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Abstract— Recent works on machine learning have greatly
advanced the accuracy of single image depth estimation. However,
the resulting depth images are still over-smoothed and perceptu-
ally unsatisfying. This paper casts depth prediction from single
image as a parametric learning problem. Specifically, we propose
a deep variational model that effectively integrates heterogeneous
predictions from two convolutional neural networks (CNNs),
named global and local networks. They have contrasting network
architecture and are designed to capture the depth information
with complementary attributes. These intermediate outputs are
then combined in the integration network based on the varia-
tional framework. By unrolling the optimization steps of Split
Bregman iterations in the integration network, our model can
be trained in an end-to-end manner. This enables one to simul-
taneously learn an efficient parameterization of the CNNs and
hyper-parameter in the variational method. Finally, we offer a
new data set of 0.22 million RGB-D images captured by Microsoft
Kinect v2. Our model generates realistic and discontinuity-
preserving depth prediction without involving any low-level
segmentation or superpixels. Intensive experiments demonstrate
the superiority of the proposed method in a range of RGB-D
benchmarks, including both indoor and outdoor scenarios.

Index Terms— Depth estimation, 2D-to-3D conversion, non-
parametric sampling, convolutional neural networks, RGB-D
database.

I. INTRODUCTION

PREDICTING 3D structure from a single monocular image
has remained an active research topic in image processing

and computer vision. This can be attributed to the fact that
depth information often leads to significant improvements on a
number of challenging problems, such as visual odometry [1],
intrinsic image decomposition [2], pose recognition [3], and
scene understanding [4]. Traditional methods to depth estima-
tion from a single image exploited various monocular cues
like parallax, motion [5], or shading [6]. However, these
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approaches are not applicable for general scenes, due to strict
constraints imposed on prediction models, e.g., translational
camera motion and static scenes. Alternatively, other methods
require user-annotations such as sparse depth scribbles and
segmentation mask [7], [8]. The sparse scribble is then prop-
agated through the entire image in order to fill the remaining
regions with no valid depth values. While the resulting depth
image is convincing by means of user intervention, providing
precise scribbles is very labor-intensive and time-consuming.
Meanwhile, humans have no difficulty in perceiving depth
from a monocular input, thanks to the knowledge and data
accumulated over the years [9]. The capability of machines to
replicate this effect would open new avenues, motivating for
several state-of-the-art methods [15]–[22].

Recent works on single image depth estimation can be gen-
erally categorized into two groups1: non-parametric sampling
and parametric learning methods. The first group addresses the
question of whether it would be possible to correctly transfer
depth from a large RGB-D database to a single query image
[10], [12], [15]. For an input query image, a set of semantically
similar images are first retrieved through k-nearest neighbors
(kNNs) search from the RGB-D database. They then establish
dense correspondences between the input and each of the
retrieved RGB images. The corresponding depth images are
warped and fused using local or global optimization procedure
to recover a final depth image. However, the non-parametric
sampling methods give good results only when the training
dataset having sufficiently similar depth characteristics is pro-
vided. Moreover, they should retain a large RGB-D dataset for
retrieving semantically similar images.

The second category casts the monocular depth estimation
as a parametric learning process. For instance, a Markov
random field (MRF) is learnt for mapping between RGB
and depth space [17], [18]. The random field model encodes
a priori assumption, so that the resulting depth image has
statistical properties similar to those of the desired solution.
Many other parametric models such as conditional random
field (CRF) [19], logistic regression [20], and convolutional
neural networks (CNNs) [21], [22], [24] have also been
employed. Especially, recent approaches using the CNNs have
shown a significant accuracy gain. The deeper CNN architec-
ture is effective in increasing the capacity for exploiting input
single image, but there is a tendency to produce coarse depth

1Both groups leverage the discriminative power of a large-scale RGB-D
database.
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Fig. 1. (a) Input single RGB, (b) global prediction, (c) local prediction in
gradient domain, and (d) result of integration ((b) and (c)). Our approach
integrates different and complementary predictions of the CNNs, achieving
good localization and the use of context at the same time. The integration
step is also plugged in as a part of the CNNs, and thus the whole parameters
can be learned in an end-to-end manner. The figure is best viewed in color.

outputs due to convolutional kernels with large receptive fields
and max-pooling layers.

This paper presents a new framework for estimating depth
from a single image. We propose a deep variational model
which integrates complementary predictions of the CNNs (see
Fig. 1(b) and (c)). Our model consists of two heterogeneous
networks, named global and local networks, which are trained
under different input and output configurations to capture
both global metric (Fig. 1(b)) and local relative (Fig. 1(c))
information of the depth image. The integration step (Fig. 1(d))
using variational minimization is also plugged in as a part of
the networks, making it possible to train the whole parame-
ters end-to-end with the standard back-propagation algorithm.
In addition, we further improve the results by employing
adversarial loss [31]. Our model is able to generate realistic
and structure-preserving depth prediction from a single image,
without involving any low-level segmentation or superpixels.

Training a deep network requires a large RGB-D dataset for
supervision. We additionally introduce a new RGB-D dataset
for single image depth estimation, capturing 283 diverse
indoor scenes (total 0.22 millon RGB-D pairs). It provides
high-quality depth and corresponding RGB images captured
by Microsoft Kinect v2. We will host our DIML RGB-D
dataset at [52].

Overall, the main contributions of this work are highlighted
as follows:

• We propose a deep variational model for single image
depth estimation, which integrates the predictions from
the complementary CNNs. The adversarial loss [31] is
also used to make the depth prediction indistinguishable
from natural depth images.

• We show that, by unrolling the optimization steps of Split
Bregman (SB) iterations [28] in the integration network,

our model can be trained in an end-to-end manner. This
enables one to learn an efficient parameterization of the
CNNs and hyper-parameter in the variational method
simultaneously.

• We provide an intensive comparison study to demon-
strate the effectiveness of the proposed method in sev-
eral benchmarks including NYU v2 [39], Make3D [17],
KITTI2012 [44], and DIML dataset [52].

The remainder of this paper is organized as follows.
Section II describes related works for single image depth
estimation. We present the deep variational model as well
as training details in Section III. An extensive experimental
comparison is then provided in Section IV. Finally, Section V
concludes this paper.

