
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018 1713

Fast 2D Complex Gabor Filter With
Kernel Decomposition

Jaeyoon Kim, Suhyuk Um, and Dongbo Min , Senior Member, IEEE

Abstract— 2D complex Gabor filtering has found numerous
applications in the fields of computer vision and image processing.
Especially, in some applications, it is often needed to compute 2D
complex Gabor filter bank consisting of filtering outputs at mul-
tiple orientations and frequencies. Although several approaches
for fast Gabor filtering have been proposed, they focus primarily
on reducing the runtime for performing filtering once at specific
orientation and frequency. To obtain the Gabor filter bank,
the existing methods are repeatedly applied with respect to
multiple orientations and frequencies. In this paper, we propose
a novel approach that efficiently computes the 2D complex
Gabor filter bank by reducing the computational redundancy
that arises when performing filtering at multiple orientations and
frequencies. The proposed method first decomposes the Gabor
kernel to allow a fast convolution with the Gaussian kernel in
a separable manner. This enables reducing the runtime of the
Gabor filter bank by reusing intermediate results computed at
a specific orientation. By extending this idea, we also propose a
fast approach for 2D localized sliding discrete Fourier transform
that uses the Gaussian kernel in order to lend spatial localization
ability as in the Gabor filter. Experimental results demonstrate
that the proposed method runs faster than the state-of-the-art
methods, while maintaining similar filtering quality.

Index Terms— 2-D complex Gabor filter, 2-D complex Gabor
filter bank, 2-D localized sliding discrete Fourier trans-
form (SDFT), kernel decomposition.

I. INTRODUCTION

THANKS to the property of effectively extracting locally-
varying structures from an image, 2-D complex Gabor

filter has been widely used in a great variety of applications
of computer vision and image processing, including texture
analysis [1]–[3], face recognition [4]–[8], face expression
recognition [9], [10] and fingerprint recognition [11]. It was
known in [12], [13] that image analysis approaches based

Manuscript received April 20, 2017; revised October 17, 2017 and
November 24, 2017; accepted November 24, 2017. Date of publication
December 14, 2017; date of current version January 12, 2018. This work
was supported by the Basic Science Research Program through the National
Research Foundation of Korea under Grant NRF-2015R1D1A1A01061143.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Alin M. Achim. (Jaeyoon Kim and Suhyuk Um
contributed equally to this work.) (Corresponding author: Dongbo Min.)

J. Kim is with the Department of Computer Science, KAIST,
Daejeon 34141, South Korea (e-mail: wodbs135@naver.com).

S. Um is with the Department of Computer Science and Engineer-
ing, Chungnam National University, Daejeon 34134, South Korea (e-mail:
suhyuk1104@gmail.com).

D. Min is with the Department of Computer Science and Engi-
neering, Ewha Womans University, Seoul 03760, South Korea (e-mail:
dbmin99@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2783621

on the Gabor filter conceptually imitate the human visual
system (HVS). The Gabor basis function defined for each pixel
offers good spatial-frequency localization capability [14]. The
2-D complex Gabor filter is particularly useful for extracting
a set of features at multiple orientations and frequencies from
an image [15].

Performing 2-D complex Gabor filtering for all pixels
over an entire image, however, often provokes a heavy com-
putational cost. With the Gabor kernel defined at specific
orientation and frequency, filtering is performed by moving
a reference pixel one pixel at a time. The complex Gabor
kernel hinders fast filtering in the context similar to edge-aware
filters [16]–[18] widely used in computer vision applications.

To expedite 2-D complex Gabor filtering, several efforts
have been made, for instance, by making use of fast
Fourier transform (FFT), infinite impulse response (IIR) fil-
ters, or finite impulse response (FIR) filters [19]–[22]. It was
shown in [19] that Gabor filtering for a 1-D signal of N sam-
ples can be performed with the same complexity as the FFT,
O(NlogN). In [20], separable FIR filters are applied to per-
form fast 2-D complex Gabor filtering by exploiting particular
relationships between the Gabor parameters in a multiresolu-
tion pyramid. This method, however, works only for the partic-
ular setting of the Gabor parameters, e.g., scale of 2i with an
integer i . Young et al. [21] decomposed the Gabor filter with
multiple IIR filters through z-transform, and then performed
the recursive filtering in a manner similar to recursive Gaussian
filtering [23]. To the best of our knowledge, the fastest
algorithm is the work of Bernardino and Santos-Victor [22]
that decomposes Gabor filtering into more efficient Gaussian
filtering and sinusoidal modulations. It reduces the number
of arithmetic operations by 39% compared to [21]. In [24],
the 2-D Gabor filter is decomposed into three 1-D filters,
and each filter is implemented on graphics processing units
(GPUs). In [25], the Gabor filter with an anisotropic Gaussian
kernel is accelerated by approximating the Gabor kernel into
two separable 1-D convolutions, which can be efficiently
implemented on GPUs. Note that the method employs an
elongated Gaussian kernel and thus approximates it through
more complicate operation such as singular value decomposi-
tion (SVD) [25].

These approaches aim to reduce the runtime required when
performing 2-D complex Gabor filtering once at specific
orientation and frequency. However, some computer vision
applications require computing the 2-D complex Gabor filter
bank consisting of filtering outputs at multiple orientations and
frequencies in order to cope with geometric variation [3]–[5],

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4825-5240


1714 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Fig. 1. Example of the 2-D complex Gabor filter bank with 40 coeffi-
cients (5 frequencies and 8 orientations). The coefficients are computed by
ω = 2−(i+2)/2 (i = 0, ..., 4), θ = kπ/8 (k = 0, ..., 7) and σ = 2π2/ω [4].

