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Abstract—We present a descriptor, called fully convolutional self-similarity (FCSS), for dense semantic correspondence. Unlike

traditional dense correspondence approaches for estimating depth or optical flow, semantic correspondence estimation poses

additional challenges due to intra-class appearance and shape variations among different instances within the same object or scene

category. To robustly match points across semantically similar images, we formulate FCSS using local self-similarity (LSS), which is

inherently insensitive to intra-class appearance variations. LSS is incorporated through a proposed convolutional self-similarity (CSS)

layer, where the sampling patterns and the self-similarity measure are jointly learned in an end-to-end and multi-scale manner.

Furthermore, to address shape variations among different object instances, we propose a convolutional affine transformer (CAT) layer

that estimates explicit affine transformation fields at each pixel to transform the sampling patterns and corresponding receptive fields.

As training data for semantic correspondence is rather limited, we propose to leverage object candidate priors provided in most existing

datasets and also correspondence consistency between object pairs to enable weakly-supervised learning. Experiments demonstrate

that FCSS significantly outperforms conventional handcrafted descriptors and CNN-based descriptors on various benchmarks.

Index Terms—Dense semantic correspondence, convolutional neural networks, self-similarity, weakly-supervised learning

Ç

1 INTRODUCTION

NUMEROUS computer vision and computational photog-
raphy applications require the points on an object in

one image to be matched with their corresponding object
points in another image, such as a motorbike wheel
matched to a different model of motorbike’s wheel, as
exemplified in Fig. 1. Dealing with such appearance varia-
tions over object instances is essential for numerous tasks
such as scene recognition, image registration, semantic seg-
mentation, and image editing [1], [2], [3], [4], [5]. Unlike tra-
ditional dense correspondence approaches for estimating
depth [6], [7] or optical flow [8], [9], in which visually similar
images of the same scene are used as inputs, establishing
dense correspondences across semantically similar images
poses additional challenges due to intra-class appearance
variations among object instances.

Often, basic visual properties such as colors and gradients
are not shared among different instances within the same
object or scene category. Moreover, geometric variations

appear frequently among them. Those variations lead to sig-
nificant differences in appearance and shape that can degrade
matching by handcrafted feature descriptors [10], [11]. Altho-
ugh powerful optimization techniques can help by enforcing
smoothness constraints over a correspondence map [2], [3],
[5], [12], [13], they are limited in effectivenesswithout a proper
feature descriptor for semantic correspondence estimation.

Over the past few years, convolutional neural network
(CNN) based features have become increasingly popular
for correspondence estimation thanks to their matching pre-
cision and their invariance to minor photometric and geo-
metric deformations [14], [15], [16], [17]. However, for
computing semantic correspondences within this frame-
work, greater invariance is needed to deal with the more
substantial appearance differences. This could potentially
be achieved with a deeper convolutional network [18], but
would come at the cost of significantly reduced spatial local-
ization precision in matching (see [19], [20] for examples).
Furthermore, moderate geometric variations among differ-
ent object instances cannot be overcome within this frame-
work without considering explicit geometric transformation
fields. An additional challenge lies in the lack of training
data with ground truth for semantic correspondence, mak-
ing the use of supervised training difficult.

To address these issues, we introduce a novel CNN-based
descriptor that is inherently insensitive to both intra-class
appearance and shape variations while maintaining precise
spatial localization ability. The key insight, illustrated in
Fig. 1, is that among different object instances in the same
class, their local structural layouts remain roughly the same.
Evenwith dissimilar colors, gradients, andmoderate differen-
ces in feature positions, the local self-similarity (LSS) between
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sampled patch pairs is basically preserved. This property
has been utilized for non-rigid object detection [21], sketch
retrieval [22], and cross-modal correspondence estimation
[23], [24]. However, existing LSS-based techniques are mainly
handcrafted and need further robustness to capture reliable
matching evidence from semantically similar images.

Our proposed descriptor, called fully convolutional self-
similarity (FCSS), formulates the LSS within a fully convolu-
tional network in a manner where the patch sampling
patterns and self-similarity measure are both learned. We
propose a convolutional self-similarity (CSS) layer that enco-
des the LSS structure and possesses differentiability, allow-
ing for end-to-end training of the proposed network. The
convolutional self-similarities are measured at multiple
scales, using skip layers [19] to forward intermediate convo-
lutional activations. To address geometric variations such as
affine transformations among different object instances, we
propose a convolutional affine transformer (CAT) layer that
estimates explicit affine transformation fields to transform
the sampling patterns and corresponding receptive fields.
Furthermore, since limited training data is available for
semantic correspondence, we propose a weakly-supervised
feature learning scheme that leverages correspondence
consistency within object candidate priors provided in exist-
ing datasets. With this learning scheme, we examine two
kinds of loss functions for training the proposed network:
a correspondence contrastive loss which aims to minimize/
maximize convolutional activation differences between
matching/non-matching pixel pairs, and a correspondence
classification loss which treats correspondence as a classifica-
tion problem among candidate pixels.

Experimental results show that the FCSS descriptor out-
performs conventional handcrafted descriptors and CNN-
based descriptors on various benchmarks, including that of
Taniai et al. [12], Proposal Flow-WILLOW [13], Proposal
Flow-PASCAL [25], and the CUB-200-2011 dataset [26], and
on different applications, including non-parametric part
segmentation on the PASCAL-VOC part dataset [27], fore-
ground mask detection on Caltech-101 [28], non-parametric

object segmentation on PASCAL-VOC 2012 [29], and non-
parametric object detection on Proposal Flow-PASCAL [25].

This manuscript extends the conference version of this
work [30]. It newly adds (1) an affine invariant extension of
the FCSS, called CAT-FCSS; (2) an examination of two kinds
of loss functions for training the proposed network; and (3)
an extensive comparative study with existing semantic cor-
respondence methods using various datasets. The source
code of our work is available online at our project webpage:
http://diml.yonsei.ac.kr/�srkim/FCSS/.