II. RELATED WORK

Understanding 3D structure of a scene has a rich history in
image processing and computer vision. Early methods mainly
focus on employing geometric constraints such as box and
Manhattan models or utilizing video sequences that capture
different viewpoints of a static scene over time. Recently, sin-
gle image depth estimation has become increasingly popular
thanks to the emergence of large-scale RGB-D dataset [39].
Among various methodologies, we review and discuss three
lines of works that are most relevant to ours.

A. Nonparametric Sampling Methods

Nonparametric sampling approaches assume that a large-
scale RGB-D dataset contain scenes that have appearance
and geometric layout similar to an input query image. As a
pioneering work, Karsch et al. [10] devised the depth trans-
fer algorithm. For a given input, similar RGB images are
retrieved by the GIST descriptor [11], corresponding depth
images are warped via dense scene alignment [13], and the
resulting depth prediction is spatially regularized using global
optimization procedure. Konrad et al. [12] argued that dense
scene alignment of [10] is computationally expensive and
does not necessarily improve the quality of depth estima-
tion. Instead, they directly fuse the retrieved depth images
by computing a median value for each pixel. This initial
estimate is then refined by using a joint bilateral filtering [14].
Note that the retrieved depth images do not always provide
useful cues unless the database is carefully established. Such
a dependency degenerates the quality of estimation when
the depth distribution of the input image is quite different
from that of the training RGB-D dataset. To address this
problem, Choi et al. [15] devised the depth analogy method
that transfers depth gradients as reconstruction cues, which
are integrated by the Poisson equations. This method is
less sensitive to the distribution of training dataset, but the
resulting depth images suffer from a scale ambiguity since the
reconstruction is performed with depth gradients only under
Neumann boundary condition. It should be noted that most
of nonparametric sampling methods require the entire RGB-D
dataset to be available at test phase. They retrieve a subset of
similar RGB images, which will be used for subsequent depth
sampling tasks. This incurs prohibitively high computational
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overhead and memory consumption, especially when the large
scale RGB-D dataset is used.

B. Parametric Learning Methods

Another line of works attempt to model explicit dependency
between RGB and depth images in a structured learning frame-
work. Saxena et al. [17] modeled monocular cues based on the
MRF whose edges encode a simple smoothness assumption
between neighboring superpixels. This approach was further
extended in [18] with a hierarchical MRF to model monocular
cues at multiple spatial scales. Ladicky et al. [43] learned
a pixel-wise depth classifier by assuming that the perceived
size of the objects scales is inversely proportional to the
distance. In [19], semantic object labels and better geometric
priors were incorporated in the CRF framework. Recently,
the CNNs have been successfully applied in single image depth
estimation. Eigen et al. proposed a multi-scale architecture
that first predicts the depth image from an input at coarser-
scale network and refines it using finer-scale network [21].
In [22], relative depth annotations rather than metric depth
were used to improve the performance in unconstrained set-
tings. Laina et al. [23] devised a fast up-projection layer and
combined it with the deep residual learning [35]. While the
CNNs-based approaches have achieved state-of-the-art perfor-
mance, they lack imposing the spatial smoothness constraint,
often resulting in poor boundary localization and spurious
regions. One notable exception is the work of Liu et al. [24],
which learns the unary and pairwise potentials of continuous
CRF with the CNNs. A superpixel pooling method is also
proposed to speedup their patch-wise predictions in the CNNs.
However, they considered the graphical model composed of
nodes defined on superpixels and regressed the single depth
value from a superpixel. This is problematic on the regions
where the assumption of appearance-depth correlation is vio-
lated, e.g., highly textured surface. Chakrabarti et al. [25]
estimated the distributions of depth gradients (including zero-
order) using the CNNs. These predictions are then reconciled
to form a final estimate of the scene depth through a separated
globalization procedure. The network of [25] has a fairly
high-dimensional output space (64 × 64 at each pixel in their
implementation).

Beyond the monocular depth estimation, a large body
of work has been devoted to predicting dense labels using
CNNs. Ghiasi and Fowlkes [56] proposed a multi-scale
CNN based on the Laplacian pyramid that uses activations
of early layers for pixel-accurate semantic segmentation.
Lin et al. [57] combined the inception module [22] and
cascaded residual learning [35]. They used a sequence of
four scales to refine activations and predictions on higher
resolution. The context aggregation network introduced by Yu
and Koltun [58] employed dilated convolutions for supporting
large receptive fields without downsampling the spatial
resolution. It shows state-of-the-art performance on semantic
segmentation. However, dilated convolution kernels introduce
a coarse sub-sampling of activations, which may lead to a
loss of important details [57]. In a two-view correspondence
problem, the coarse-to-fine formulation [59] was proposed to

yield a pixel-accurate correspondence map by constraining
the search space on finer levels through warping. It is
conceptually similar to multi-scale network with residual
learning used in the monocular depth estimation [21], [23].

Note that our approach belongs to the parametric learning
method using the CNNs. But, it differs from previous works in
that we predict the piecewise smooth depth image with global
contexts and the discontinuous-preserving depth gradients
using two contrasting CNNs, and then integrate them through
variational approach in an end-to-end manner. To the best of
our knowledge, metric- and relative-depth information have
been predicted separately for monocular depth estimation, and
were not integrated in a unified deep learning framework.
For instance, [21] and [23] estimate metric depth only, while
the works of [15] and [22] predict relative-depth information.
We will show that our strategy is very effective in addressing
the nonlinear regression problem.

C. Synergetic Methods

Baig et al. [26] retained the essence of non-parametric
approach, but compressed the training dataset into a compact
dictionary using clustering techniques. In addition, they
learned a parametric transformation between the RGB and
depth dictionaries to generate depth predictions. It was
shown in [26] that the method establishes computational
advantages without taking a massive hit on accuracy.
Liu and Salzmann [27] formulated the discrete-continuous
CRF, where the continuous variable encodes the depth and
plane normal, and the discrete one represents relationships
between neighboring superpixels. The corresponding
optimization problem, initialized by the non-parametric
sampling [12], is then solved using particle belief propagation.