[7], [8], [15], [26]. For instance, face recognition approaches
relying on the Gabor feature usually perform filtering at
8 orientations and 5 frequencies (totally, 40 Gabor feature
maps) [4], [5], [7], [8], [26]. Fig. 1 shows the example of
the Gabor filter kernels. To compute the Gabor filter bank,
existing approaches [21], [22] repeatedly perform filtering
for a given set of frequencies and orientations, disregarding
the computational redundancy that exists in such repeated
calculations.

In this paper, we propose a novel approach that efficiently
computes the 2-D complex Gabor filter bank. The Gabor
kernel is first decomposed using the trigonometric identities
in order to perform a fast Gaussian convolution in a separable
manner. This leads to a substantial reduction of the computa-
tional complexity when performing Gabor filtering at a set of
orientations and frequencies. Specifically, intermediate results
of Gabor filtering computed at a specific orientation are reused
when performing filtering at its symmetric orientation. We will
show that the proposed method runs faster when compared to
state-of-the-art methods [21], [22], while maintaining similar
filtering quality.

It is generally known that good spatial localization of
the Gabor filter stems mainly from the use of the Gaussian
kernel that determines an weight based on a spatial distance.
We demonstrate that the fast computation of the 2-D localized
sliding discrete Fourier transform (SDFT) using the Gaussian
kernel is also possible using our kernel decomposition strategy.
This lends spatial localization ability as in the Gabor filter to
DFT results. Although numerous methods for fast 2-D SDFT
have been proposed [27]–[29], they should use the box kernel
within a sliding transform window. For instance, the relation
between two successive 2-D DFT outputs is first derived using
a circular shift property, and the 2-D DFT output at the
current window is efficiently updated by linearly combining
the 2-D DFT output at the previous window and one 1-D DFT
result [29]. Note that the circular shift property holds only
when the box kernel is used. Therefore, it is infeasible to use
the existing 2-D SDFT methods [27]–[29] for calculating the
2-D localized DFT outputs using the Gaussian kernel. It should

be noted that existing fast 2-D complex Gabor filters [21], [22]
can be readily used to compute the 2-D localized SDFT, but
our method still runs much faster due to the similar reason to
the Gabor filter bank.

To sum up, our contributions can be summarized as follows.

• A new method is presented for efficiently computing the
2-D complex Gabor filter bank.

• The proposed method is extended into the 2-D localized
SDFT.

• Extensive comparison with state-of-the-arts approaches is
given in both analytic and experimental manners.

The rest of this paper is organized as follows. In Section II,
we present the novel approach that efficiently computes the
2-D complex Gabor filter bank. In Section III, the proposed
approach is extended to accelerate the 2-D localized SDFT.
Section IV presents experimental results including runtime
and filtering quality comparison with state-of-the-arts methods.
Section V concludes this paper with some remarks.

II. FAST 2-D COMPLEX GABOR FILTER BANK

This section presents a new method that efficiently computes
the 2-D complex Gabor filter bank consisting of filtering
outputs at multiple orientations and frequencies. We introduce
the Gabor kernel decomposition method and then show how
it can be used for fast computation of the Gabor filter bank.
Note that similar 1-D separable implementation was also used
in [21] for fast Gabor filtering, but they do not consider the
computational redundancy that exists in computing the Gabor
filter bank.

For orientation θ and frequency ω = 2π/λ with wave-
length λ, a 2-D complex Gabor filtering output Fω,θ,σ of a
2-D image f is written as

Fω,θ,σ (x, y)=
∑

k,l

f (k, l)Cω,θ (x −k, y−l)Gσ(x −k, y−l)

(1)

where Gσ (x, y) is 2-D Gaussian function with zero mean and
the standard deviation of σ . Here, an isotropic Gaussian kernel
with the same standard deviation for both x and y dimensions
is used as in existing methods [21], [22], i.e., Gσ (x, y) =
Sσ (x)Sσ (y). The complex exponential function is defined as
Cω,θ (x, y) = Hω,θ (x)Vω,θ (y), where Hω,θ (x) = eiωx cos θ and
Vω,θ (y) = eiωy sin θ .

A. Kernel Decomposition

Since Gσ (x, y) and Cω,θ (x, y) are separable for x and y
dimensions, (1) can be rewritten as

Jω,θ,σ (x, y) =
∑

k

f (k, y)Hω,θ (x − k)Sσ (x − k), (2)

Fω,θ,σ (x, y) =
∑

l

Jω,θ,σ (x, l)Vω,θ (y − l)Sσ (y − l), (3)

Jω,θ,σ is first computed by performing 1-D horizontal Gabor
filtering, and this is then used in 1-D vertical filtering for
obtaining the final Gabor output Fω,θ,σ .

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: FAST 2D COMPLEX GABOR FILTER WITH KERNEL DECOMPOSITION 1715

1) 1-D Horizontal Gabor Filtering: We first present the
efficient computation of Jσ,ω,θ in (2) based on the kernel
decomposition. We also omit y in Jσ,ω,θ and f as the 1-D
operation is repeated for y = 1, ..., H . Using the trigonometric
identity, we can simply decompose (2) into two terms as

R{Jω,θ,σ (x)} = cos(ωc
θ x)

∑

k

fc(k)Sσ (x − k)

+ sin(ωc
θ x)

∑

k

fs(k)Sσ (x − k), (4)

I{Jω,θ,σ (x)} = − cos(ωc
θ x)

∑

k

fs(k)Sσ (x − k)

+ sin(ωc
θ x)

∑

k

fc(k)Sσ (x − k), (5)

where ωc
θ = ω cos θ , fc(k) = f (k) cos(ωc

θ k), and fs(k) =
f (k) sin(ωc

θ k). R(J ) and I(J ) represent the real and imagery
parts of J , respectively. (4) and (5) can be simply computed
by applying the 1-D Gaussian smoothing to two modulated
signals fc and fs . Here, we adopted the recursive Gaussian
filtering proposed in [30], where the computational complexity
per pixel is independent of the smoothing parameter σ .

