
dissimilarity (MSD) thanks to its robustness for modality
deformation [60]. We propose weighted MSD (WMSD)
that improves the performance of the MSD in terms of
both complexity and robustness by employing an
weighted similarity measure and an efficient computation
scheme similar to the DASC.

Similar to Gi used in the DASC, the log-polar circular

point set Gwmsd
i is defined for feature detector. The sampling

pattern Lwmsd
i is then defined in such a way that the source

patch is always located at center pixel and the target patches
are located at other neighboring points as shown in Fig. 8a.
In order to consider the scale deformation, we build the

Gaussian image pyramid uk
i ¼ fi � %k for k ¼ 1; . . . ; Nk,

where %k is the kth Gaussian kernel with a sigma rk and Nk

is the number of pyramids. After re-arranging the sampling
pattern as ði; jÞ ¼ ði; iþ ti;l � si;lÞ, The self-dissimilarity

measure Fkði; lÞ for l ¼ 1; . . . ; Lwmsdð¼ Nwmsd
r �Nwmsd

u Þ is

computed using weighted sum of squared difference (SSD)

with a guidance image uk
i0 such that

Fkði; lÞ ¼
X

i0;j0
vi;i0 ðuk

i0 � uk
j0 Þ

2

¼ Uk
i2
þ Uk

i;j2
� 2Uk

i;ij;
(12)

where Uk
i2
¼

P
i0 vi;i0 ðuk

i0 Þ
2, Uk

i;j2
¼

P
i0;j0 vi;i0 ðuk

j0 Þ
2, and

Uk
i;ij ¼

P
i0;j0 vi;i0u

k
i0u

k
j0 . Similar to the DASC, (12) can be com-

puted efficiently using constant time EAF [21], [59].
We extract the index set Po

i for the o most smallest value

Cwmsd;k
i;l for all l, i.e., o nearest neighbors for center patch in

Fig. 8b. It should be noted that parameter o trades distinc-
tiveness and computational efficiency [60]. We then com-

pute feature response map Vk
i by estimating the summation

of Fkði; lÞ for l 2 Po
i such that

Vk
i ¼

X
l2Po

i

Fkði; lÞ: (13)

For feature response maps VVi ¼ fVk
i g, the local maxima

are obtained by the non maximal suppression, which com-

pares Vk
i to its 8 neighbors on the current scale and 18 neigh-

bors on the ðkþ 1Þth and ðk� 1Þth scales. Similar to SIFT [28],

a feature point i 2 I0 is detected only if fVk
i g has an extreme

value compared to all of these neighbors, and its scale ri is
defined with rk, where I0 � I is a sparse discrete image
domain.

A canonical orientation is further associated to i 2 I0 by

constructing a histogram with angles ] ti;l � si;l
� �

for l 2 Po
i

weighted by Fkði; lÞ as

lhistði; uÞ ¼
X

l2Po
i

Fkði; lÞ � dð] ti;l � si;l
� �

� uÞ; (14)

where d is the Kronecker delta function. Then, we simply
choose the direction corresponding to the highest bin in the
histogram, i.e., ui ¼ argmaxulhistði; uÞ. The WMSD detector is
summarized in Algorithm 2.

Algorithm 2.Weighted Maximal Self-Dissimilarity
(WMSD)

Input: image fi, feature detection sampling patterns Ldet
i .

Output: feature points i 2 I0 with scale ri, rotation ui.
for k ¼ 1 : Nk do

1: Compute uk
i ¼ fi 	 %k with the Gaussian kernel %k.

2: Compute Uk
i2
¼

P
i0 vi;i0 ðuk

i0 Þ
2 for all pixel i.

for l ¼ 1 : Lwmsd do

3: Compute Uk
i;j2

¼
P

i0;j0 vi;i0 ðuk
j0 Þ

2 for j ¼ iþ ti;l � si;l.

4: Compute Uk
i;ij ¼

P
i0;j0 vi;i0u

k
i0u

k
j0 .

5: Estimate Fkði; lÞ ¼ Uk
i2
þ Uk

i;j2
� 2Uk

i;ij.
end for

6: Extract the index set Po
i among Fkði; lÞ for all l.

7: Build response map as Vk
i ¼

P
l2Po

i
Fkði; lÞ.

end for
8: Detect feature points i 2 I0 from VV ¼ fVkgwith scale

factor ri.
9: Compute the orientation ui for i from lhistði; uÞ.