III. PROPOSED APPROACH

The proposed deep variational model consists of global,
local, and integration networks. The global network first
estimate the piecewise smooth depth based on the entire RGB
image [21], [23], [46], considering that the overall geometric
layout is indistinguishable under local context. We also use
depth gradients [15] as local cues, which are estimated through
the local network. These two complementary predictions are
then integrated in a unified deep CNN framework. We jointly
train our model using the combination of two losses, L1 loss
and adversarial loss [31]. An overall framework is illustrated
in Fig. 2.

A. Global Network

The global network takes a whole image as an input, and
predicts an overall depth structure at a global level. Although
the input and output differ in appearance, both are renderings
of the same scene. Thus, structure of the input RGB image is
roughly aligned with that of the output depth. We design the
global network under these considerations.

Many previous approaches [21], [24], [46] based on the
CNNs have used fully connected layers, which fix dimensions
of the input and throw away spatial coordinates. Instead,
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Fig. 2. The proposed deep variational model consists of three components. The global network uses a fully convolutional encoder-decoder architecture [29],
and first computes an overall depth structure f at a global level. The local network consists of 10 convolution layers with 3×3 filters, and predicts fine
details g in gradient domain. These complementary information are then merged in our integration network, where we unroll the optimization steps of the SB
iteration [28] for minimizing the variational problem of (1). The proposed method is able to learn an efficient parameterization of the model including the
filter coefficients and hyper-parameter λ in the variational problem of (1).

as shown in Fig. 2, we use a fully convolutional encoder-
decoder architecture [29] that takes the input of arbitrary
size and produces results proportional to the size of the
input images. The encoder consists of a series of three
3×3 convolutions and rectified linear unit (ReLU), followed by
2×2 max-pooling with stride 2 for downsampling. After each
downsampling step we double the number of feature channels.
We use the first five convolution layers and the following
pooling (called conv5 and pool5) in the VGG [41] architecture.
On the contrary, the decoder progressively enlarges the spatial
resolution of convolutional activations through a sequence of
deconvolution and convolution layers. The deconvolution layer
is implemented using the transposed convolution and fixed
(bilinear) filter kernel.

There is a great deal of low-level information shared
between RGB and depth images, e.g., the location of promi-
nent edges. Thus, it would be desirable to shuttle this infor-
mation directly across the network. To this end, we add skip
connections between convolution layers and their symmetric
deconvolution layers, as shown in Fig. 2. There are basi-
cally two ways to realize the skip connection: summation
and concatenation. We find that a simple element-wise sum
of activations works well in our experiments. Using such
connections boosts the performance and makes training the
very deep network easier [35]. The global network captures
the low-frequency structure accurately using a global view of
the input, but produces coarse depth image. In the following
sections, we will address this issue by developing local and
integration networks.

B. Local Network

It is well-known in literatures [41], [53] that there is a
trade-off between localization accuracy and the use of global
context in deep network. The global network employs a
series of convolution and max-pooling layers to robustly
estimate the global 3D layout of the scene. The subtle
details of the depth image, however, are lost during these
processes although we add the skip connections. Inspired
by [15], we additionally predict depth gradients by providing

a local region (RGB-patch) as input. Note that using gradient
information in the depth estimation is less sensitive to scene
characteristics of training data [15].

The key idea is that the local network act as a feature
extractor, which preserves the primary depth edges from the
input RGB meanwhile eliminating the unwanted oscillation
such as textures. The local network does not use pooling as
it usually discards useful details essential for single image
depth estimation. It consists of 10 convolution layers with
3×3 filters (a receptive field is of 21×21), followed by the
ReLU (see Fig. 2). Since depth gradients contains both positive
and negative values, the ReLU is not used for the last layer.
We use the batch normalization [38] to alleviate the internal
covariate shift by normalizing input distributions of every
layer to the Gaussian distribution. The output channel of
the local network is 2 for the horizontal and vertical depth
gradients. Note that the output manifold of local network
is topologically much simpler than that of global network,
since depth gradients are very sparse. We will show that
the local network with shallow and compact architecture can
capture depth gradients, and can improve the performance of
monocular depth estimation.

C. Integration Network

1) Formulation: Let f and g = [gh, gv ] be the outputs of
global and local networks, respectively. These complementary
outputs are then seamlessly combined at the integration net-
work. Formally, we solve the following variational problem to
estimate the final depth image u:

arg min
u

E(u) = ‖∇u − g‖1 + λ

2
‖u − f ‖2

2, (1)

where the first term denotes a fidelity term penalizing the
difference between the gradient of the estimated depth u and g.
The second one represents global prior knowledge about u,
so that u becomes close to f . λ > 0 is a constant to balance the
two terms, and is also learned in the deep network. ∇ denotes
the gradient operator in the discrete setting. Minimizing the
functional of (1) can be interpreted as the integration of
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gradient field g using the quadratic prior from f . This for-
mulation has a number of benefits over the simple Poisson
reconstruction of [15] which exploits depth gradients only.
First, the resulting depth image of [15] has scale ambiguity,
and thus should be intentionally re-scaled to a certain range.2

In contrast, the proposed method avoids such a problem by
introducing f as quadratic prior to force a unique solution.
Second, we use the L1 norm so as to reduce the influence of
outliers that may exist in the estimated gradient field g.

The functional of (1) is convex, but cannot be minimized
in a closed form. Thus, we choose Split Bregman (SB)
iterations [28], as it guarantees fast convergence. We first
replace (∇u − g) by d and add a penalty constant β, yielding:

min
u,d

‖d‖1 + β

2
‖d − (∇u − g) − b‖2

2 + λ

2
‖u − f ‖2

2 , (2)

where b = [bh, bv ]T is an auxiliary variable related to the
Bregman distance [28]. The optimization procedure to obtain
u is then given by:

uk+1 = arg min
u

β

2

∥
∥
∥dk − (∇u − g) − bk

∥
∥
∥

2

2
+ λ

2
‖u − f ‖2

2,

dk+1 = arg min
d

‖d‖1 + β

2

∥
∥
∥d − (∇uk+1 − g) − bk

∥
∥
∥

2

2
,

bk+1 = bk + (∇uk+1 − g) − dk+1, (3)

Our key observations are that (i) each computation steps in the
SB iterations [28] can be realized by layers of the CNNs and
(ii) given a fixed number of iterations, the optimization proce-
dure of (3) can be unrolled like the recurrent neural network
[30]. These allow us to use the back-propagation algorithm
to train the whole network end-to-end. A graphical depiction
of the integration network is illustrated in Figs. 2 and 5.
In the following, we detail how the individual steps in (3)
are realized within the deep network.