2 RELATED WORK

2.1 Feature Descriptors

Conventional gradient-based and intensity comparison-
based descriptors, such as SIFT [10], HOG [31], DAISY [11],
and BRIEF [32], have shown limited performance in dense
correspondence estimation across semantically similar but
different object instances. Besides these handcrafted fea-
tures, several attempts have recently been made using deep
CNNs to learn discriminative descriptors for local patches
from large-scale datasets. Some of these techniques have
extracted intermediate convolutional activations as the
descriptor [33], [34], [35], [36], which have shown to be effec-
tive for patch-level matching. Other methods have directly
learned similarity measures for comparing patches using a
convolutional similarity network [14], [15], [16], [17]. Even
though these CNN-based descriptors encode a discrimina-
tive structure with a deep architecture, they have inherent
limitations in handling large intra-class variations [16], [37].
Furthermore, some of those methods are tailored to estimate
sparse correspondences [14], [17], and cannot in practice pro-
vide dense descriptors due to their high computational com-
plexity. Of particular importance, current research on
semantic correspondence lacks an appropriate benchmark
with dense ground-truth correspondences, making super-
vised learning of CNNs less feasible for this task.

Use of the LSS descriptor, proposed in [21], has led to
impressive results in object detection, image retrieval by
sketching [21], deformable shape class retrieval [22], and
cross-modal correspondence estimation [23], [24]. Among
the more recent cross-modal descriptors inspired by LSS is
the dense adaptive self-correlation (DASC) descriptor [23],
which provides relatively good performance but is unable to
handle non-rigid deformations due to its fixed patch pooling
scheme. The deep self-correlation (DSC) descriptor [24]
reformulates LSS in a deep non-CNN architecture. As all of
these techniques use handcrafted descriptors, they lack the
robustness to deformations that is possible with CNNs.

2.2 Dense Semantic Correspondence

Conventionally, many techniques for dense semantic corre-
spondence have employed handcrafted features such as
SIFT [10] or HOG [31]. To improve matching quality, they
focus on optimization. Graph-basedmatching algorithms [38],
[39] attempt to find category-level featurematches by leverag-
ing a flexible graph representation of images, but they are
designed to handle sparsely sampled or detected features.
Among these methods are some based on SIFT Flow [2], [3],
which uses hierarchical dual-layer belief propagation (BP).
Inspired by this, Kim et al. [3] proposed the deformable

Fig. 1. Visualization of our FCSS results: (a) source image, (b) target
image, (c) warped source image using dense correspondences, (d), (e)
enlarged windows for source and target images, (f), (g) local self-similar-
ities computed by our FCSS descriptor between source and target
images. Even though there are significant differences in appearance
among different instances within the same object category in (a) and (b),
their local self-similarities computed by our FCSS descriptor are pre-
served as shown in (f) and (g), providing robustness to intra-class
appearance and shape variations.

582 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 3, MARCH 2019

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 15:05:08 UTC from IEEE Xplore.  Restrictions apply. 



spatial pyramid (DSP)which performsmulti-scale regulariza-
tion with a hierarchical graph. Other instances include
methods that perform matching with an exemplar-LDA
approach [40], through joint image set alignment [5], or
togetherwith cosegmentation [12].

More recently, CNN-based descriptors have been used
for establishing dense semantic correspondences. Pre-
trained ConvNet features [41] were employed with the SIFT
Flow algorithm [36] and with semantic flow using object
proposals [13]. Zhou et al. [42] proposed a deep network
consisting of a feature encoder and a flow decoder to predict
cross-instance correspondences, which exploits cycle-
consistency with a 3-D CAD model [43] as a supervisory
signal. However, the need to have 3-D CAD model for each
object class limits its applicability. Furthermore, none of
those methods are able to handle non-rigid geometric varia-
tions. Choy et al. [44] proposed a deep convolutional
descriptor based on fully convolutional feature learning. As
those methods formulate the networks only by combining
successive convolutions, they face a tradeoff between
appearance invariance and localization precision, which
limits their effectiveness for semantic correspondence.

Several methods aim to alleviate geometric variations
through extensions of SIFT Flow, including scale-less SIFT
Flow (SLS) [45], scale-space SIFT Flow (SSF) [46], and gen-
eralized DSP (GDSP) [47]. However, they have a critical
and practical limitation that their computation linearly
increases with the search space size. Tau et al. [48] pro-
posed a dense correspondence algorithm that propagates
scales estimated from sparse interest points and uses them
to optimize correspondence fields. However, limited per-
formance has been achieved due to propagation of errone-
ous scales. A generalized PatchMatch algorithm [49] was
proposed for efficient matching that leverages a random-
ized search scheme. It was utilized by HaCohen et al. [1]
in a non-rigid dense correspondence (NRDC) algorithm,
but employs weak matching evidence that cannot guaran-
tee reliable performance. Geometric invariance to scale and
rotation is provided by Daisy Filter Flow (DFF) [4], but its
implicit smoothing model which relies on randomized
sampling and propagation of good estimates in the direct
neighborhood often induces mismatches. While those
aforementioned techniques provide some amount of geo-
metric invariance, none of them can deal with affine trans-
formations across images, which are a frequent occurrence
in semantic correspondence. More recently, Kim et al. [50]
proposed a discrete-continuous transformation matching
(DCTM) framework where dense affine transformation
fields are inferred using a handcrafted energy function and
optimization.

2.3 Transformation Invariance in CNNs

Most CNN-based approaches tolerate just minor geometric
variations by simply employing spatial pooling layers or data
augmentation techniques [18]. Recently, Laptev et al. [51] pro-
posed a transformation-invariant pooling operator (TI-pool-
ing), but it only considers a set of pre-defined geometric
transformations. Spatial transformer networks (STNs) [52]
offer a way to deal with geometric variationswithin CNNs by
warping feature maps through a global parametric transfor-
mation. More recently, Lin et al. [53] proposed inverse
compositional spatial transformer networks (IC-STNs) that
replaces the feature warping with transformation parameter
propagation. However, these methods consider a global
image transformation only, and thus they cannot provide
tolerance to spatially-varying geometric variations, which
frequently appear in dense semantic correspondence. To
overcome these limitations, Choy et al. [44] developed a
descriptor, called universal correspondence network (UCN),
based on convolutional STNs that enables spatially-varying
feature manipulation. Dai et al. [54] introduced deformable
convolutional networks (DCN) to encode spatially-varying
geometric variations in CNNs.