Fig. 7. Efficient computation framework of the geometry-invariant DASC
(GI-DASC) descriptor. To leverage the efficient computation scheme of
the DASC, we employ a superpixel-based description with inferred geo-
metric fields on each superpixel using the WMSD detection.

Fig. 8. Demonstration of sampling patterns ðsi;l; tt;lÞ 2 Lwmsd
i for the

WMSD detector and the index set for the o most smallest value Po
i .

It enables us to extract reliable feature points i 2 I0 with corresponding
geometric fields (scale ri and rotation ui).
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5.2 Superpixel Graph-Based Propagation

In order to infer dense geometric fields from sparse geomet-
ric fields (ri and ui for i 2 I0), we decompose the image f as
superpixel S ¼ fSmj

S
mSm ¼ I and 8m 6¼ n; Sm

T
Sn 6¼ ? ;

m 2 1; . . . ; Nmg, where Nm is the number of superpixels.

The geometric field G	;r
m and G	;u

m are fitted on each super-
pixel Sm as the average of sparse geometric fields ri and ui
for i 2 fI0 TSmg. Note that this fitting operation is per-
formed only when fI0 TSmg exists, i.e., the superpixel
includes sparse feature points (at least, 1). Finally, the

G	;r ¼
S

mG
	;r
m 2 RNm and G	;u ¼

S
mG

	;u
m are constructed

for all superpixels.
Similar to [61], our approach then formulates an infer-

ence of dense geometric fields Gr and Gu as a constrained
optimization problem where surface-fitted sparse geo-

metric fields G	;r and G	;u are interpreted as soft con-
straints. For the sake of simplicity, we omit r and u since
they can be computed using the same method. The
energy function of our superpixel-based propagation is
defined as follows:

X
m

pspmðGm �G	
mÞ

2 þ m
X
n2Nm

vsp
mnðGm �GnÞ2

( )
; (15)

where m is a regularization parameter. Here, the first term
encodes the dissimilarity between final geometric fields Gm

and initial sparse geometric fields G	
m. p

sp
m is an index func-

tion, which is 1 for valid (constraint) superpixel, and 0 oth-
erwise. The second term imposes the constraint that two
adjacent superpixels m and n 2 Nm may have similar geo-
metric fields according to surperpixel feature affinity vsp

mn,
which will be described in the following section.

5.2.1 Superpixel Feature Affinity

Our approach employs a superpixel feature composed of an
appearance and a spatial feature. First, appearance feature
ycm is defined as the average and standard deviation for
intensities of pixels within superpixels. In experiments, we
used RGB, Lab, and YCbCr space for a color image, thus

ycm 2 R18. For an NIR image, appearance feature is defined

on one-channel intensity domain such that ycm 2 R2. Note
that directly constructing an affinity matrix with intensity
values may lead to inaccurate results due to intensity varia-
tions. However, the effect on such variations can be greatly
reduced, since the appearance feature is defined as an
aggregated form within a superpixel and the affinity value
is measured within the same image domain. Second, spatial

feature ypm 2 R2 is defined as a spatial centroid coordinate
within superpixels. Based on these superpixel features, a
superpixel feature affinity vsp

mn between two adjacent super-

pixelm and n 2 Nm is computed as

vsp
mn ¼ expð� ycm � ycn

		 		2=�c � ypm � ypn
		 		2=�pÞ; (16)

where �c and �p denote coefficients for controlling the spa-
tial coherence of neighboring superpixels.

5.2.2 Solver

The minimum of the energy function (15) can be obtained
with the following linear system

ðPþ mU� mWÞG ¼ PG	; (17)

where Pmm ¼ diag½psp1 ; . . . ; p
sp
Nm


, Umm ¼ diag½usp
1 ; . . . ; u

sp
Nm



where usp

m ¼
P

n2Nm
vsp
mn, andW ¼ ½vsp

mn
m;n¼1;...;Nm
.

This linear system with a Laplacian matrix can be easily
solved with conventional linear solvers [62]. Fig. 9 shows
examples of our superpixel graph-based propagation.