2) Unrolling: The u-update in (3) is quadratic and the
minimizer satisfies the following normal equations:

(λ + β�)uk+1 = λ f + β∇ · (dk + g − bk), (4)

where ∇· is the divergence operator, i.e., the adjoint of
the gradient, and � = ∇ · ∇ is the Laplacian operator.
In matrix/vector form, the left-hand side of (4) becomes a
block Toeplitz matrix, which can be diagonalized by the fast
Fourier transform (FFT). Therefore, the u-update step can be
implemented with three FFT calls and convolution layer that
has fixed filter coefficients for the divergence operator.

Regarding the d-update (basis pursuit problem), solutions
are obtained by element-wise shrinkage [28]:

dk+1
h = shrink(∇huk+1 − gh + bk

h, 1/β),

dk+1
v = shrink(∇vuk+1 − gv + bk

v , 1/β), (5)

where shrink(z, γ ) = z
|z| max(|z| − γ, 0). It is a composition

of element-wise division and max operator, and thus can be
implemented with a standard Hinge function shifted by 1/β.

2Since the objective function in [15] depends only on ∇u, their solution
can be estimated up to an additive ambiguity, i.e., u �→ u + c, where c is a
constant.

Fig. 3. The local network extracts depth gradients (d) from single RGB
image (a), and meanwhile eliminates the unwanted oscillation such as texture.
Note that g contains high-frequency gradients that do not coincide with
depth images but the integration network robustly suppresses these defects,
yielding the final depth prediction (f). (a) Input RGB. (b) Ground-truth. (c) f .
(d) Gradient (RGB). (e) g. (f) u.

Finally, the b-update is an element-wise sum of four inputs of
the same size.

In Fig. 3, we show the final and intermediate results from
our deep variational model. The global network predicts the
overall depth structure f (Fig. 3(c)) from a global perspective.
The local network eliminates the unwanted oscillation caused
by appearance (textures and colors), and extracts depth gradi-
ents g (Fig. 3(e)) from single image (Fig. 3(a)). It can be seen
that while the local network which is shallow and compact
can capture relative-depth information and fine detailes, g may
often contain spurious depth gradients due to its local nature.
However, our deep variational model robustly suppresses these
defects in the final depth prediction u (Fig. 3(f)).

D. Training

Given a large set of training samples, we now describe
the training procedure in detail to find optimal parameters
of our model. After pre-training, we fine-tune the whole
parameters jointly in the combination of two losses, L1 loss
and adversarial loss.

1) Pre-Training: It is possible to randomly initialize the
weights of our network and then train it end-to-end by
unrolling the finite number of SB iterations. In practice,
however, we observed that pre-training the global and local
networks increases the prediction accuracy and accelerates
convergence. We first apply the L1 loss directly for the global
network, minimizing:

Lglobal = 1

M

∑

p

‖ f (p) − D(p)‖1, (6)

where D denotes ground-truth depth image and M is the total
number of training samples. Similarly for the local network,
we minimize:

Llocal = 1

M

∑

p

‖g(p) − ∇D(p)‖1. (7)
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Fig. 4. Deep variational model trained with L1 reconstruction loss and
adversarial loss for single image depth estimation. Every convolution layers
in classifier are activated with LeakyReLU and batch-normalization layers.
The adversarial loss drives depth predictions towards the ground-truth depth
manifold, producing perceptually more convincing solutions.

A constant learning rate of 10−4 is used and momentum term
set to 0.9. Note that in this stage, we use different kinds
of input/output configurations for each network. The global
network is pre-trained with the RGB-D pairs of full-resolution,
exploiting global contextual information. On the other hand,
we pre-train the local network by providing a local region (i.e.,
color patch) as an input to further improve the localization
accuracy.

2) Loss Function: Recently, the adversarial loss [31], [32]
based on a discriminative classifier have been used for generat-
ing sharp and realistic images. The classifier C takes the depth
image u estimated from the integration network or the ground-
truth depth image D as an input, and decides where it comes
from. The adversarial loss is then defined as follows [31]:

Ladv = E
D∼pD

[log C(D)] + E
u∼pu

[log(1 − C(u))], (8)

where pz represents a probability distribution over the kinds of
data z. E is an expectation operator. The adversarial loss of (8)
enables one to train the CNNs, deceiving the discriminative
classifier C . That is, we can produce results that are highly
similar to the ground-truth depth images or indistinguish-
able by C . Following the architectural guidelines introduced
in [36], we build the classifier as in Fig. 4. It uses the
LeakyReLU activation with 0.2 slope, and the strided convo-
lution to reduce the spatial resolution instead of max-pooling.
We also add the batch normalization [38] to the output of
every convolution layer. The classifier C output a single scalar,
representing the probability that the input comes from the
ground-truth rather than pu .

Finally, we jointly train the deep variational model and
classifier C by combining the L1 loss and adversarial loss.
Thus, our final loss function is:

Ltotal = 1

M

∑

p

(

‖u(p) − D(p)‖1 + η log(1 − C(u(p)))
)

, (9)

where the constant η is set to 10−3. Note that the classifier C
is trained to maximize the adversarial loss of (8), and is
used during training only. We use the stochastic gradient
descent (SGD) and adaptively tune the learning rate beginning
from 10−3. After each 2 epoch, it decreases to 50 percent of
the previous learning rate.

Fig. 5. Back-propagation paradigm through the integration network. Each
layer in the integration network has closed form expressions for the gradients
of its inputs (see the text for more details). These gradients are then further
back-propagated onto the global and local networks that predict f and g.

E. Back-Propagation

Our model parameters in the global and local networks
are learned in an end-to-end fashion via the back-propagation
algorithm. For each layer in the network, we need to receive
the derivative of the final loss Ltotal with respect to its
output. The layers then compute the gradients of its inputs
and propagate them down through the network to the previous
layer (see Fig. 5 for the graphical depiction). The derivative
of Ltotal with respect to the output of integration network u
can be obtained as follows:

∂Ltotal

∂u
∝

∑

p

sgn(u(p) − D(p)) + η
∂Ladv

∂u
, (10)

where sgn(z) denote the signum function that returns the point-
wise sign of z.