3 THE FCSS DESCRIPTOR

3.1 Problem Formulation and Overview

Given an image I and image point Ii for pixel i ¼ ½ix; iy�T , a
dense descriptor Di is designed to extract a robust represen-
tation on a local support window. For LSS, this descriptor
represents locally self-similar structures around a given
pixel by recording the similarity between certain patch pairs
within a local support window, as shown in Fig. 2. For-
mally, LSS can be described as a vector of feature values
such that Di ¼ fDiðlÞg for l ¼ f1; . . . ; Lg with the number of
sampling patterns L, where the feature values DiðlÞ are
computed as

DiðlÞ ¼ max
j2NiðlÞ

expð�Sðj; sl; tlÞ=�Þ: (1)

Sði; sl; tlÞ is a self-similarity distance between two patches
Pi�sl and Pi�tl sampled on sl and tl, the lth selected sam-
pling pattern, around center pixel i. To alleviate the effects
of outliers, the self-similarity responses are encoded by
non-linear mapping with an exponential function of
bandwidth � [55]. For spatial invariance to the position of
the sampling pattern, the maximum self-similarity within a
spatial window NiðlÞ is computed. Based on this frame-
work, LSS has been formulated in various ways, using dif-
ferent self-similarity distances and different sampling
strategies for the patch pairs [21], [23], [24].

By leveraging CNNs, our objective is to design a dense
descriptor that formulates LSS in a fully convolutional and
end-to-end manner for robust estimation of dense sem-
antic correspondences. We design the dense descriptor by
first considering translational transformations (Section 3.2,
Section 3.3). Our network is built as a multi-scale series of
convolutional self-similarity (CSS) layers where each
includes a two-stream shifting transformer for applying a
learned sampling pattern. This is then extended to provide
invariance to geometric distortions such as affine transfor-
mations (Section 3.4). Specifically, convolutional affine

Fig. 2. Visuallization of LSS descriptor. This descriptor represents local
self-similarity between certain patch pairs within a local support window.
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transformer layers are proposed, which transform the sam-
pling patterns and corresponding receptive fields. To learn
the network in a weakly-supervised manner, we utilize cor-
respondence consistency between pairs of input images
within object bounding boxes provided in most existing
datasets [26], [27], [28], [29] (Section 3.5).

3.2 CSS: Convolutional Self-Similarity Layer

Previous LSS-based techniques [21], [23], [24] evaluate
Eq. (1) by sampling patch pairs and then computing their
similarity using handcrafted metrics, which often fails to
yield effective matching evidence for estimating semantic
correspondences. To overcome this limitation, we propose
the convolutional self-similarity (CSS) layer that learns the
sampling patterns and computes the similarity of sampled
patch pairs through CNNs.

3.2.1 Two-Stream Shifting Transformer

With l omitted for simplicity, convolutional self-similarity
between a patch pair Pi�s and Pi�t is formulated through a
Siamese network, followed by a simple Euclidean distance as
shown in Fig. 3a. The sampling patterns ðs; tÞ of patch pairs
are a critical element of local self-similarity. In our CSS layer, a
sampling pattern for a pixel i can be generated by shifting the
image Ii by s and t to form two different images from which
self-similarity is measured. To learn this spatial manipulation
of data within the network, we formulate a novel learnable
module, called a two-stream shifting transformer layer, in
which the shift transformations with s and t are defined as
network parameters that can be learned. In this way, the opti-
mized sampling patterns can be learned in the CNN.

Concretely, the sampling patterns are defined as network

parameters Ws ¼ ½Wsx ;Wsy �T and Wt ¼ ½Wtx ;Wty �T for all
ðs; tÞ. Since the shifted sampling is repeated in the image
domain, the image Ii is shifted without interpolation
according to the fixed sampling patterns as

Ii�Ws ¼ FðIi;WsÞ; Ii�Wt ¼ FðIi;WtÞ: (2)

3.2.2 Convolutional Similarity Network

To compute the convolutional self-similarity, we extract
convolutional activations from Ii�Ws and Ii�Wt through
feed-forward processes FðIi�Ws ;WcÞ and FðIi�Wt ;WcÞ
with similarity network parameters Wc and measure self-
similarity based on the Euclidean distance, such that

Sði;Ws;WtÞ ¼ kFðIi�Ws ;WcÞ � FðIi�Wt ;WcÞk2: (3)

Note that a convolutional self-similarity Sði;Ws;WtÞ is a
vector defined for all ðWs;WtÞ.

Our approach employs the Siamese network to measure
self-similarity within a single image, in contrast to recent
CNN-based descriptors [16], [17] that directly measure the
similarity between patches from two different images.

3.2.3 Efficient Computation

Computing Sði;Ws;WtÞ for all ðWs;WtÞ in this network is
time-consuming, since the number of iterations through
the similarity network is linearly proportional to the num-
ber of sampling patterns. To expedite this computation, we
instead generate the convolutional activations of an entire
image I by passing it through the CNN such that A ¼
FðI;WcÞ, similar to [56], and then measure the self-
similarity for the sampling patterns directly on the convolu-
tional activations, as shown in Fig. 3b. Formally, we first
define the sampled activations through a two-stream shift-
ing transformer

Ai�Ws ¼ FðAi;WsÞ; Ai�Wt ¼ FðAi;WtÞ: (4)

From this, convolutional self-similarity is then defined as

Sði;Ws;WtÞ ¼ kAi�Ws �Ai�Wtk2: (5)

With this scheme, the self-similarity can be measured by
running the similarity network only once, regardless of the
number of sampling patterns. Interestingly, a similar
computational scheme was also used to reduce computa-
tional redundancy when locally extracting convolutional
features as in [56], [57], [58].

For end-to-end learning of the proposed descriptor, the
derivatives for the CSS layer must be computable, so that
the gradients of the final loss can be back-propagated to the
convolutional similarity and shifting transformer layers.
The differentiability of convolutional self-similarity is
derived in the supplementary materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2803169.

3.3 Network Configuration for Dense Descriptor

3.3.1 Multi-Scale Convolutional Self-Similarity Layers

In building the descriptor through a CNN architecture,
there is a trade-off between robustness to semantic varia-
tions and fine-grained localization precision [19], [20].

Inspired by the skip layer scheme in [19], we formulate
the CSS layers in a multi-scale manner to encode multi-scale
self-similarities as shown in Fig. 4. Even though the CSS
layer itself provides robustness to semantic variations and
fine-grained localization precision, this scheme enables
the descriptor to boost both robustness and localization

Fig. 3. Convolutional self-similarity (CSS) layers, which measure convo-
lutional self-similarity Sði;Ws;WtÞ between two patches Pi�Ws and
Pi�Wt . (a) Straightforward version. (b) Efficient version, which equiva-
lently solves for convolutional self-similarity while avoiding repeated
computations for convolutions.
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precision. Specifically, the CSS layers are located after
multi-scale intermediate activations, and their outputs are
concatenated to construct the proposed descriptor. In this
way, the descriptor naturally encodes self-similarity at mul-
tiple scales of receptive fields, and further learns optimized
sampling patterns on each scale. It should be noted that
many existing descriptors [15], [20] also employ a multi-
scale description to improve matching quality.