2) 1-D Vertical Gabor Filtering: After J (x, y) is computed
using (4) and (5) for all y = 1, .., H , we perform 1-D
Gabor filtering on the vertical direction using (3). Using the
trigonometric identity, we decompose the real and imagery
parts of F in (3) as follows:

R{Fω,θ,σ (x, y)} = cos(ωs
θ y)

(
f ′
cr (x, y) + f ′

si (x, y)
)

+ sin(ωs
θ y)

(
f ′
sr (x, y) − f ′

ci (x, y)
)
, (6)

I{Fω,θ,σ (x, y)} = sin(ωs
θ y)

(
f ′
cr (x, y) + f ′

si (x, y)
)

− cos(ωs
θ y)

(
f ′
sr (x, y) − f ′

ci (x, y)
)
, (7)

where ωs
θ = ω sin θ . Here, f ′

cr , f ′
sr , f ′

ci , and f ′
si are filtering

results convolved with 1-D Gaussian kernel Sσ as follows:

f ′
cr (x, y) + f ′

si (x, y) =
∑

l

( fcr (x, l) + fsi (x, l))Sσ (y − l),

f ′
sr (x, y) − f ′

ci (x, y) =
∑

l

( fsr (x, l) − fci (x, l))Sσ (y − l),

(8)

where the modulated signals fcr , fsr , fci , and fsi are defined
as

fcr (x, y) = R{Jω,θ,σ (x, y)} cos(ωs
θ y),

fsr (x, y) = R{Jω,θ,σ (x, y)} sin(ωs
θ y),

fci (x, y) = I{Jω,θ,σ (x, y)} cos(ωs
θ y),

fsi (x, y) = I{Jω,θ,σ (x, y)} sin(ωs
θ y). (9)

Like the horizontal filtering, two 1-D Gaussian convolu-
tions are required in (6) and (7), i.e., f ′

cr (x, l) + f ′
si (x, l)

and f ′
sr (x, l) − f ′

ci (x, l). In short, decomposing the complex
exponential basis function Cω,θ enables us to apply the fast
Gaussian filtering [30].

B. Fast Computation of 2-D Complex Gabor Filter Bank

Here, we show the kernel decomposition can be used to
reduce the computational complexity when computing the 2-D

Fig. 2. Log polar grid of the 2-D complex Gabor filter bank and the rectan-
gular grid of the 2-D localized SDFT. (a) 5 frequencies and 8 orientations,
(b) 8 × 8 window (M = 8). In the log polar grid, two 1-D horizontal Gabor
outputs are complex conjugate, i.e., Jω,θ,σ = J∗

ω,π−θ,σ , when ω is fixed.
In the 2-D SDFT, Ju = JM−u holds for v = 0, ..., M −1. These intermediate
results can be reused in the computation of the Gabor filter bank and the 2-D
localized SDFT. Note that though the number of orientations and M are set to
even in (a) and (b), the proposed method is applicable regardless of whether
they are even or odd.

complex Gabor filter bank (see Fig. 1). For a specific frequency
ω, we aim at computing the Gabor filter bank at N orientations
{πk

N |k = 0, ..., N − 1}, and this is repeated for all frequencies.
Fig. 2 (a) visualizes the log polar grid used in the Gabor filter
bank with 5 frequencies and 8 orientations. For the simplicity
of notation, we omit ω and σ in all equations. We assume that
Fθ in (1) is computed using the proposed kernel decomposition
technique and intermediate results are stored. Jπ−θ and Fπ−θ

are then computed by recycling the intermediate results. Using
Hω,π−θ (x) = H ∗

ω,θ (x), where ∗ denotes complex conjugation,
we obtain

Jπ−θ (x, y) = J ∗
θ (x, y). (10)

The 1-D horizontal Gabor filtering result Jπ−θ is complex
conjugate to Jθ . Similarly, using Vω,π−θ (x) = Vω,θ (x), the
1-D vertical Gabor filtering in Fπ−θ is then expressed as

Fπ−θ (x, y) =
∑

l

J ∗
θ (x, l)Vω,θ (y − l)Sσ (y − l). (11)

Fπ−θ is obtained by applying the 1-D vertical Gabor filtering
to the complex conjugate signal J ∗

θ . Similar to (6) and (7),
the following equations are derived:

R{Fπ−θ (x, y)} = cos(ωs
θ y)

(
f ′
cr (x, y) − f ′

si (x, y)
)

+ sin(ωs
θ y)

(
f ′
sr (x, y) + f ′

ci (x, y)
)
, (12)

I{Fπ−θ (x, y)} = sin(ωs
θ y)

(
f ′
cr (x, y) − f ′

si (x, y)
)

− cos(ωs
θ y)

(
f ′
sr (x, y) + f ′

ci (x, y)
)

(13)

The vertical filtering also requires two 1-D Gaussian con-
volutions. Algorithm 1 summarizes the proposed method for
computing the 2-D complex Gabor filter bank. When a set
of frequencies � and orientations � are given, we com-
pute the Gabor filtering results at θk (k = 0, ..., N − 1)
with the frequency ωi being fixed. Different from existing
approaches [21], [22] repeatedly applying the Gabor filter at
all orientations, we consider the computational redundancy
that exists on such repeated calculations. We will demonstrate

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



1716 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Algorithm 1 Pseudo Code of the 2-D Complex Gabor Filter
Bank

through both experimental and analytic comparisons that our
method runs faster than existing methods [21], [22], when
computing the Gabor filter bank.