5.3 Efficient Dense Descriptor on Superpixels

The sampling patterns are transformed with corresponding
geometric fields Gr and Gu as shown in Fig. 10. Specifically,
for the mth superpixel Sm, the sampling pattern ðsm;l; tm;lÞ 2
Lgi�dasc

m is transformed from ðsl; tlÞ 2 Ldasc with a scale factor

Gr
m and a rotation factor Gu

m

sm;l ¼ SmRmsl; (18)

where the scale matrix Sm ¼ diag½Gr
m
 and the rotation

matrix Rm is defined with rotation Gu
m. In a similar way, tm;l

is also estimated from tl. Finally, Lgi�dasc
m is estimated.

Furthermore, the patch size N is enlarged as NGr
m.

The mth superpixel extended subimage Km in Fig. 10a is

filtered by a Gaussian filtering with the sigma fðGr
mÞ

2 �
0:25g�1=2 similar to scale-space theory used in the SIFT [28].

Fig. 9. Examples of a superpixel graph-based propagation. With each
superpixel graph in (c), (d) for input images in (a), (b), sparse geometric
fields (scaleG	;r, rotationG	;u) in (e)-(h) are propagated into dense geo-

metric fields (scaleGr, rotationGu) in (i)-(l).

Fig. 10. Sampling pattern transformation in the GI-DASC descriptor. The
sampling patterns ðsi;l; ti;lÞ 2 Ldasc

i is transformed as ðsm;l; tm;lÞ 2 Lgi�dasc
m

with Gr
m and Gu

m on superpixel Sm, which is applied equally for all
i 2 Sm. It provides the geometric robustness on each superpixel.

KIM ET AL.: DASC: ROBUST DENSE DESCRIPTOR FOR MULTI-MODAL AND MULTI-SPECTRAL CORRESPONDENCE ESTIMATION 1719



Then, our GI-DASC descriptor Dgi�dasc
i ¼

S
ld

gi�dasc
i;l for

l ¼ 1; . . . ; Lgi�dasc (¼ Ldasc) is encodedwith a set of patch simi-
larity between two patches from a transformed sampling pat-

ternLgi�dasc
m on each superpixel Sm such that

dgi�dasc
i;l ¼ Cðsi;l; ti;lÞ; ðsi;l; ti;lÞ 2 Lgi�dasc

m ; (19)

for i 2 Sm. Finally, the dense GI-DASC descriptor is effi-
ciently computed for all the superpixels Sm 2 S. Algorithm
3 summarizes how to compute the GI-DASC descriptor.

Algorithm 3. Geometric-Invariant DASC (GI-DASC)

Input: image fi, feature detection sampling patterns Ldet
i ,

Ldasc sampling patterns ðsi;l; ti;lÞ 2 Ldasc
i .

Output: the GI-DASC descriptor volume Dgi�dasc
i .

1: Extract feature points i 2 I0 with scale ri and rotation ui
using Algorithm 2.

2: Decompose the image fi into superpixels S.
3: Compute a surface fitting for geometric fieldG	;r

m andG	;u
m on

superpixels Sm.
4: Compute a Laplacian matrix Pþ mU� mW with confidences

pspm and weights vsp
mn.

5: Compute dense geometric fieldsGr
m andGu

m.
form ¼ 1 : Nm do

6: Transform the sampling pattern Ldasc
i into Lgi�dasc

m .
7: Compute the GI-DASC descriptor dgi�dasc

i;l ¼ Cðsi;l; ti;lÞ
for i 2 Sm and ðsm;l; tm;lÞ 2 Lgi�dasc

m using Algorithm 1.
end for

6 EXPERIMENTAL RESULTS AND DISCUSSIONS

6.1 Experimental Environments

In experiments, the DASC descriptor was implemented
with the following same parameter settings for all datasets:

fsc; tc; N;M;Ldascg ¼ f0:5; 0:03; 5� 5; 31� 31; 128g where
M is the support window size, and fNr; Nug ¼ f4; 36g for
candidate sampling patterns. We set the smoothness param-

eter � ¼ 0:032 in the GF [21]. For the GI-DASC, the following

parameters were used for all datasets: fNwmsd
r ; Nwmsd

u ;

Nk; o; �c; �pg ¼ f3; 12; 4; 10; 0:1; 30g. The number of super-
pixels is set to about 500. We implemented the DASC and
GI-DASC descriptor in C++ on Intel Core i7-3770 CPU at
3.40 GHz.