For intermediate activations Ak ¼ FðAk�1;Wk
cÞ, where

k 2 f1; . . . ; Kg is the level of convolutional activations and
Wk

c represents convolutional similarity network parameters
at the kth level, the self-similarity at the the kth level is
measured according to sampling patternsWk

s andWk
t as

Skði;Wk
s ;W

k
t Þ ¼ kAk

i�Wk
s
�Ak

i�Wk
t
k2: (6)

Since the intermediate activations are of smaller spatial
resolution than the original image resolution due to the
stride and/or max-pooling operation, we apply a bilinear
upsampling layer [19] after each CSS layer.

3.3.2 Non-Linear Mapping and Max-Pooling Layer

Since the pre-learned sampling patterns used in the CSS
layers are fixed over an entire image, they may be sensitive
to non-rigid deformation as described in [24]. To address
this, we perform the max-pooling operation within a spatial
window centered at a pixel i after the non-linear mapping:

Dk
i ðlÞ ¼ max

j2Nk
i
ðlÞ
expð�Skðj;Wk

s;l;W
k
t;lÞ=Wk

�Þ; (7)

whereWk
� is a learnable Gaussian kernel parameter for scale

k. Note that this non-linear mapping is different from recti-
fied linear units (ReLUs) [59] commonly used after each
convolution in that it is designed to reduce the effects of out-
liers when computing self-similarity as in [21], [23], [24].
The max-pooling layer provides an effect similar to using
pixel-varying sampling patterns, providing robustness to
minor non-rigid deformations. The descriptor for each pixel
then undergoes L2 normalization. Finally, the proposed
descriptor Di ¼ fDk

i ðlÞg for all k and l is built by concatenat-
ing the feature responses across all scales. Fig. 4 displays an
overview of FCSS descriptor construction.

3.4 Affine-Invariant Dense Descriptor

It is known that CNN-based descriptors provide geometric
invariance to some extent thanks to spatial pooling layers [16],
[44]. However, it is rather limited and does not obviate the
need for explicit consideration of geometric variations. Even

our descriptor as described to this point cannot deal with geo-
metric variations due to the lack of amechanism for explicitly
considering geometric transformation fields.

To overcome this issue, we adopt the idea of the spatial
transformer layer [52], [53] to explicitly estimate geometric
variation fields in the CNN architecture. However, instead
of estimating a global image transformation as in [52], [53],
we allow each pixel to undergo an independent transfor-
mation to deal with locally-varying geometric variations.
Specifically, spatially-varying affine transformation fields
are first extracted through an additional layer, called the
convolutional affine transformer. With the estimated trans-
formation fields, we then transform the sampling patterns
and corresponding receptive fields for measuring self-
similarities in the similarity network, as illustrated in Fig. 5.
Note that while some methods such as UCN [44] and
DCN [54] also transform receptive fields in a similar man-
ner, we extend them to transform the sampling patterns as
well as receptive fields tailored to the FCSS descriptor.

3.4.1 CAT: Convolutional Affine Transformer

The CAT layer first infers the affine transformation fields
through successive convolutions such that ui ¼ FðIi;WaÞ
with affine inference network parameters Wa of the CAT
layer, and then uses them to transform the sampling pat-
terns and receptive fields, as shown in Fig. 6.

With an affine transformation field ui, sampling patterns
Ws are transformed into affine-varying sampling patterns
Wu

i;s ¼ ½W u
i;sx

;W u
i;sy

�T as follows:

W u
i;sx

W u
i;sy

" #
¼ TðuiÞ

Wsx

Wsy

" #

¼ u11i u12i

u21i u22i

" #
Wsx

Wsy

" #
;

(8)

where TðuiÞ is a matrix form of ui ¼ ½u11i ; u12i ; u21i ; u22i �T . Simi-
larly,Wu

i;t can be computed fromWt. Compared to sampling
patterns Ws and Wt, affine-varying sampling patterns Wu

i;s

and Wu
i;t are spatially-varying on each pixel i according to

its corresponding affine field TðuiÞ.

Fig. 4. Network configuration of the FCSS descriptor, consisting of con-
volutional self-similarity layers at multiple scales.

Fig. 5. Visualization of our CAT-FCSS results: (a) source image, (b) tar-
get image, (c) warped source image using dense correspondences, (d),
(e) enlarged windows for source and target images, (f), (g) local self-sim-
ilarities computed by our CAT-FCSS descriptor between source and tar-
get images. Our CAT-FCSS descriptor provides robustness to geometric
variations such as affine transformations.
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For full affine invariance, the receptive fields for measur-
ing self-similarity need to be transformed as well. This
warping process can be implemented through image sam-
pling on a parameterized grid, similar to spatial transformer
layers [52]. However, a spatially-varying parameterized
sampling grid cannot be directly realized with the existing
spatial transform layer [52]. To address this issue, we first
define a spatially-varying parameterized sampling grid
independently for each sample within a receptive field and
then apply them sequentially for image sampling. Specifi-
cally, for a desired output grid sample u ¼ ½ux; uy�T within
an affine-varying local receptive field, the input grid sample
ju ¼ ½jux; juy�T is defined as transforming j with an affine
transformation field TðuiÞ:

jux
juy

� �
¼ u11i u12i

u21i u22i

� �
ux

uy

� �
(9)

for all pixels i and all samples u within receptive fields on
the regular grid. For each input grid sample ju, receptive
fields for the convolutional similarity layer are warped
through the bilinear sampler [52] independently such that

Iuj ¼
X
i

Iimaxð0; 1� jjux � ixjÞmaxð0; 1� jjuy � iyjÞ: (10)

This affine-varying local receptive field can be represented
in a vector form fIujg for all samples u, as shown in Fig. 7.
With this, affine-varying convolutional activations are com-
puted such that Au

i ¼ FðfIujg;WcÞ. Note that since the
length of vector fIujg is z� jPij for a vector Ii of length z and
the number of samples within Pi is jPij, the convolutional
parameters for the first convolutional layers with size
h� w� z should be resized to 1� 1� hwz. Then, affine-
varying convolutional self-similarity is defined such that

Suði;Wu
i;s;W

u
i;tÞ ¼ Au

i�Wu
i;s
�Au

i�Wu
i;t

����
����
2

: (11)

For reliable estimates of affine transformation fields ui,
the network parameters Wa must be effectively learned. In
our approach, affine transformation fields TðuiÞ are used to
transform both the sampling patterns and the inputs of the
similarity network, soWa is trained from both the CSS layer
and similarity network. The differentiability of convolu-
tional self-similarity is derived in the supplementary mate-
rials, available online.