III. 2-D LOCALIZED SLIDING DFT

It is known that the Gabor filter offers good spatial local-
ization ability thanks to the Gaussian kernel that determines
an weight based on a spatial distance. Inspired by this,
we present a new method that efficiently computes the 2-D
localized SDFT using the proposed kernel decomposition
technique. Note that different from the existing 2-D SDFT
approaches [27]–[29] using the box kernel, the Gaussian
kernel is used for computing the DFT at the sliding win-
dow. It is infeasible to apply the existing 2-D SDFT
approaches [27]–[29] for calculating DFT outputs with the
Gaussian kernel.

A. Kernel Decomposition in 2-D Localized SDFT

When the sliding window of M × M is used, we set the
standard deviation σ of the Gaussian kernel by considering a
cut-off range, e.g., �M/2� = 3σ . We denote Fu,v (x, y) by the

Fig. 3. Some of images used in the experiment (USC-SIPI database [31]):
(a) aerial image, (b) misc image, (c) texture image, and (d) sequence image.

(u, v)th bin of the M × M DFT at (x, y). The 2-D localized
SDFT using the Gaussian kernel can be written as

Fu,v (x, y)

=
∑

m,n

f (m, n)Cu,v (̂x − m, ŷ − n)Gσ (x − m, y − n) (14)

where x̂ = x − M
2 and ŷ = y − M

2 . Similar to the Gabor
filter bank, the DFT is performed for u, v = 0, ..., M − 1.
The complex exponential function Cu,v (m, n) at the (u, v)th

bin is defined as Cu,v (x, y) = Hu(x)Vv(y), where Hu(x) =
eiω0ux and Vv (y) = eiω0vy . Here, ω0 = 2π

M represents a
base frequency. Note that in (14), slightly different notations
from the conventional SDFT methods [27]–[29] are used to
keep them consistent with the Gabor filter of (1). When
Gσ (x, y) = 1, (14) becomes identical to the conventional 2-D
SDFT methods [27]–[29]. The Gaussian window of M × M
is used here for simplicity of notations, but the 2-D localized
SDFT using My × Mx window (My �= Mx ) is also easily
derived.

Using the separable property of Gσ (x, y) and Cu,v (x, y),
(14) can be written as

Ju(x, y) =
∑

m

f (m, y)Hu (̂x − m)Sσ (x − m), (15)

Fu,v (x, y) =
∑

n

Ju(x, n)Vv (ŷ − n)Sσ (y − n). (16)

Using the kernel decomposition, the 1-D horizontal localized
SDFT is performed as follows:

R{Ju(x)} = cos(ω0 ux̂)
∑

m

fc(m)Sσ (x − m)

+ sin(ω0 ux̂)
∑

m

fs(m)Sσ (x − m), (17)

I{Ju(x)} = − cos(ω0ux̂)
∑

m

fs(m)Sσ (x − m)

+ sin(ω0ux̂)
∑

m

fc(m)Sσ (x − m), (18)

where fc(m) = f (m)cos(ω0 um), fs(m) = f (m)sin(ω0 um).
The 1-D vertical localized SDFT is performed similar to the

Gabor filter:

R{Fu,v (x, y)} = cos(ω0v ŷ)
(

f ′
cr (x, y) + f ′

si (x, y)
)

+ sin(ω0v ŷ)
(

f ′
sr (x, y) − f ′

ci (x, y)
)
, (19)

I{Fu,v (x, y)} = sin(ω0v ŷ)
(

f ′
cr (x, y) + f ′

si (x, y)
)

− cos(ω0v ŷ)
(

f ′
sr (x, y) − f ′

ci (x, y)
)
, (20)

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: FAST 2D COMPLEX GABOR FILTER WITH KERNEL DECOMPOSITION 1717

Fig. 4. Objective comparison using the imagery parts of 2-D complex Gabor filtering outputs with the varying frequency ω when θ = π/3. We compared
the average SER values of three methods, the recursive Gabor filter [21], IIR Gabor filter [22], and our method, for four datasets: (a) aerial, (b) miscellaneous,
(c) sequences, and (d) textures.

Fig. 5. Objective comparison using the imagery parts of 2-D Gabor filtering outputs with the varying orientation θ when ω = 13. Similar to Fig. 4,
the average SER values were measured using the recursive Gabor filter [21], IIR Gabor filter [22], and our method. (a) Aerial. (b) Misc. (c) Sequences.
(d) Textures.

where f ′
cr + f ′

si and f ′
sr − f ′

ci are defined in a manner similar
to (8). Ju and Fu,v are computed by applying 1-D Gaussian
smoothing twice, respectively.

B. Exploring Computational Redundancy on (u, v)

The 2-D localized SDFT consists of a set of DFT outputs
for u, v = 0, ..., M − 1. Considering the conjugate symmetry
property of the DFT (FM−u,M−v = F∗

u,v ), we compute the
DFT outputs Fu,v only for u = 0, ..., M − 1 and v =
0, ..., �M/2�, and then simply obtain remaining DFT outputs
(for u = 0, ..., M −1 and v = �M/2�+1, ..., M −1) using the
complex conjugation. Similar to the Gabor filter bank, the 1-D
DFT JM−u is complex conjugate to Ju as follows:

JM−u(x, y) =
∑

m

f (m, y)HM−u (̂x − m)Sσ (x − m),

=
∑

m

f (m, y)H ∗
u (̂x − m)Sσ (x − m),

= J ∗
u (x, y) (21)

The 1-D vertical SDFT result FM−u,v is then obtained as

FM−u,v (x, y) =
∑

n

J ∗
u (x, n)Vv (ŷ − n)Sσ (y − n). (22)

As in the Gabor filter bank, (22) can be computed by perform-
ing 1-D Gaussian filtering twice.