The DASC descriptor was evaluated with other state-of-
the-art descriptors, e.g., SIFT [28], DAISY [13], BRIEF [29],
LSS [18], and DaLI [25], and other area-based approaches,
e.g., ANCC [42], MI+SIFT1 [40], and RSNCC [9]. We also
compared the DASC using a randomized pooling (DASC
+RP) with the DASC using a learned randomized pooling
(DASC+LRP). Furthermore, the state-of-the-art geometry
robust methods such as SID [48], SegSID [48], SegSF [49],
GPM [46], DSP [15], and SSF [45] were also compared to
the GI-DASC descriptor. For learning the DASC, we built
training sets P from benchmark databases used in each
experiment, and these training sets were excluded from
experiments.

6.2 Parameter and Component Analysis

6.2.1 Parameter Sensitivity Analysis

Fig. 11 intensively analyzed the performance of the DASC
descriptor as varying associated parameters, including sup-
port window size M, descriptor dimension Ldasc, patch size
N , and the number of log-point circular pointNc. To evaluate
the quantitative performance, we measured an average bad-
pixel error rate on Middlebury benchmark [24]. The larger
the support window size M, the matching quality is
improved but the accuracy gain is saturated around 31� 31.

Using a larger descriptor dimension Ldasc yields a better per-
formance since the descriptor encodes more information.
Considering the trade-off between efficiency and robustness,

Ldasc ¼ 128 is set in experiments. When the patch size N
increases, the matching quality is degraded since a series of
similarity values measured with large patches may lose
locally discriminative details. The number of log-polar circu-
lar pointNc does not affect the performancemuch, since opti-
mal patterns can be sampled even from smallNc.

6.2.2 Component-Wise Performance Gain Analysis

The DASC is originally motivated by the LSS concept
from [18]. The DASC consists of three key ingredients:
adaptive self-correlation (ASC), randomized pooling (RP),
and learning sampling pattern. In this context, we ana-
lyzed an accuracy gain of the DASC over the LSS on the
Middlebury benchmark as shown in Fig. 12. Note that all
experiments were done using LSS without max pooling,
‘LSS(wo/max)’. The original LSS method [18] uses the
SSD for measuring the patch similarity. We replaced the
patch similarity of the LSS method with the ASC, named
‘LSS(ASC)’, and then measured its matching accuracy. As
expected, the ASC improves the performance compared
to the SSD used in the original LSS. We also evaluated

Fig. 11. Average bad-pixel error rate on Middlebury benchmark [24] of
DASC+LRP descriptor with WTA optimization as varying support win-
dow sizeM, descriptor dimension L, patch sizeN, and log-polar circular
point Nc (� Nr �Nu). In each experiment, all other parameters are fixed
as initial values in Section 6.1.

1. For a fair evaluation, we compared only the similarity measure in
[40] without further techniques.
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the LSS using a randomized pooling with fixed center pixel,
‘LSS(ASC+RPF)’, and the LSS using a learned randomized
pooling with fixed center pixel, ‘LSS(ASC+LRPF)’. Unlike
center-biased poolings, the DASC chooses sampling pat-
terns randomly (‘DASC+RP’), improving the performance.
Using learned sampling patterns (‘DASC+LRP’) also leads
to a performance gain.

6.2.3 Edge-Aware Filtering Analysis

In Fig. 13, we analyzed the performance of the DASC
descriptor when different EAF is employed for computing
vi;i0 . When using a simple, unweighted ‘Box’ filtering

(vi;i0 ¼ 1), the patch similarity (7) becomes a normalized

cross-correlation (NCC). In the Box and Gaussian filtering
case, there exists a performance limitation. In contrast, all
EAF methods show a satisfactory performance, including
the bilateral filter [63], the fast bilateral filter [59], the domain
transform [56], the fast GF [64], and GF [71]. In experiments,
we utilized the GF [71].

6.2.4 WMSD Feature Detector Analysis

In Figs. 14 and 15, we analyzed the feature detection perfor-
mance of the WMSD detector with a repeatability [66] and
recognition rate measure [29] in Mikolajczyk dataset [72].
Compared to conventional feature detection approaches
[28], [60], [65], [66], the WMSD detector extracts reliable and
distinctive points with a high repeatability thanks to its
robustness for modality variations including blur artifacts
and illumination changes. Furthermore, compared to
conventional gradient-based [28], [67] or intensity-based
rotation estimations [68], [69], our WMSD-based rotation

estimation combined with the DASC descriptor shows the
best performance with a high recognition rate.