3.4.2 Multi-Scale Convolutional Affine Transformer

Layers

Since the CSS layers in our descriptor are formulated in a
multi-scale manner to encodemulti-scale self-similarities, the
CAT layers are also built in a multi-scale manner, providing
multi-scale geometric invariance. Since optimal affine trans-
formation fields may differ among scales, the CAT layers,
uki ¼ FðAk�1

i ;Wk
aÞ with network parameters Wk

a at the kth
scale level, are placed before each convolutional activation
and the CSS layers. This finally yields a fully affine-invariant
FCSS descriptor, which we refer to as CAT-FCSS. Fig. 8 dis-
plays an overview of CAT-FCSS descriptor construction.

3.5 Weakly-Supervised Feature Learning

A major challenge of semantic correspondence estimation
with CNNs is the lack of ground-truth correspondence maps
for training data. To deal with this problem, we propose a
weakly-supervised feature learning scheme that obtains
putative training samples during training based on corre-
spondence consistency between image pairs. Unlike existing
CNN-based descriptor learning methods which use a set of
patch pairs [14], [15], [16] for training, we use a set of image
pairs. Such an image-wise learning scheme also expedites
feature learning by reducing the computational redundancy
that occurs when computing convolutional activations for
two adjacent pixels in the image. Our approach is conceptu-
ally similar to [44], but we learn the descriptor in a weakly-
supervised manner that leverages correspondence consis-
tency between image pairs.

Fig. 6. For affine invariance in FCSS descriptor, a convolutional affine
transformer (CAT) layer estimates an affine transformation field TðuiÞ to
transform the sampling patterns and corresponding receptive fields.

Fig. 7. Visualization of applying an affine-varying receptive field with
parameterized sampling grids ju according to affine transformation TðuiÞ.

Fig. 8. Network configuration of the CAT-FCSS descriptor, consisting of convolutional affine transformation layers and convolutional self-similarity
layers at multiple scales.
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3.5.1 Correspondence Consistency

Intuitively, the correspondence relation from a source image
to a target image should be consistent with that from the tar-
get image to the source image. After forward-propagation
with the training image pairs FðI;WÞ and FðI 0;WÞ, the best
match i� for each pixel i is computed by comparing descrip-
tors from the two images through nearest neighbor (NN)
search [60]:

i� ¼ argmin
i0

kFðIi;WÞ � FðI 0i0 ;WÞk2; (12)

where W ¼ fWk
c ;W

k
a;W

k
s ;W

k
t ;W

k
� j k ¼ 1; . . . ; Kg represents

all network parameters. After running NN twice for the
source and target images respectively, we identify the pixel
pairs that correspond to each other as putative positive sam-
ples. With these putative positive samples, network parame-
ters are learned with loss functions defined in the image
domain, as described in the following section. These putative
samples are updated at each iteration during training. The
feature learning begins by initializing the shifting transform
with randomly selected sampling patterns. We found that
even initial descriptors generated from random patterns
provide enough putative samples to be used for weakly-
supervised feature learning, whichwill be described in detail
in the experiments section. A similar observation was also
reported in [23].

To boost the computation and convergence of this feature
learning, we limit the correspondence candidate regions
according to object location priors such as a bounding box
or a mask containing the target object to be matched, which
are provided in most benchmarks [27], [28], [29]. Similar
to [5], [13], [42], it is assumed that true matches exist only
within the object region. Utilizing this prior mitigates the
side effects that may occur due to background clutter when
directly running the NN search, and also expedites the fea-
ture learning process.

3.5.2 Correspondence Contrastive Loss

Since our method adopts image domain learning, the loss
function is also defined in the image domain. For training
the network with image pairs with putative positive sam-
ples, the correspondence contrastive loss can be used simi-
larly to [16], [17], [44] such that

LcoðWÞ ¼ 1

2N

X
i2Vco

likFðIi;WÞ � FðI 0i0 ;WÞk2

þ ð1� liÞmaxð0; C � kFðIi;WÞ � FðI 0i0 ;WÞk2Þ;
(13)

where i and i0 are either a matching or non-matching pixel
pair, and li denotes a class label that is 1 for a positive pair
and 0 otherwise. Vco represents the set of training samples,
and N is the number of training samples. C is the maximal
cost. It should be noted that in many supervised feature
learning methods [16], [17], [44], the class label li is given
from ground truth correspondence maps. Contrarily, in our
approach the class label li is actively determined via the cor-
respondence consistency. Among a set of correspondence
candidates computed from NN search, the pixel pairs with
consistent matches are used as positive samples (i.e., li ¼ 1),
and they are taken as negative samples otherwise (i.e.,

li ¼ 0). We randomly select the training samples among the
positive and negative samples at each iteration during train-
ing. Since the negative samples ensue from erroneous local
minima in the energy cost, they provide the effects of hard
negative mining during training [16].

Although this contrastive loss function yields satisfactory
performance [16], [17], [44], it has two inherent limitations.
First, obtaining proper negative samples is often problem-
atic, which is essential for learning a network well [16], [17],
[44]. Second, it is difficult to consider all possible matching
candidates for each pixel, often leading to solutions trapped
in erroneous local minima [44].

3.5.3 Correspondence Classification Loss

The correspondence estimation task is generally formulated
as a pixel-labeling problem. Thus, to establish reliable corre-
spondences, a descriptor should have high discriminability
to distinguish the true correspondence from other candi-
dates. To this end, we propose a correspondence classifica-
tion loss that computes a softmax loss for each pixel across
all possible correspondence candidates. Specifically, for
each pixel i and its possible match candidates, the corre-
spondence classification loss is defined as

LclðWÞ ¼ � 1

2N

X
i2Vcl

X
i0

pT ðI 0i0 Þlog ðpðI 0i0 ; Ii;WÞÞ; (14)

where i0 is an index over all possible matching candidates.
pT ðI 0i0 Þ is a class label defined as 1 if i0 ¼ i�, and 0 otherwise.
Vcl represents the set of training samples. The function
pðI 0i0 ; Ii;WÞ is a softmax probability defined as

pðI 0i0 ; Ii;WÞ ¼ expð1� kFðIi;WÞ � FðI 0i0 ;WÞk2ÞP
l expð1� kFðIi;WÞ � FðI 0l;WÞk2Þ ; (15)

where l is an index over all possible matching candidates.
In contrast to the contrastive loss Lco, the classification

loss Lcl can consider all matching candidates through aggre-
gating all of their derivatives, thus providing boosted learn-
ing performance. Furthermore, it does not need to define
hard negative samples. However, since the classification
loss Lcl needs the aggregation of all derivatives across possi-
ble candidates, its computational time at each iteration dur-
ing training is larger than that of the contrastive loss Lco.
Nevertheless, the descriptor learned with the classification
loss Lcl can provide highly boosted matching accuracy.