Fig. 2 (b) shows the example of the regular grid (M = 8)
used in the 2-D SDFT. There exists an additional computa-
tional redundancy when performing 2-D SDFT on the regular

grid. For a specific u, the 1-D horizontal filtering results
Ju(x, y) remain unchanged for v = 0, ..., �M/2�, and also
JM−u(x, y) = J ∗

u (x, y) is simply computed. These results are
used as inputs for the 1-D vertical SDFT.

Algorithm 2 shows the overall process of computing the 2-D
localized SDFT. Here, we explain the method with a non-
square window of My × Mx (My ≥ Mx ) for a generalized
description. When My ≥ Mx , 1-D horizontal and vertical
filters are performed at lines 4 − 9 and 13 − 18, respectively,
and vice versa in order to reduce the runtime. This is because
the filtering order affects the 1-D SDFT complexity at lines
4 − 9, while having no effect on the complexity of lines
13 − 18 when My �= Mx . Algorithm 2 can be simply
modified when My < Mx , i.e., by performing 1-D vertical
and horizontal filtering at lines 4 − 9 and 13 − 18, respec-
tively. The number of arithmetic operations is also reported
in Table IV.

To obtain My × Mx (My ≥ Mx ) DFT outputs in Algo-
rithm 2, we first obtain Ju(x, y) for u = 0, ..., �Mx/2�
using (17) and (18), and then simply calculate Ju(x, y) for
u = �Mx /2� + 1, ..., Mx − 1 using (21). Ju(x, y) is then
used to obtain Fu,v (x, y) by performing 1-D vertical filtering.
Thus, the horizontal filtering Ju(x, y) is performed only for
u = 0, ..., �Mx /2�, while the vertical filtering Fu,v (x, y)
is done for u = 0, ..., Mx − 1 and v = 0, ..., �My/2�.
Finally, remaining DFT outputs (for u = 0, ..., Mx − 1 and
v = �My/2� + 1, ..., M − 1) are obtained using the conjugate
symmetry property at lines 19 − 21.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



1718 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Fig. 6. Objective comparison using the real parts of 2-D complex Gabor filtering outputs with the varying frequency ω when θ = π/3. The SER values
were measured in a manner similar to Fig. 4. (a) Aerial. (b) Misc. (c) Sequences. (d) Textures.

Algorithm 2 Pseudo Code of the 2-D Localized SDFT

IV. EXPERIMENTAL RESULTS

We compared the proposed method with state-of-the-arts
methods [21], [22] for fast Gabor filtering in terms of both
computational efficiency and filtering quality. For a fair com-
parison, we implemented the two methods [21], [22] with a
similar degree of code optimization. All the codes including
ours will be publicly available later for both the 2-D complex
Gabor filter bank and the 2-D localized SDFT.

A. Computational Complexity Comparison

We first compared the runtime when computing the 2-D
complex Gabor filter bank. As our method focuses on reducing

TABLE I

RUNTIME COMPARISON (MILLISECOND) OF THE 2-D COMPLEX GABOR

FILTER BANK. WE MEASURED THE RUNTIME WHEN COMPUTING THE

2-D COMPLEX GABOR FILTER BANK FOR MULTIPLE ORIENTA-
TIONS AT A SPECIFIC FREQUENCY. THE SET OF N ORIENTA-

TIONS � IS DEFINED AS {θk = kπ
N |k = 1, ...., N − 1}. THE

SIZE OF THE INPUT IMAGE IS 1024 × 1024

TABLE II

COMPUTATIONAL COMPLEXITY COMPARISON OF THE 2-D COMPLEX

GABOR FILTER BANK. SIMILAR TO TABLE I, WHEN COMPUTING THE
2-D COMPLEX GABOR FILTER BANK FOR N ORIENTATIONS AT A

SPECIFIC FREQUENCY, WE COUNT THE NUMBER OF

MULTIPLICATIONS RM AND ADDITIONS
RA PER PIXEL, RESPECTIVELY

the computational redundancy on the repeated application of
the Gabor filter at multiple orientations, we compared only
the runtime of the Gabor filter bank. Additionally, the runtime
was analyzed by counting the number of arithmetic operations
such as addition and multiplication. The runtime of the 2-D
localized SDFT was also measured in both experimental and
analytic manners. The existing fast Gabor filters [21], [22]
were applied to compute the DFT outputs for all frequency
bins of the 2-D localized SDFT. Note that conventional 2-D
SDFT approaches using the box kernel [27]–[29] were not
compared, since they are not capable of computing the 2-D
localized DFT outputs.

Table I compares the runtime of the 2-D complex Gabor
filter bank. As summarized in Algorithm 1, our method

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: FAST 2D COMPLEX GABOR FILTER WITH KERNEL DECOMPOSITION 1719

Fig. 7. Objective comparison using the real parts of 2-D complex Gabor filtering outputs with the varying orientation θ when ω = 13. The SER values were
measured in a manner similar to Fig. 5. (a) Aerial. (b) Misc. (c) Sequences. (d) Textures.