6.2.5 Symmetric and Asymmetric Measure Analysis

As shown in Fig. 16, a performance gap between using the
asymmetric measure ~Cði; jÞ in (9) and the symmetric mea-
sure Cði; jÞ in (7) is negligible, while using the asymmetric
measure is much faster.

6.2.6 Runtime Analysis

In Table 1, we compared the computational speed of DASC
descriptor with state-of-the-art local descriptors, SIFT [28],
DAISY [13], and LSS [18]. The DASC provides state-of-the-
art computational speed. It should be noted that through
recent more efficient edge-aware filters [64], the runtime of
DASC can be further reduced.

6.3 Middlebury Stereo Benchmark

We evaluated our DASC+LRP descriptor compared to other
approaches in Middlebury stereo benchmark containing
illumination and exposure variations [24]. In experiments,
the illumination (or exposure) combination ‘1/3’ indicates

Fig. 12. Average bad-pixel error rate for original LSS [18], LSS without
max-pooling, LSS with ASC, LSS using randomized-pooling with fixed
center pixel, and the DASC descriptor on Middlebury benchmark [24].

Fig. 13. Average bad-pixel error rate for the DASC descriptor as vary-
ing EAF including Box, Gaussian, Bilateral [63], FastBilateral [55],
Domain Transform [56], FastGF [64], and GF [21] on Middlebury
benchmark [24].

Fig. 14. Evaluation of the WMSD detection compared to conventional
feature detections, such as SIFT [28], MSER [65], FAST [66], and MSD
[60]. The WMSD provides reliable feature detection performance, thus
providing reliable hypothesis for initial sparse geometric fields.

Fig. 15. Evaluation of the WMSD detection compared to conventional
rotation estimations. Compared to conventional gradient-based rotation
estimation (SIFT [28] and SURF [67]) or intensity-based rotation estima-
tion (BRISK [68] and ORB [69]), our WMSD-based rotation estimation
(with the DASC descriptor) shows the best performance.
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that two images were captured under 1st and 3rd illumina-
tion (exposure) conditions, respectively [24]. Fig. 17 shows
average bad matching errors in un-occluded areas of depth
maps obtained under illumination or exposure variations
with the graph-cut (GC) [70] and winner-takes-all (WTA)
optimization. Fig. 18 shows disparity maps for severe
illumination variations obtained by varying cost functions
with the WTA optimization. Our DASC+LRP descriptor
achieves the best results both quantitatively and qualita-
tively. Area-based approaches, e.g., MI+SIFT [40], ANCC
[42], and RSNCC [9], are very sensitive to severe radiomet-
ric variations, especially when local variations frequently
occur. Contrarily, descriptor-based approaches perform bet-
ter than the area-based approaches. Interestingly, the BRIEF
[29] is better than other gradient-based descriptors (SIFT
[28] and DAISY [13]) thanks to an ordering robustness.

6.4 Multi-Modal and Multi-Spectral Benchmark

Next, we evaluated our DASC+LRP descriptor with images
under modality variations, e.g., RGB-NIR [1], [9], different
exposure [8], [9], flash-noflash [8], blurred artifacts [6], [7],
and RGB-depth [9]. As varying descriptors and similarity
measures, we use theWTA and SIFT flow optimization using
the hierarchical dual-layer belief propagation (BP) [14],

whose code is publicly available. Unlike the Middlebury ste-
reo benchmark, these datasets have no ground truth corre-
spondence maps, and thus we manually obtained ground
truth displacements for 100 corner points for all images, and
used them for an objective evaluation similar to [9].