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Experimental Settings

For our experiments, we implemented the FCSS and CAT-
FCSS descriptor using the VLFeat MatConvNet tool-

box [61] on an Intel Core i7-3770 CPU with an NVIDIA
GeForce GTX TITAN X GPU. For convolutional similarity
networks, we used the ImageNet pretrained VGG-Net [18]
from the bottom conv1 to the conv3-4 layer, with their net-
work parameters as initial values. CSS layers are located
after conv2-2, conv3-2, and conv3-4, thus K ¼ 3. For the
CAT-FCSS descriptor, CAT layers are located after conv2-1,
conv3-1, and conv3-3, followed by three CSS layers. Consid-
ering the tradeoff between efficiency and robustness, the
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number of sampling patterns is set to 64, thus the total
dimension of the descriptor is L ¼ 192. Before each CSS
layer, convolutional activations undergo L2 normalization
to reduce the effect of outliers [62]. To learn the network, we
employed the Caltech-101 dataset [28] excluding testing
image pairs used in the experiments. The number of train-
ing samples N is 1024. C is set to 0.2. The learned parame-
ters were used for all the experiments.

In the following, we comprehensively evaluated our
descriptor through comparisons to state-of-the-art hand-
crafted descriptors, including SIFT [10], DAISY [11],
HOG [31], LSS [21], and DASC [23], as well as recent CNN-
based feature descriptors, including MatchNet (MatchN.)
[14], Deep Compare (DeepC.) [15], Deep Descriptor
(DeepD.) [16], UCN [44], learned invariant feature trans-
form (LIFT) [17]1, and Zhou et al. [42]. Note that while all of
these CNN-based feature descriptors were learned in a fully
supervised manner, our FCSS and CAT-FCSS were learned
in a weakly-supervised manner. Furthermore, geometry-
robust methods including SLS [45], SSF [46], SegSIFT [63],
Lin et al. [64], DFF [4], GDSP [47], Proposal Flow (PF) [13],
and WarpNet [65] were evaluated. The performance was
measured on the Taniai et al. benchmark [12], Proposal
Flow-WILLOW dataset [13], Proposal Flow-PASCAL data-
set [25], CUB-200-2011 dataset [26], PASCAL-VOC part
dataset [27], and Caltech-101 benchmark [28]. For ablation
experiments to validate the components of the FCSS
descriptor, we evaluated the initial VGG-Net (conv3-4) [18]
(VGG), the VGG-Net with learned single-scale CSS layer
(VGG w/S-CSS) and learned multi-scale CSS layers (VGG
w/M-CSS).2 Furthermore, we evaluated the CAT-FCSS
descriptor in comparison to the FCSS descriptor, and

the performance gain of the proposed descriptor with the
correspondence classification loss (FCSS w/Lcl, CAT-FCSS
w/Lcl) in place of the correspondence contrastive loss. As
an optimizer for estimating dense correspondence maps,
we used the hierarchical dual-layer belief propagation (BP)
of the SIFT Flow (SF) optimization [2], whose code is pub-
licly available. The performance of our descriptor when
combined with other powerful optimizers was also exam-
ined using PF [13]. Furthermore, to evaluate the perfor-
mance of the descriptor itself, we used simple nearest
neighbor (NN) optimization.3

4.2 Matching Results

4.2.1 Results on Taniai Benchmark

We first evaluated the FCSS and CAT-FCSS descriptors on
the Taniai benchmark [12], which consists of 400 image
pairs divided into three groups: FG3DCar [66], JODS [67],
and PASCAL [68]. As in [12], matching accuracy was mea-
sured by computing the proportion of foreground pixels
with an absolute flow endpoint error that is smaller than a
certain threshold T , after resizing images so that its larger
dimension is 100 pixels. Table 1 summarizes the matching
accuracy for various feature descriptors with the SF optimi-
zation fixed (T ¼ 5 pixels). Interestingly, while both the
CNN-based descriptors [14], [15], [16], [17], [44] and the
handcrafted descriptors [10], [11], [21], [23] tend to show
similar performance, our method outperforms both of these
approaches. Fig. 9 shows the flow accuracy with varying
error thresholds. Figs. 10 and 11 show qualitative results.
Table 2 compares the matching accuracy (T ¼ 5 pixels) with
other correspondence techniques. Taniai et al. [12] and Pro-
posal Flow [13] provide plausible flow fields, but their
methods have limitations due to their usage of handcrafted
features. Thanks to its invariance to intra-class variations
and precise localization ability, our FCSS achieves the best
results both quantitatively and qualitatively. Furthermore,
since almost all of the image pairs on the Taniai bench-
mark [12] have nearly identical poses and do not have
severe geometric variations, our CAT-FCSS provides rather

TABLE 1
Matching Accuracy for Various Feature Descriptors with Fixed

SF Optimization on the Taniai Benchmark [12]

Methods FD3D. JODS PASC. Avg.

SIFT [2] 0.632 0.509 0.360 0.500
DAISY [11] 0.636 0.373 0.338 0.449
LSS [21] 0.644 0.349 0.359 0.451
DASC [23] 0.668 0.454 0.261 0.461
DeepD. [16] 0.684 0.315 0.278 0.426
DeepC. [15] 0.753 0.405 0.335 0.498
MatchN. [14] 0.561 0.380 0.270 0.404
LIFT [17] 0.730 0.318 0.306 0.451
UCN [44] 0.741 0.321 0.311 0.458

VGG [18] 0.756 0.490 0.360 0.535
VGG w/S-CSSy 0.762 0.521 0.371 0.551
VGG w/S-CSS 0.775 0.552 0.391 0.573
VGG w/M-CSS 0.806 0.573 0.451 0.610
FCSS 0.830 0.656 0.494 0.660
FCSS w/Lcl 0.832 0.662 0.512 0.668
CAT-FCSS 0.798 0.625 0.500 0.641
CAT-FCSS w/Lcl 0.858 0.680 0.522 0.687

VGG w/S-CSSy denotes results with randomly selected sampling patterns.