TABLE III

RUNTIME COMPARISON (MILLISECOND) OF THE 2-D LOCALIZED SDFT.
THE WINDOW SIZE FOR DFT IS M × M WHERE �M/2� = 3σ IS SET

WITH THE STANDARD DEVIATION σ OF THE GAUSSIAN KERNEL.
WE ALSO COMPARED THE RUNTIME WITH TWO EXISTING

METHODS [21], [22] BY REPEATEDLY APPLYING THEM

WHEN COMPUTING Fu,v FOR u, v = 0, ..., M − 1. THE
SIZE OF THE INPUT IMAGE IS 250 × 234

can be applied to each frequency. Thus, we measured
the runtime for N orientations when a specific frequency
ω is given. The set of orientations � is defined as
{θk = kπ

N |k = 0, ...., N − 1}. In the existing fast Gabor
filters [21], [22], there is no consideration of the computational
redundancy that occurs when computing the Gabor filtering
outputs at multiple orientations. The fast Gabor filter using
IIR approximation [22] is computationally lighter than the
recursive Gabor filter [21], but our method runs faster than
the two methods. In Table II, we compared the number of
arithmetic operations at N orientations and a single frequency
ω, in the manner similar to Table I. We count the number of
multiplications RM and additions RA per pixel, respectively.
Considering RM and RA of the three approaches, the runtime
results in Table I are in agreement.

Table III shows the runtime comparison of the 2-D localized
SDFT. It requires computing all 2-D DFT outputs for u, v =
0, ..., M − 1, when M × M window is used. Note that the
conjugate symmetry property, i.e., Fu,v = F∗

M−u,M−v was
used for all methods for a fair comparison (see Algorithm 2).
It is clearly shown that our method runs much faster than the
two methods. Interestingly, our runtime gain against the IIR
Gabor filter [22] becomes higher, when compared to the Gabor
filter bank in Table I. This is because the 1-D horizontal DFT
output J can be reused for v = 0, ...M − 1 in the rectangular
grid of Fig. 2 and it is also shared for both M − u and u

Fig. 8. 1-D profiles of 2-D complex Gabor filtering results: (a) the real part
at ω = 7.9 and θ = π/3 when S E R = 10.57, (b) the real part at ω = 3.5
and θ = π/3 when S E R = 25.61.

(see Algorithm 2) Namely, the ratio of shared computations
increases in the 2-D localized SDFT, compared to the Gabor
filter bank.

In Table III, we also found that the IIR Gabor filter [22]
becomes slower than the recursive Gabor filter [21] when
computing the 2-D localized SDFT, while the former runs
faster than the latter in the Gabor filter bank (compare Table I
and Table III). The IIR Gabor filter [22] decomposes the
Gabor kernel into the complex sinusoidal modulation and
the Gaussian kernel, and then performs Gaussian smoothing
with 2-D modulated signals. Contrarily, the recursive Gabor
filter [21] performs filtering in a separable manner, and thus
we implement the 2-D localized SDFT using [21] such that
it can reuse 1-D intermediate results, resulting in the faster
runtime than [22]. In Table IV, we count the number of
multiplications RM and additions RA, which is consistent with
the runtime results in Table III. Here, we also count RM and
RA when the non-square window of My × Mx (My �= Mx ) is
used.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



1720 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

Fig. 9. 2-D complex Gabor filter bank outputs computed by our method and FFT based method for ‘Face’, ‘Texture’, and ‘Lena’ images. We visualize
them with an absolute magnitude since the filtering results are in a complex form. The first and second rows of each image represent our results and FFT
based results, respectively. λ = σ/π depends on σ . (a) Face. (b) σ = 3, θ = π/4. (c) σ = 3, θ = 3π/4. (d) σ = 2, θ = 0. (e) σ = 2, θ = π/2. (f) Texture.
(g) σ = 2.7, θ = π/4. (h) σ = 2.7, θ = 3π/4. (i) σ = 4, θ = 0. (j) σ = 4, θ = π/2. (k) Lena. (l) σ = 2.7, θ = π/4. (m) σ = 2.7, θ = 3π/4.
(n) σ = 4, θ = 0. (o) σ = 4, θ = π/2.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: FAST 2D COMPLEX GABOR FILTER WITH KERNEL DECOMPOSITION 1721

TABLE IV

COMPUTATIONAL COMPLEXITY COMPARISON OF THE 2-D LOCALIZED SDFT. SIMILAR TO TABLE III, WE COMPARED WITH TWO EXISTING
METHODS [21], [22]. THE WINDOW SIZE OF DFT IS M × M . WE COUNT THE NUMBER OF MULTIPLICATIONS RM AND ADDITIONS RA PER

PIXEL REQUIRED TO COMPUTE THE 2-D DFT Fu,v FOR u, v = 0, ..., M − 1. WE ALSO COUNT RM AND RA
WHEN A NON-SQUARE WINDOW OF My × Mx (My �= Mx ) IS USED

B. Filtering Quality Comparison

All the fast Gabor filtering methods including ours produce
approximated results, as they count on the recursive Gaussian
filter using IIR approximation [23], [30]. The IIR Gaussian
filter runs fast at the cost of a filtering quality loss. It was
reported in [23], [30] that the quality loss is negligible when
using the standard deviation within an appropriate range.
We compared the filtering quality with two fast Gabor filtering
approaches [21], [22]. The filtering quality was measured for
the 2-D complex Gabor filter bank only, as the 2-D localized
SDFT tends to show similar filtering behaviors.