To learn the parameters in the global and local networks,
we require the expressions of gradients in the layers of
integration network. We next derive these expressions.

1) u-Update Layer: Letting L = (λ + β�) and s = (λ f +
β∇ · (dk + g − bk)), the u−update layer then outputs uk+1 by
solving the linear system of (4), i.e., Luk+1 = s. This implies
the following relation:

∂Ltotal

∂s
= L−1 ∂Ltotal

∂uk+1 . (11)

We denote the index of SB iterations [28] as k = {1, . . . , K }.
Using the multivariate chain rule, the derivative of Ltotal with
respect to the inputs of u−update layer can be obtained as
follows (except for λ):

∂Ltotal

∂in
= ∂s

∂in

∂Ltotal

∂s
, (12)

where in = f, g,dk, or bk . Substituting (11) into (12), we can
compute ∂Ltotal/∂in. For instance, for the global and local
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predictions ( f and g), we have:

∂Ltotal

∂ f
∝ L−1

(
K

∑

k=1

∂Ltotal

∂uk

)

,
∂Ltotal

∂g
∝ ∇ ∂Ltotal

∂ f
(13)

We perform the summation over k since f and g contribute to
each u-update layer. Note that s is the linear combination of
in, and thus the derivatives of Ltotal with respect to dk and bk

are now straightforward to obtain. These derivatives are further
back-propagated onto the global and local networks or onto
the previous d− and b−update layers.

For λ, using the expression ∂ A−1/∂ A = −A−T ⊗ A−T

where ⊗ denotes the Kronecker product, we arrive at:

∂Ltotal

∂λ
∝

K
∑

k=1

{

( f − uk)
T

(

L−1 ∂Ltotal

∂uk

)}

. (14)

The detailed derivations of (14) is available in Appendix. With
the expression of (14), λ can be learned using gradient descent.
Note that, in (13) and (14), we do not mean back-propagating
through a multiplication of a matrix L−1. We instead obtain
∂Ltotal/∂ f by solving the linear system:

∂Ltotal

∂ f
∝ F−1

(∑

k F(∂Ltotal/∂uk)

F(L)

)

. (15)

Thus, both forward and backward steps in u−update layer can
be performed efficiently using the FFT.

2) d- and b-Update Layers: The d−update layer takes
uk+1, g, and bk and compute dk+1 using the shrinkage
operator [28]. Its back-propagation is easily defined via the
(absolute) indicator function I(|z| > 1/β) that returns 1 if the
argument is true, and 0 otherwise. The b−update layer consists
of element-wise summation, and thus its back-propagation is
trivial. We initialize d1 and b1 with zero vectors.

IV. EXPERIMENTAL VALIDATION

In this section, we present an exhaustive experimental
evaluation of the proposed deep variational model for single
image depth estimation. We report the quantitative and qual-
itative comparison with the state-of-the-art methods in both
indoor and outdoor scenes. For the quantitative comparison,
we employ several metrics which have been used in prior
works [21], [24]:

• Threshold: % s.t. max
(Di

ui
, uiDi

)

= δ < thr

• abs rel: 1
N

∑

i |Di − ui | /Di

• sqr rel: 1
N

∑

i ‖Di − ui‖2/Di

• RMS(lin):
√

1
N

∑

i ‖Di − ui‖2

• RMS(log):
√

1
N

∑

i ‖logDi − log ui‖2

• log10: 1
N

∑

i

∣
∣log10Di − log10ui

∣
∣

where ui denotes the predicted depth at pixel indexed by i ,
and N is the total number of pixels.

For the implementation of the proposed method, we use the
MatConvnet library [40], and train on 12GB NVIDIA GeForce
GTX Titan. The encoder part of global network is initialized
by the VGG [41] model pre-trained on the ILSVRC [42]

dataset for image classification. We use the random initial-
ization using Gaussian distributions for the decoder part and
local network. Regarding the integration network, we initially
set λ = 0.01, fix β = 10 and unroll the 10 SB iterations [28].
The u-update step is performed by GPU-enabled FFT function
built in the MATLAB with the periodic boundary condition. In
all cases, the momentum and weight decay parameters are set
to 0.9 and 0.0005, respectively. The source codes for training
and testing will be made publicly available.3

A. NYU v2 Depth Dataset

The proposed method is first applied to depth prediction
on NYU v2 depth dataset [39] that consists of 0.5 million
RGB-D images of indoor scenes. Among the entire
NYU v2 dataset [39], we sample 0.12 million training
RGB-D pairs using the official training/testing scene split.
The RGB-D pairs are resized to 256×320 pixels for the
efficient training. In this setting, we train our model with a
batch size of 16 for 10 epochs jointly. We then use the common
654 test image including filled-in areas with colorization
technique [54], but constrained to the axis-aligned rectangle as
in [21]. We validate the performance of the proposed method
against several state-of-the-art methods, including depth
transfer (DT) [10], Im2Depth [26], Ladicky et al. (POP) [43],
Liu et al. (DCNF) [24], Chen et al. (DPW) [22],
Laina et al. (FCRN) [23], Chakrabarti et al. (HOP) [25],
and Eigen and Fergus [21]. All methods including ours are
data-driven approaches using a large scale RGB-D training
database. Specifically, the first method [10] is based on the
non-parametric sampling, the second one [26] corresponds
to synergetic approach, and the others are the parametric
learning methods. Especially, the last five methods use
the deep neural network (CNN) for single image depth
estimation. The results for the comparison with other methods
are obtained from source codes provided by the authors, or
are taken from their project websites.4 We do not include
any post-processing for fair comparison. Since the network
output of the MSC [21] is 109 × 147 pixels, we bilinearly
upsample the results and fill the missing border using joint
bilateral filters [14]. Note that the MSC [21], DPW [22],
and ours are trained on the full NYU v2 [39] training set
(0.12 million images). However, the DCNF [24] is trained on
RGB-D patches from the standard training set (795 images).