TABLE 2
Matching Accuracy Compared to State-of-the-art

Correspondence Techniques on the Taniai Benchmark [12]

Methods FG3D. JODS PASC. Avg.

SIFT Flow [2] 0.632 0.509 0.360 0.500
DSP [3] 0.487 0.465 0.382 0.445
Zhou et al. [42] 0.721 0.514 0.436 0.556
Taniai et al. [12] 0.830 0.595 0.483 0.636
SLS [45] 0.525 0.519 0.320 0.457
SSF [46] 0.687 0.344 0.370 0.467
SegSIFT [63] 0.612 0.421 0.331 0.457
Lin et al. [64] 0.406 0.283 0.161 0.283
DFF [4] 0.489 0.296 0.214 0.333
GDSP [47] 0.639 0.374 0.368 0.459
Proposal Flow [13] 0.786 0.653 0.531 0.657

FCSS w/PF [13] 0.839 0.635 0.582 0.685
CAT-FCSS w/PF [13] 0.842 0.641 0.586 0.690
CAT-FCSS w/Lcl,PF [13] 0.846 0.667 0.591 0.701

1. Since MatchN. [14], DeepC. [15], DeepD. [16], UCN [44], and
LIFT [17] were developed for sparse correspondence, sparse descrip-
tors were first built by forward-propagating images through networks
and then were upsampled.

2. In ‘VGG w/S-CSS’ and ‘VGG w/M-CSS’, the sampling patterns
were only learned with VGG-Net layers fixed.

3. Due to complexity issues, we uniformly sampled points on the
foreground with a stride of 8 as keypoints for matching, similar to [65].
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degraded performance compared to FCSS. However, on
other following benchmarks with severe geometric varia-
tions, CAT-FCSS exhibits clearly boosted matching accu-
racy. In the results of ‘VGG w/S-CSSy’, we found that even
initial random patterns of the FCSS network can provide
relatively reliable performance, which demonstrates that
FCSS can be learned with enough initial putative training
samples. Furthermore, when using the classification loss Lcl

to learn the FCSS and CAT-FCSS, the matching accuracy
was highly improved compared to the cases of using the

contrastive loss Lco, which means that with a more powerful
loss fuction, the CAT layer can provide robustness even for
image pairs having similar geometric configurations.

4.2.2 Results on Proposal Flow-WILLOW Benchmark

We also evaluated our descriptor on the Proposal Flow-
WILLOW benchmark [13], which includes 10 object sub-
classes with 10 keypoint annotations for each image. For the
evaluation metric, we used the probability of correct key-
point (PCK) between flow-warped keypoints and the ground
truth [13], [36]. The warped keypoints are deemed to be cor-
rectly predicted if they lie within a �maxðhb; wbÞ pixels of the
ground-truth keypoints for a 2 ½0; 1�, where hb andwb are the
height andwidth of the object bounding box, respectively.

The PCK values were measured for various feature
descriptors with SF optimization in Table 3, and for differ-
ent correspondence techniques in Table 4. Our FCSS
descriptor with SF optimization shows competitive

Fig. 9. Average matching accuracy with respect to endpoint error thresh-
old on the Taniai benchmark [12]: (a) various feature descriptors with SF
optimization, (b) state-of-the-art correspondence techniques on image
pairs within (from top to bottom) FG3DCar, JODS, and PASCAL on the
Taniai benchmark [12].

TABLE 3
Matching Accuracy for Various Feature Descriptors with SF
Optimization on the Proposal Flow-WILLOW Benchmark [13]

Methods
PCK

a ¼ 0:05 a ¼ 0:1 a ¼ 0:15

SIFT [2] 0.247 0.380 0.504
DAISY [11] 0.324 0.456 0.555
LSS [21] 0.347 0.504 0.626
DASC [23] 0.255 0.411 0.564
DeepD. [16] 0.187 0.308 0.430
DeepC. [15] 0.212 0.364 0.518
MatchN. [14] 0.205 0.338 0.476
LIFT [17] 0.197 0.322 0.449
LIFTy [17] 0.224 0.346 0.489
UCN [44] 0.221 0.354 0.492

VGG [18] 0.224 0.388 0.555
VGG w/S-CSS 0.239 0.422 0.595
VGG w/M-CSS 0.344 0.514 0.676
FCSS 0.354 0.532 0.681
FCSS w/Lcl 0.356 0.534 0.684
CAT-FCSS 0.361 0.541 0.686
CAT-FCSS w/Lcl 0.362 0.546 0.692

LIFTy denotes results of LIFT [17] with densely sampled windows.

TABLE 4
Matching Accuracy Compared to State-of-the-Art
Correspondence Techniques on the Proposal

Flow-WILLOW Benchmark [13]

Methods
PCK

a ¼ 0:05 a ¼ 0:1 a ¼ 0:15

SIFT Flow [2] 0.247 0.380 0.504
DSP [3] 0.239 0.364 0.493
Zhou et al. [42] 0.197 0.524 0.664
SSF [46] 0.292 0.401 0.531
Lin et al. [64] 0.192 0.354 0.487
DFF [4] 0.241 0.362 0.510
GDSP [47] 0.242 0.487 0.512
Proposal Flow [13] 0.284 0.568 0.682

FCSS w/PF [13] 0.295 0.584 0.715
CAT-FCSS w/PF [13] 0.301 0.587 0.721
CAT-FCSS w/Lcl,PF [13] 0.311 0.579 0.725
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performance compared to recent state-of-the-art correspon-
dence methods. When combined with PF optimization
instead, our method significantly outperforms the existing
state-of-the-art descriptors and correspondence techniques.

4.2.3 Results on Proposal Flow-PASCAL Benchmark

We evaluated our descriptor on the Proposal Flow-PASCAL
benchmark [25], which samples 1,351 image pairs for 20
object categories from PASCAL keypoint annotations [69].
For the evaluation metric, we used the PCK between flow-
warped keypoints and the ground truth [13] as in the experi-
ments on the Proposal Flow-WILLOWbenchmark [13].

The PCK values were measured for various feature
descriptors with SF optimization in Table 5, and for
different correspondence techniques in Table 6. Figs. 12 and
13 show qualitative results for dense flow estimation.
Our FCSS descriptor exhibits performance competitive to
state-of-the-art handcrafted and CNN-based descriptors.