Area-based approaches, e.g., MI+SIFT [40], ANCC [42],
and RSNCC [9], are very sensitive to local variations.
As already described in literatures [9], gradient-based
approaches, e.g., SIFT [28] and DAISY [13], have shown lim-
ited performance in RGB-NIR pairs where the gradient
reversal and inversion frequently appear. The BRIEF [29]
cannot deal with noisy and modality varying regions since
it considers a pixel difference only. It should be noted that
some efforts have been made to estimate reliable flow maps
in the motion blur, e.g., blur-flow [73], but they typically
employ an iterative matching framework, which relies
heavily on an initial estimate. Additionally, they do not
scale well to general purpose matching scenarios. Unlike
these approaches, the LSS [18] and our descriptor consider
the local self-similarities, but the LSS still lacks a discrimina-
tive power for dense matching. Our DASC+RP descriptor
leveraging patch-wise pooling with adaptive self-correla-
tion provides satisfactory results under modality variations.

Fig. 16. Evaluation of a symmetric measure Cði; jÞ and an asymmetric

measure ~Cði; jÞ in the DASC as varying optimization schemes with
WTA, SF [14], and GC [70]. It shows that there are no significant perfor-
mance gaps when using symmetric and asymmetric measure.

TABLE 1
Evaluation of Computational Time

image size SIFT DAISY LSS DASCy DASCz
463� 370 130:3 s 2:5 s 31 s 128 s 1:3 s
800� 600 252 s 3:8 59 s 256 s 2:1 s

The brute-force and efficient computation of the DASC is denoted as y and z,
respectively.

Fig. 17. Average bad-pixel error rate on Middlebury benchmark with illu-
mination variations and exposure variations. The GC (first row) and
WTA (second row) were used for optimization, respectively. Our DASC
+LRP shows the best performance with the lowest error rate.

Fig. 18. Comparison of disparity estimation for Dolls and Books image pairs under illumination combination ‘1/3’ and exposure combination ‘0/2’,
respectively. Compared to other approaches, our DASC descriptor estimates accurate and edge-preserved disparity maps while reducing artifacts.
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By employing the optimal sampling pattern via discrimina-
tive learning (DASC+LRP), the matching accuracy was
further improved. Figs. 19, 20, and 21 show qualitative
evaluation, clearly demonstrating the outstanding perfor-
mance of our descriptor. Table 2 shows an objective evalu-
ation of DASC+LRP descriptor and other state-of-the-art
methods.

6.5 DIML Multi-Modal Benchmark

Since there have been no database with both photometric
and geometric variations, we built the DIML multi-modal
benchmark [27]. All databases were taken by SONY Cyber-
Shot DSC-RX100 camera in a darkroom with the lighting
booth GretagMacbeth SpectraLight III. In terms of geomet-
ric deformations, we captured 10 geometry image sets by
combining geometric variations of viewpoint, scale, and
rotation as shown in Fig. 22, and each image set consists of
images taken under five different photometric variation
pairs including illumination, exposure, flash-noflash, blur,
and noise as shown in Fig. 23. Therefore, the DIML multi-
modal benchmark consists of 100 images with the size of
1;200� 800. Furthermore, by following [14], we manually
built ground truth object annotation maps to evaluate
the performance quantitatively, and computed the label

transfer accuracy (LTA) ALTA such that

ALTA ¼ 1

T a

X
i2I 1ðei 6¼ ai; ai > 0Þ; (20)

where the ground-truth annotation is ai, estimated annota-
tion is ei, and T a ¼

P
i2I 1ðai > 0Þ is the number of labeled

pixels. This metric has been widely used in wide-baseline

matching tasks [15]. Though ALTA does not measure a
matching performance in a pixel precision, it was shown in
[14] that this metric is an excellent alternative enough to
evaluate the performance of descriptors in case that there
are no ground truth correspondence maps available.

For an image from the reference geometry image set (the
first image in Fig. 22), we estimated visual correspondence
maps with images from other geometry image set, and then
computed the LTA. Furthermore, visual correspondence
maps were estimated for each photometric pair. Here,
matching results at occluded pixels should be excluded in
the evaluation as they have no corresponding pixels. We
hence warped an image taken from near into an image
taken at a distance, when computing the LTA. The experi-
mental setup for DIML multi-modal benchmark was given
in detail at our project page [27].