Table I compares the quantitative results of the proposed
method and the state of the art. The best results for each
metric are highlighted in bold. Since the DPW [22] predicts
ordinal depth value only, quantitative results are obtained by
normalizing the predictions such that the mean and standard
deviation are the same as those of the mean depth image
of the training set. This table shows that the CNNs-based
methods [21]–[25] tend to give better quantitative results than
non-parametric sampling [10] and boosted classifier [43], but
that our deep variational model outperforms all methods. For
the threshold metric, we outperform other methods until the

3http://diml.yonsei.ac.kr/DIML_singleDepth.
4https://www.cs.nyu.edu/∼deigen/depth/
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TABLE I

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD AGAINST THE STATE OF THE ART ON 654 NYU V2 [39] TEST IMAGES.
FOR THE REPORTED METRICS ABS REL, SQR REL AND RMS LOWER IS BETTER, IN CONTRAST FOR THE THRESHOLD (δ) HIGHER

IS BETTER. THE RESULTS OF DPW [22] ARE OBTAINED BY ADJUSTING THE MEAN AND STANDARD DEVIATION TO

BE SAME AS THOSE OF THE MEAN DEPTH IMAGE OF THE TRAINING SET

Fig. 6. Visual comparison of the single image depth estimation on NYU v2 dataset [39]: (a) the input single image, (b) the ground-truth, (c) DCNF [24],
(d) DPW [22], (e) MSC [21], and (f) the proposed method. The proposed method produces visually more plausible predictions with sharp depth transitions,
aligning to RGB details. Since the network output of the MSC [21] is 109 × 147 pixels, we bilinearly upsample the results.

tolerance δ reaches 1.252, and after that the CNNs-based
methods show the similar performance.

Figure 6 shows a visual comparison of the single image
depth estimation on NYU v2 [39] test images. It clearly
demonstrates that the proposed method yields visually com-
pelling predictions with sharp depth transitions, aligning to
RGB details. The CNNs-based methods [21], [22] usually lack
imposing the regularity constraint that encourage spatial and
appearance consistency of the output. In contrast, our method
equipped with variational minimization of (1) avoids such
problem (see Fig. 6, e.g., the human boundary and books on
the desk). The MSC [21] progressively refines the prediction
using 3-scale deep network but the output depth image is still
visually unsatisfactory, often resulting in poor boundary local-
ization and spurious regions. The DCNF [24] has relatively

sharper depth transitions compared to [21] and [22] thanks
to superpixel segmentation, but includes false texture edges.
The superpixel-wise prediction of [24] is problematic in a
textured surface where the assumption of appearance-depth
correlation is violated. We also observe that the predictions of
neighbouring superpixles are spatially inconsistent although
they learn the pairwise potentials of the CRF. Similar to [15]
the DPW [22] predicts ordinal relations of depth images
only using a ranking loss that encourages a small difference
between depths if the ground-truth relation is equality. We
see that the method [22] has difficulties in estimating accurate
metric depth from the input image.

Figure 7 compares the 3D reconstruction quality of the pro-
posed method and the state-of-the-art methods. Depth values
are normalized between [0, 255] for the visualization purpose.
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Fig. 7. Visual comparison of the 3D reconstruction on the NYU v2 dataset [39]: (a) the input single image, (b) the ground-truth, (c) DCNF [24], (d) MSC [21],
and (e) the proposed method. Aside from sharp depth discontinuities, our method produces a much more accurate 3D reconstruction compared to the other
deep learning-based approaches. Depth values are normalized between [0, 255] for visualization purposes.

TABLE II

THE RESULTS OF ABLATION STUDY ON THE NYU DATASET [39].
JT DENOTES THE JOINT TRAINING. FOR GLOBAL + LOCAL

NETS W/O JT, WE MANUALLY CHOOSE THE BALANCING

PARAMTER λ, SHOWING THE LOWEST RMS(LIN) VALUES

It can be seen that, aside from sharp depth discontinuities, our
method produces a much more accurate 3D reconstruction than
other methods.

B. Ablation Study

We conduct ablation studies to analyze the contributions
of our approach with different training schemes. Specifically,
we compare the results on NYU v2 dataset [39] with the
following parts stripped off: local network, adversarial loss,
and joint training of the whole model. All variants were
initialized with the VGG model and were trained identically
with the same training schedule. We show the quantitative
evaluation in Table II. “Global + local nets w/o JT” in Table II
denotes that we separately train the global and local networks
and minimize the variational energy of (1), i.e., there is
no backpropagation through the integration network. In this
case, the balancing paramter λ is chosen manually, showing
the lowest RMS(lin) values. “Ours” in Table II denotes the
full method. All components are useful for monocular depth
estimation. However, we found that using larger values of η
than 10−3 decreases the performance and makes the training
unstable. We therefore set η to 10−3. The integration of
metric- and relative-depth information has the most impact
on performance, and joint training of the whole model results

Fig. 8. Analysis on the number of SB iterations both at training and testing:
(Left) RMS(lin) according to the number of SB iterations both at training and
testing. (Right) the convergence behavior of integration network at testing.
We use the model trained with K = 10 for testing.

in the further improvement. In the end-to-end joint training,
the parameters of our model including λ get optimized to
increase the overall accuracy.

Additionally, we analyze the influence of number of SB
iterations at both training and testing. To this end, we trained
our model with K = [1, 3, 5, 10, 15, 20], and compared the
performances. Figure 8(a) shows the results for different K at
training (blue line) and testing (red line). It can be observed
that the larger K at training improves the performance, but
the gain is saturated after K = 10 iterations. We thus choose
K = 10. This offers the best trade-off between computational
complexity and accuracy in our experiments. Figure 8(b)
shows how the differences

∥
∥uk+1 − uk

∥
∥

1 evolve at each testing
iteration. The integration network converges around K = 10
that was used for training. It is consistent with the results
that more iterations at testing do not improve the performance
further (see the red line of Fig. 8(a)).

C. Make3D Dataset

Here, we evaluate our method on the Make3D dataset [17]
that contains 534 RGB-D pairs depicting outdoor scenes. We
use the official training/test split provided with the dataset [17],
i.e., 400 RGB-D pairs for training and 134 for testing.
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Fig. 9. Visual comparison of the single image depth estimation on the MAKE3D dataset [17]: (a) the input single image, (b) the ground-truth, (c) DCNF [24],
(d) DPW [22], and (e) the proposed method. We mask out the regions that correspond to distances larger than 70 meters in the ground-truth. Since the network
output of the FCRN [21] is 115 × 86 pixels, we bilinearly upsample the results to 256×192. The figure is best viewed in color (all colormaps are not scaled
for fair comparison).