We used input images from the USC-SIPI database [31]
which consists of four different classes of images: aerial
images, miscellaneous images, sequence images, and texture
images. Fig. 3 shows some of the sample images. The Gabor
filtering result does not range from 0 to 255, different from an
image. Thus, instead of the peak signal-to-noise ratio (PSNR)
widely used in an image quality assessment, we computed the
signal-to-error ratio (SER), following [22]:

SE R[d B] = 10 log10

∑
x,y

(R{F(x, y)})2

∑
x,y

(R{F(x, y)} − R{Ft (x, y)})2 ,

where F and Ft are the results obtained using the fast method
and the lossless FIR Gabor filter in (1), respectively. R(F)
represents the real part of F . The SER can also be measured
with the imagery part I(F). We computed the approximation
error for the frequency ω ∈ {3.5, 3.9, ..., 9.8, 13} and the
orientation θ ∈ {18◦, 36◦, ..., 162◦}.

Fig. 4 and 5 compare the objective quality of the Gabor
filtering results. We measured the average SER values of the
imagery parts with respect to the varying frequency ω and ori-
entation θ for four datasets: aerial, miscellaneous, sequences,
and textures images. The average SER values are all similar
to for the three methods: the recursive Gabor filter [21],
IIR Gabor filter [22], and ours. Four different classes of images
did not show significantly different tendency in terms of the
filtering quality. Fig. 6 and 7 shows the SER values measured
using the real parts. Interestingly, the average SER values of
the real parts at some frequencies and orientations become
lower. It was explained in [22] that the difference between DC
values of the lossless FIR and fast filters happens to become
larger at these ranges. In Fig. 8, we plotted 1-D profiles using
the real parts of Gabor filtering results for two cases with

low and high SER values. The horizontal and vertical axes
represent the pixel location and the real part value of the
Gabor filter, respectively. In the case with the low SER value,
we found that an overall tendency is somehow preserved with
some offsets.

Fig. 9 shows the Gabor filter bank results of our method
and FFT based method for ‘Face’, ‘Texture’, and ‘Lena’
images. Note that the filtering results of the FFT based
method are identical to those of the lossless FIR Gabor filter
in (1). The absolute magnitude of the complex result was
used for visualization. The first and second rows of each
image represent our results and FFT based results, respectively.
We found the subjective quality of two methods to be very
similar. Exceptionally, our results seem to be a bit blurred at
the highly textured regions of Fig. 9 (i) and (j). This may be
due to the IIR approximation used in the Gaussian filtering.
Similar filtering results were also observed in the existing fast
Gabor filters [21], [22].

V. CONCLUSION

We have presented a new method for fast computation of
the 2-D complex Gabor filter bank at multiple orientations
and frequencies. The proposed method achieved a substantial
runtime gain by reducing the computational redundancy that
arises when computing the Gabor filter bank. Additionally,
this method was extended into the 2-D localized SDFT that
uses the Gaussian kernel. The runtime gain was verified in
both analytic and experimental manners. We showed that the
proposed method maintains a similar level of filtering quality
when compared to state-of-the-arts approaches for fast Gabor
filtering, but it runs much faster. We believe that the proposed
method for the fast Gabor filter bank is crucial to various
computer vision tasks that require a low complexity.

The 2-D localized SDFT is expected to provide more use-
ful information than the conventional 2-D SDFT approaches
using the simple box kernel. We will continue to study the
effectiveness of the 2-D localized SDFT in several computer
vision applications as future work. Another interesting topic
is the fast implementation of the log-Gabor filter [32] that
resolves the non-zero DC value problem of the original Gabor
filter. Note that our method is applicable only when the
kernel is separable in x and y dimensions. Thus, it is not
feasible to directly apply the proposed method to the log-
Gabor filter using non-separable kernels. Nevertheless, its fast

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



1722 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

implementation would be interesting, e.g., using separable
approximation of the log-Gabor filter kernel.

REFERENCES

[1] T. P. Weldon, W. E. Higgins, and D. F. Dunn, “Efficient Gabor filter
design for texture segmentation,” Pattern Recognit., vol. 29, no. 12,
pp. 2005–2015, 1996.

[2] F. Bianconi and A. Fernández, “Evaluation of the effects of Gabor filter
parameters on texture classification,” Pattern Recognit., vol. 40, no. 12,
pp. 3325–3335, 2007.

[3] C. Li, G. Duan, and F. Zhong, “Rotation invariant texture retrieval
considering the scale dependence of Gabor wavelet,” IEEE Trans. Image
Process., vol. 24, no. 8, pp. 2344–2354, Aug. 2015.

[4] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 19, no. 7, pp. 775–779, Jul. 1997.

[5] C. Liu and H. Wechsler, “Independent component analysis of Gabor
features for face recognition,” IEEE Trans. Neural Netw., vol. 14, no. 4,
pp. 919–928, Jul. 2003.

[6] L. Shen and L. Bai, “A review on Gabor wavelets for face recognition,”
Pattern Anal. Appl., vol. 9, nos. 2–3, pp. 273–292, 2006.

[7] Z. Lei, S. Liao, R. He, M. Pietikäinen, and S. Z. Li, “Gabor volume
based local binary pattern for face representation and recognition,”
in Proc. 8th IEEE Int. Conf. Automat. Face Gesture Recognit. (FG),
Amsterdam, The Netherlands, Sep. 2008, pp. 1–6.

[8] Y. Cheng, Z. Jin, H. Chen, Y. Zhang, and X. Yin, “A fast and robust
face recognition approach combining Gabor learned dictionaries and
collaborative representation,” Int. J. Mach. Learn. Cybern., vol. 7, no. 1,
pp. 47–52, 2016.

[9] W. Gu, C. Xiang, Y. V. Venkatesh, D. Huang, and H. Lin, “Facial
expression recognition using radial encoding of local Gabor features
and classifier synthesis,” Pattern Recognit., vol. 45, no. 1, pp. 80–91,
2012.