We compared our two descriptors, DASC and GI-
DASC, with conventional descriptors such as SIFT [28],
DAISY [13], BRIEF [29], and LSS [18], and state-of-the-arts

Fig. 19. Comparison of dense correspondence for (from top to bottom) RGB-NIR images and flash-noflash images. The results consist of warped
color images and correspondence flow fields overlaid with reference images. Compared to other conventional approaches, our DASC+LRP descrip-
tor estimates reliable dense correspondence fields for challenging multi-modal and multi-spectral image pairs.
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geometry-invariant approaches such as SID [48], SegSIFT
[49], SegSID [49], GPM [46], DSP [15], and SSF [45]. For the
sake of simplicity, we omit ‘LRP’ in the DASC-LRP and
GI-DASC-LRP. Fig. 24 shows the LTA error rates as vary-
ing photometric and geometric deformations. Fig. 25
shows the average error rates on DIML multi-modal
benchmark. Fig. 26 shows qualitative evaluation results.
As expected, feature descriptors such as SIFT [28], DAISY
[13], BRIEF [29], and LSS [18], though using a powerful
global optimization, i.e., hierarchical dual-layer BP [14],
exhibit limitations on severe geometric variations, while
they provide robustness to some extent for photometric
variations. Our DASC descriptor in Fig. 24k shows a better

performance than other descriptors, but it also shows the
limitation for severe geometric variations. The GPM [46]
had very low performance in terms of flow estimation
although it provides plausible warping results. The SID
[48] have been proposed to provide geometric robustness,
but it is unable to address photometric variations. Segmen-
tation-aware description [49] could improve the matching
accuracy of SIFT and SID for geometric variations, but it
also has limitation since it also reduces a discriminative
power of descriptor itself as shown in Figs. 24g and 24h.

Fig. 20. Comparison of dense correspondence for (from top to bottom) different exposure images and blurred-sharpen images. The results consist of
warped color images and correspondence flow fields overlaid with reference images. Compared to other conventional approaches, our DASC+LRP
descriptor estimates reliable dense correspondence fields for challenging multi-modal and multi-spectral image pairs.

Fig. 21. Comparison of dense correspondence for RGB-depth images.
The results consist of warped color images.

Fig. 22. Examples of DIML multi-modal benchmark. It consists of images
taken under 10 different geometric conditions such as viewpoint, scale,
rotation, and scale-rotation with ground truth annotation.
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The DSP [15] provides limited performances, since it just
uses the SIFT with a fixed scale and rotation. The SSF [45]
estimates visual correspondence by repeatedly applying
the SIFT on the scale-space while enduring a huge com-
putational complexity, but it still has limitations in terms
of computational complexity. Contrarily, the GI-DASC
descriptor optimized by hierarchical dual-layer BP [14]
provides the robustness for both photometric and geomet-
ric deformations as shown in Fig. 24l.

6.6 Non-Rigid Deformation Benchmark

We also evaluated our DASC descriptor compared to
other approaches on a recent, publicly available dataset
featuring challenging non-rigid deformations and very
severe illumination changes [25]. Similar to experiments
in Section 6.4, as varying descriptors, we use the the hier-
archical dual-layer belief propagation (BP) [14]. Fig. 27
presents dense correspondence estimates for this bench-
mark [25]. As expected, conventional gradient-based and
intensity comparison-based feature descriptors, including
SIFT [28], DAISY [13], and BRIEF [29], do not provide
reliable correspondence performance. LSS [18] exhibits
relatively high performance for illumination changes, but
it is vulnerable to non-rigid deformations. Although DaLI
[25] provides robust correspondences, it requires consid-
erable computation for dense matching, which is approxi-
mately 100 times slower than DASC. Compared to these
methods, our DASC descriptor provides a robustness
even for non-rigid image deformation, and it is computa-
tionally efficient.

6.7 MPI Optical Flow Benchmark

Optical flow methods typically assume only a small
displacement between consecutive frames. Several appro-
aches have been proposed to estimate a large displacement

flow vector [74]. However, motion blur and illumination
variation can degenerate the performance of these
approaches. In order to handle such challenging issues
simultaneously, we applied the DASC to the large displace-
ment optical flow (LDOF) approach [74]. It was evaluated
on the MPI SINTEL database [11] containing large non-rigid
motion as well as specular reflections, motion blur, and
defocus blur. The dataset consists of two kind of rendering
frames, named clean and final pass, and each set contains
12 sequences with over 500 frames in total [11]. Table 3
shows average end-point error (EPE) results on MPI

TABLE 2
Comparison of Quantitative Evaluation on Multi-Spectral and Multi-Modal Images

WTA optimization SF optimization [14]