Data augmentation [21] is performed to increase the number
of training samples:

• Rotation: Training pairs are rotated by [−5, 5] degrees.
• Scaling: Training pairs are scaled by s ∈ [1, 1.5] times,

and the depths are divided by s.
• Color shift: Input values are multiplied by a random

value ∈ [0.8, 1.2] for each channel separately.
• Flip: Training pairs are horizontally flipped with

0.5 probability,
resulting in around 20K training samples. The ground-truth
depth image is of size 305×55, but the RGB image originally
has 1704×2272 resolution. All training pairs are resized to
256×192 for an efficient implementation. Due to limitations of
the depth sensing device used for capturing ground-truth depth
data, objects that are more than 80 meters (e.g., trees behind
the arch and windows in building in Fig. 9) are all equally
mapped to a single distance of 80 meters. Thus, we masked
out pixels of distances over 70 meters. With this processing
step, we train our model for 40 epochs.

In Fig. 9, we qualitatively compare the results obtained by
our method to the publicly available results of [23] and [24].
Due to the low visibility of Make3D dataset [17], the depth
images are pseudo-colored using ColorJet. Our model pro-
duces predictions that well capture local details aligning with
the ground-truth depth images. Furthermore, the predicted
metric depth by our method is most similar to that of the
ground-truth (all colormaps are not scaled for fair comparison).
The DCNF [24] fails to obtain spatially consistent results for
foreground objects, e.g., tree and building, and is perturbed
by imprecise over-segmentation. The FCRN [23] occasionally
mis-estimates the global depth scale (the last row in Fig. 9)
and smooths depth discontinuities.

TABLE III

QUANTITATIVE COMPARISON OF SINGLE IMAGE DEPTH ESTIMATION

ON 134 MAKE3D [17] TEST IMAGES. SINCE THE FAR-AWAY OBJECTS
ARE ALL MAPPED TO THE ONE DISTANCE OF 80 METERS,
ERRORS ARE CALCULATED ONLY IN THE REGIONS WHERE

THE GROUND-TRUTH DEPTH LESS THAN 70 METERS

The quantitative results of the proposed method and the state
of the art are reported in Table III. The numbers in brackets
represent the results of ours obtained without adversarial
loss Ladv . Compared to the FCRN [23], we get better abs
rel and RMS(log) errors but degraded RMS(lin). This can
be explained by the limitations of Make3D dataset [17] that
depth measurement is not accurate and depth borders in the
ground-truth are not accurately registered to the color image.
For similar reasons, the adversarial learning does not show a
significant performance gain on this dataset [17].

D. KITTI Dataset

We further present results for the KITTI dataset [44],
which consists of outdoor scenes with depths captured by the
Velodyne LiDAR [45]. Since there is no official split for the
raw data, we use the same split from Eigen [46] resulting
in 697 and 33K images for testing and training, respectively.
The RGB images are originally 375×1242, and are resized
to 192×512 (about half-resolution) for the network inputs.
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Fig. 10. Visual comparison of the single image depth estimation on the KITTI dataset [44]: (a) the input single image, (b) the ground-truth, and (c) the
proposed method. We use the test/training split of 697 images as proposed by Eigen [46]. Since the ground-truth (velodyne depth) is very sparse, we interpolate
it for visualization purposes. The figure is best viewed in color.

To generate the ground-truth depth images, we reproject the
3D points from the Velodyne LiDAR [45] to the left color
camera. The velodyne LiDAR [45], however, produces sparse
depth values for less than 20∼30% of the pixels in half-
resolution. Aside from this, the depth values are provided only
at the bottom part of the RGB image (see Fig. 10(b)). Thus,
we adopt an alternative approach for generating training data.

Given the rectified stereo image pairs from the KITTI
dataset [44], we first generate disparity map using the offline
stereo matching method, called MC-CNN [48], which employs
deep neural networks for measuring similarity between two
patches. Specifically, the cost volume filtering of [49] and
semi-global matching method [50] are applied to the raw
matching cost computed from CNNs [48]. We then recover a
depth image using calibration parameters (baseline and focal
length) of the rectified stereo image pairs. It is important
to note that our training data is converted from disparity
maps, and thus may contain large quantization errors espe-
cially when the disparity value is small, i.e., an object is far
away. However, we found that depth images obtained by the
MC-CNN method [48] works well for training our model.
More sophisticated global stereo methods considering slanted
surface or providing sub-pixel precision could be employed
to further improve the depth accuracy of the training data.
We reserve this as future works. Our model was trained with
a batch size of 8 for 10 epochs. The adversarial loss Ladv is
not applied to the KITTI dataset [44] as we artificially generate
the training data.

Figure 10 shows examples of predictions on the KITTI
dataset [44]. We interpolate sparse Velodyne [45] depths
for the visualization purpose, as shown in Fig. 10(b). It
shows that the proposed method produces sharp transitions,
particularly near the road and car edges. As we use RGB-D
training data generated from stereo matching method [48],
it is possible to predict depths at the upper part of the
RGB image (Fig. 10(c)) although they do not exist in the
KITTI dataset [44] (Fig. 10(b)). A qualitative comparison to
Garg et al. [47] is shown in Fig. 11. Garg et al. [47] proposed
the unsuperivsed reconstruction loss for monocular depth
estimation, penalizing photometric errors between stereo pairs.
This enables to learn the network without ground-truth depth
images [47]. However, the reconstruction loss prefers smooth

Fig. 11. Effectiveness of our approach for generating training label: (a) the
input single image, (b) the ground-truth, (c), the result of Garg et al. [47],
and (d) the proposed method. We use the MC-CNN [48] stereo matching
algorithm to generate the training data. This enables us to predict depths
within the upper part of the RGB image.

TABLE IV

QUANTITATIVE COMPARISON OF SINGLE IMAGE DEPTH ESTIMATION
ON 697 KITTI DATASET [44] TEST IMAGES (EIGEN SPLIT [46]).