[10] M. K. Mandal and A. Awasthi, Understanding Facial Expressions in
Communication. India: Springer, 2015.

[11] H. Kasban, “Fingerprints verification based on their spectrum,” Neuro-
computing, vol. 171, pp. 910–920, Jan. 2016.

[12] L. Shen, L. Bai, and M. Fairhurst, “Gabor wavelets and general
discriminant analysis for face identification and verification,” Image Vis.
Comput., vol. 25, no. 5, pp. 553–563, 2007.

[13] L. Xu, W. Lin, and C.-C. J. Kuo, Visual Quality Assessment by Machine
Learning. Singapore: Springer, 2015.

[14] I. Daubechies, “The wavelet transform, time-frequency localization and
signal analysis,” IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 961–1005,
Sep. 1990.

[15] J.-K. Kamarainen, V. Kyrki, and H. Kälviäinen, “Invariance properties
of Gabor filter-based features-overview and applications,” IEEE Trans.
Image Process., vol. 15, no. 5, pp. 1088–1099, May 2006.

[16] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Computer
Vision—ECCV (Lecture Notes in Computer Science), vol. 6311. Berlin,
Germany: Springer, 2010, pp. 1–14.

[17] E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware
image and video processing,” ACM Trans. Graph., vol. 30, no. 4, p. 69,
2011.

[18] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast Global
image smoothing based on weighted least squares,” IEEE Trans. Image
Process., vol. 23, no. 12, pp. 5638–5653, Dec. 2014.

[19] S. Qiu, F. Zhou, and P. E. Crandall, “Discrete Gabor transforms with
complexity O (NlogN),” Signal Process., vol. 77, no. 2, pp. 159–170,
1999.

[20] O. Nestares, R. F. Navarro, J. Portilla, and A. Tabernero, “Efficient
spatial-domain implementation of a multiscale image representation
based on Gabor functions,” J. Electron. Imag., vol. 7, no. 1, pp. 166–173,
1998.

[21] I. T. Young, L. J. V. Vliet, and M. V. Ginkel, “Recursive Gabor
filtering,” IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2798–2805,
Nov. 2002.

[22] A. Bernardino and J. Santos-Victor, “Fast IIR isotropic 2-D complex
Gabor filters with boundary initialization,” IEEE Trans. Image Process.,
vol. 15, no. 11, pp. 3338–3348, Nov. 2006.

[23] L. J. van Vliet, I. T. Young, and P. W. Verbeek, “Recursive Gaussian
derivative filters,” in Proc. 14th Int. Conf. Pattern Recognit. (ICPR),
Brisbane, QLD, Australia, Aug. 1998, pp. 509–514.

[24] X. Wang and B. E. Shi, “GPU implemention of fast Gabor filters,”
in Proc. Int. Symp. Circuits Syst. (ISCAS), vol. 2. Paris, France,
May/Jun. 2010, pp. 373–376.

[25] W.-M. Pang, K.-S. Choi, and J. Qin, “Fast Gabor texture feature extrac-
tion with separable filters using GPU,” J. Real-Time Image Process.,
vol. 12, no. 1, pp. 5–13, 2016.

[26] A. K. Gangwar and A. Joshi, “Local Gabor rank pattern (LGRP):
A novel descriptor for face representation and recognition,” in Proc.
IEEE Int. Workshop Inf. Forensics Secur. (WIFS), Rome, Italy,
Nov. 2015, pp. 1–6.

[27] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Process.
Mag., vol. 20, no. 2, pp. 74–80, Mar. 2003.

[28] E. Jacobsen and R. Lyons, “An update to the sliding DFT,” IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 110–111, Jan. 2004.

[29] C. S. Park, “2D discrete fourier transform on sliding windows,” IEEE
Trans. Image Process., vol. 24, no. 3, pp. 901–907, Mar. 2015.

[30] I. T. Young and L. J. van Vliet, “Recursive implementation of
the Gaussian filter,” Signal Process., vol. 44, no. 2, pp. 139–151,
1995.

[31] Univ. Southern California and I. P. Institute. The USC-SIPI
Image Database. Accessed: Jan. 2017. [Online]. Available:
http://sipi.usc.edu/services/database

[32] D. J. Field, “Relations between the statistics of natural images and the
response properties of cortical cells,” J. Opt. Soc. Amer. A, Opt. Image
Sci., vol. 4, no. 12, pp. 2379–2394, 1987.

Jaeyoon Kim received the B.S. degree from the
Department of Computer Science and Engineer-
ing, Chungnam National University, Daejeon, South
Korea, in 2017. He is currently pursuing the M.S.
degree with the Department of Computer Science,
KAIST, Daejeon, South Korea.

Suhyuk Um received the B.S. degree from the
the Department of Computer Science and Engineer-
ing, Chungnam National University, Daejeon, South
Korea, in 2017.

Dongbo Min (M’09–SM’15) received the B.S.,
M.S., and Ph.D. degrees from the School of Elec-
trical and Electronic Engineering, Yonsei Univer-
sity, Seoul, South Korea, in 2003, 2005, and 2009,
respectively. He was a Post-Doctoral Researcher
with the Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA, from 2009 to 2010. From
2010 to 2015, he was with the Advanced Digital
Sciences Center, Singapore. From 2015 to 2018,
he was an Assistant Professor with the Department
of Computer Science and Engineering, Chungnam

National University, Daejeon, South Korea. Since 2018, he has been an Assis-
tant Professor with the Department of Computer Science and Engineering,
Ewha Womans University, Seoul, South Korea. His current research interests
include computer vision, 2D/3D video processing, computational photography,
augmented reality, and continuous/discrete optimization.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:00:40 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