RGB-NIR flash-noflash diff. expo. blur-sharp Average RGB-NIR flash-noflash diff. expo. blur-sharp Average

MI+SIFT [40] 25.13 27.12 28.23 24.21 27.12 17.21 13.24 14.16 20.14 16.87
ANCC [42] 23.21 20.42 25.19 26.14 23.74 18.45 14.14 11.96 19.24 15.94
RSNCC [9] 27.51 25.12 18.21 27.91 24.68 13.41 15.87 9.15 18.21 14.16
SIFT [28] 24.11 18.72 19.42 27.18 22.36 18.51 11.06 14.87 20.78 16.35
DAISY [13] 27.61 26.30 20.72 27.41 25.51 20.42 10.84 12.71 22.91 16.72
BRIEF [29] 29.14 18.29 17.13 26.43 22.75 17.54 9.21 9.54 19.72 14.05
LSS [18] 27.82 19.18 18.21 26.14 22.84 16.14 11.88 9.11 18.51 13.91
DASC+RP 18.21 14.28 12.12 17.11 12.18 15.43 7.51 7.32 12.21 9.68
DASC+LRP 13.42 11.28 9.23 13.28 11.80 8.10 5.41 6.24 10.81 7.64

Fig. 23. Examples of DIML multi-modal benchmark. Each geometry
image sets in Fig. 22 consists of five different photometric variations
such as illumination, exposure, flash-noflash, blur, and noise.

Fig. 24. Comparison of quantitative evaluation on DIML benchmark [27].
Each result represents the LTA for geometric (x-axis) and photometric
(y-axis) variations, respectively. The DASC outperforms conventional
descriptors such as DAISY [13] and LSS [18]. Interestingly, its accuracy
is also higher than those of state-of-the-art geometry-invariant methods
including SegSIFT [49], SegSID [49], DSP [15], and SSF [45]. The
GI-DASC shows the best performance under varying photometric and
geometric conditions. (Best viewed in color.)
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SINTEL. The DASC achieves a higher gain, compared to
other descriptors.

6.8 Limitations

Similar to [22], [44], [45], our GI-DASC approximately
determines a relative scale using successive Gaussian
smoothing, which might work in only a limited range of
scale variation as in Fig. 28. By leveraging an octave
structure based on sub-sampling [28], a wider range of
scale may be covered.

7 CONCLUSION

The robust novel dense descriptor called the DASC has been

proposed for dense multi-spectral and multi-modal corre-

spondences. It leverages an adaptive self-correlation mea-

sure and a randomized receptive field pooling learned by

linear discriminative learning. Moreover, by making use of

fast edge-aware filters, our DASC descriptor is capable of

computing the dense descriptor very efficiently. In order to

address geometric variations, the GI-DASC descriptor also

Fig. 27. Comparison of qualitative evaluation on non-rigid deformation benchmark. The results consist of warped color images and correspondence
flow fields overlaid with reference images. Compared to other conventional approaches, our DASC descriptor estimates reliable dense correspon-
dence fields for challenging non-rigid deformation image pairs.

Fig. 25. Average error rates on DIML multi-modal benchmark.

Fig. 26. Comparison of qualitative evaluation on DIML multi-modal benchmark. The results consist of warped color images and warped ground truth
annotations. Compared to other conventional descriptors and geometry-invariant approaches, our DASC descriptor estimates reliable dense corre-
spondence fields for image pairs across varying geometric and photometric conditions.

TABLE 3
Comparison of Average EPE on the MPI SINTEL [11]

Clean Pass Final Pass

all unmatched all unmatched

Classic-NL [12] 7.940 39.821 9.439 43.123
LDOF [74] 7.180 38.124 8.422 42.892
LDOF+BRIEF [29] 6.281 37.841 7.741 41.875
LDOF+LSS [18] 6.182 37.514 7.152 40.332
LDOF+DASC 5.578 36.975 6.384 38.932
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has been proposed by leveraging the efficiency and effec-
tiveness of the DASC through a superpixel-based represen-
tation. The DASC and GI-DASC descriptor demonstrated
its robustness in establishing dense correspondence
between challenging image pairs taken under different
modality conditions, e.g., RGB-NIR, different illumination
and exposure, flash-noflash, blurring artifacts. We believe
our method will serve as an essential tool for several appli-
cations using multi-modal and multi-spectral images.
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