[47] SET THE MAXIMUM OUTPUT DEPTH RANGE TO 50m

depth transitions due to occlusions, as shown in Fig. 11(c).
The proposed method achieves superior qualitative results
(Fig. 11(d)) on the KITTI dataset [44].

The quantitative results using the ground-truth depths
obtained from Velodyne [45] are reported in Table IV.
Garg et al. [47] obtains lower RMS(lin) error compared to ours
(they set the maximum output depth range to 50m). We conjec-
ture that it is because our pseudo ground-truth contains large
quantization erros when the disparity value is small. However,
in RMS(log) and abs rel in which large errors are penalized
the proposed method achieves comparable performance.

E. DIML Kinect v2 Dataset

For a more comprehensive comparison of single image
depth estimation, we perform additional experiments on our
own RGB-D dataset [52].
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Fig. 12. Sample RGB-D pairs from our Kinect v2 dataset (DIML [52]). We provide synchronized RGB-D frames from Kinect v2, consisting of more than
200 indoor scenes. Our scenes are captured at various places, e.g., offices, rooms, dormitory, exhibition center etc.

Fig. 13. Normalized color histograms for 15K training images. (a) NYU v2
dataset [39] and (b) Our DIML dataset [52]. The color distribution of our
DIML dataset [52] is very different from that of the NYU v2 [39] dataset.

1) Data Capturing: We captured the RGB-D images of
various indoor scenes using the Kinect v2 (time-of-flight sen-
sor) camera. The scenes were captured steadily with a tripod.
Our scenes are from a variety of categories, including living
room, cafe, corridor, kitchen, store, and classroom. The total
numbers of category and scene are 18 and 283, respectively
and the entire raw data contains 0.22 million RGB-D images.
We provide the official training/testing split (0.15 million for
training and 70K for testing). The color image is originally
captured with 1080×1920 resolution and the depth image is
of size 424×512 resolution. The captured depth values range
from 0.5m to 7m.

For the registration, we first calibrate RGB and IR cameras
using [51] and then estimate shift coefficient between IR and
depth images. After projecting depth values to a color image
domain, we discard the region exceeding the field of view of
IR camera and resize the depth image to match the aspect ratio
of color camera. The RGB and depth images are thus of size
756×1344 and 288×512, respectively. Sample RGB-D images
are shown in Fig. 12.

2) Further Experiments: As shown in Fig. 13, the color
distribution of our DIML dataset [52] is very different from
that of the NYU v2 [39] dataset. To analyze the sensitivity
of single image depth estimation on scene characteristics of
training data, we first test on the DIML dataset [52] using the
model only trained on the NYU v2 [39]. Quantitative results on
our 503 test images are reported in Table V. All methods show
degraded performance compared to when they are tested on
the NYU v2 [39] test data in Table I. However, we see that our
deep variational model outperforms all other existing methods.
Finally, we fine-tune the NYU v2 pre-trained model using the
whole 0.15 million training pairs in the DIML dataset [52].
The RGB-D pairs are resized to 192×384 for the network

TABLE V

QUANTITATIVE COMPARISON OF SINGLE IMAGE DEPTH ESTIMATION ON

503 KINECT V2 DATASET [52] TEST IMAGES. FOR ALL METHODS,
WE USE THE MODEL TRAINED ON THE NYU V2 DATASET [39]

ONLY. OUR TEST IMAGES ARE AVAILABLE AT [52]

Fig. 14. (a) Input single RGB and (b) depth prediction. Fine-tuning the
NYU v2 pre-trained model on our dataset produces visually plausible depth
prediction for the test set that was captured on different locations and times.

inputs. We show qualitative results in Fig. 14. Our fine-tuned
model produces visually plausible depth prediction for the test
set that was captured at different locations and times.

V. CONCLUSION

In this paper we have introduced a deep variational model
for single image depth estimation. Inspired by the depth
analogy [15], we predict depth gradients using deep networks
and use it as the local cues. A global and coarse depth
prediction is further estimated to resolve the scale ambiguity
arising when recovering depth values from depth gradients.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:02:27 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: DEEP MONOCULAR DEPTH ESTIMATION VIA INTEGRATION OF GLOBAL AND LOCAL PREDICTIONS 4143

These complementary predictions are integrated in a unified
deep CNN framework for estimating the final depth image.
We showed that the whole network parameters can be trained
in an end-to-end manner by unrolling the optimization steps
of the SB iteration. We also offered Kinect v2 RGB-D dataset,
capturing 283 diverse indoor scenes. The raw dataset consists
of 0.22 million RGB-D pairs. Experimental results demon-
strate the flexibility and effectiveness of the proposed method
in several benchmarks including both indoor and outdoor
scenarios. In future work, we plan to apply the proposed
method to other dense prediction tasks, such as semantic
segmentation and motion estimation.

APPENDIX

Consider the single step of SB iterations [28]. With the
multivariate chain rule, we have the following expression for
the derivative of Ltotal with respect to λ:

∂Ltotal

∂λ
= ∂L

∂λ

∂u

∂L

∂Ltotal

∂u
+ ∂h

∂λ

∂u

∂h

∂Ltotal

∂u

= ∂L

∂λ

∂Ltotal

∂L
+ ∂h

∂λ

∂Ltotal

∂h
, (16)

where L = (λ + β�) and h = λ f + β∇ · (dk + g − bk).
The second term in (16) is:

∂h

∂λ

∂Ltotal

∂h
= f T (L−1 ∂Ltotal

∂u
). (17)

Next, we derive ∂Ltotal
∂L for the first term in (16). Using (4) and

the identity ∂ A−1/∂ A = −A−T ⊗ A−T [55], we obtain:

∂Ltotal

∂L
= −

(

L−1 ∂Ltotal

∂u

)

⊗ u. (18)

Note that since λ is spatially invariant and the off-diagonal
elements of L do not depend on λ, the first term in (16) can
be computed more efficiently as follows:

∂L

∂λ

∂Ltotal

∂L
= −uT

(

L−1 ∂Ltotal

∂u

)

. (19)

Substituting (17) and (19) into (16), we finally conclude:

∂Ltotal

∂λ
= ( f − u)T

(

L−1 ∂Ltotal

∂u

)

. (20)
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