Our CAT-FCSS descriptor was found to be especially reli-
able for severe geometric deformations.

4.2.4 Results on CUB-200-2011 Benchmark

Lastly, we evaluated our descriptor on the CUB-200-2011
dataset [26], which contains 11,788 images of 200 bird catego-
ries, with 15 parts annotated. We followed the experimental
configuration in [65], which utilizes the training set to extract
training pairs and 5,000 other image pairs from the valida-
tion subset as testing pairs. For the evaluation metric, we
used the PCK between flow-warped keypoints and the
ground truth [65], where a match is considered correct if the
predicted point is within a � Ld of the mean diagonal length
of the two images Ld. We uniformly sample points on the
foregroundwith a stride of 8 as keypoints for matching.

The average PCK was measured for various descriptors
and correspondence techniques in Fig. 14. In this experi-
ment, we evaluated our descriptor using nearest neighbor

Fig. 10. Qualitative results for various feature descriptors with fixed SF optimization on the Taniai benchmark [12]: (a) Source image, (b) target image,
(c) SIFT [10], (d) DASC [23], (e) DeepD. [16], (f) MatchN. [14], (g) FCSS, and (h) CAT-FCSS w/Lcl.

Fig. 11. Qualitative results for various feature descriptors with fixed NN optimization on the Taniai benchmark [12]: (a) Source image, (b) target
image, (c) source key-points within object regions, (d) LSS [21], (e) LIFT [17], (f) DeepC. [15], (g) VGG [18], and (h) FCSS. For the visualization,
color-coded source key-points were warped to the target images using correspondences.

TABLE 5
Matching Accuracy for Various Feature Descriptors with SF
Optimization on the Proposal Flow-PASCAL Benchmark [25]

Methods
PCK

a ¼ 0:05 a ¼ 0:1 a ¼ 0:15

SIFT [2] 0.192 0.334 0.492
DAISY [11] 0.189 0.324 0.489
LSS [21] 0.201 0.331 0.481
DASC [23] 0.204 0.364 0.601
DeepD. [16] 0.189 0.324 0.412
DeepC. [15] 0.207 0.367 0.473
MatchN. [14] 0.212 0.343 0.397
LIFT [17] 0.227 0.359 0.421
UCN [44] 0.234 0.367 0.431

FCSS w/Lcl 0.269 0.462 0.636
CAT-FCSS w/Lcl 0.274 0.468 0.647

TABLE 6
Matching Accuracy Compared to State-of-the-Art
Correspondence Techniques on the Proposal

Flow-PASCAL Benchmark [25]

Methods
PCK

a ¼ 0:05 a ¼ 0:1 a ¼ 0:15

SIFT Flow [2] 0.192 0.334 0.492
DSP [3] 0.198 0.372 0.414
Zhou et al. [42] 0.181 0.410 0.624
SSF [46] 0.210 0.382 0.511
Lin et al. [64] 0.204 0.368 0.498
DFF [4] 0.214 0.372 0.522
GDSP [47] 0.222 0.412 0.524
Proposal Flow [13] 0.242 0.451 0.640

CAT-FCSS w/Lcl,PF [13] 0.270 0.472 0.646
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(NN) search to evaluate the performance contribution of
the descriptor, following [65]. Our FCSS and CAT-FCSS
descriptors with NN search show competitive performance
compared to recent state-of-the-art optimization based
methods such as DSP [3] and WarpNet [65].

4.3 Applications

4.3.1 Non-Parametric Part Segmentation

To verify the superiority of our descriptor, we applied our
descriptor to the non-parameteric part segmentation task on
the dataset provided by [5], where the images are sampled
from the PASCAL-VOC part dataset [27]. In this applica-
tion, part segments of the target image were estimated by
warping ground truth part segments of the source image
using dense correspondences, enabling non-parametric part

segmentation. With human-annotated part segments, we
measured part matching accuracy using the weighted inter-
section over union (IoU) score between transferred seg-
ments and ground truths, with weights determined by the
pixel area of each part. To evaluate alignment accuracy, we
measured the PCK metric using keypoint annotations for
the 12 rigid PASCAL classes [71]. Table 7 summarizes the
matching accuracy compared to state-of-the-art correspon-
dence methods. Fig. 15 visualizes estimated dense flow
with color-coded part segments. From the results, our FCSS
descriptor is found to yield the highest matching accuracy.

4.3.2 Foreground Mask Detection

Furthermore, we applied our descriptor to the foreground
mask detection task on the Caltech-101 dataset [28], where
the ground truth foreground mask of the source images
were transferred to the target images by using dense

Fig. 12. Qualitative results for various feature descriptors with fixed SF optimization on the Proposal Flow-PASCAL benchmark [25]: (a) Source
image, (b) target image, (c) DAISY [11], (d) LSS [21], (e) DASC [23], (f) VGG [18], (g) FCSS w/Lcl, and (h) CAT-FCSS w/Lcl.

Fig. 13. Qualitative results for various feature descriptors with fixed NN optimization on the Proposal Flow-PASCAL benchmark [25]: (a) Source
image, (b) target image, (c) source key-points, (d) LSS [21], (e) DASC [23], (f) VGG [18], (g) FCSS w/Lcl, and (h) CAT-FCSS w/Lcl . For the visualiza-
tion, color-coded source key-points were warped to the target images using correspondences.

TABLE 7
Quantitative Results for Non-Parametric Part Segmentation

on the PASCAL-VOC Part Dataset [27]

Methods IoU
PCK

a ¼ 0:05 a ¼ 0:1

DFF [4] 0.36 0.14 0.31
GDSP [47] 0.40 0.16 0.34
FlowWeb [3] 0.43 0.26 -
Zhou et al. [42] - - 0.24
Proposal Flow [13] 0.41 0.17 0.36
UCN [44] - 0.26 0.44

FCSS w/SF [2] 0.44 0.28 0.47
FCSS w/PF [13] 0.46 0.29 0.46
CAT-FCSS w/SF [2] 0.41 0.31 0.45
CAT-FCSS w/PF [13] 0.47 0.30 0.48
CAT-FCSS w/Lcl,SF [2] 0.45 0.29 0.49
CAT-FCSS w/Lcl,PF [13] 0.46 0.29 0.51

Fig. 14. Average PCK on the CUB-200-2011 benchmark [26].
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correspondences. Following the experimental protocol
in [3], we randomly selected 15 pairs of images for each
object class, and evaluated matching accuracy with three
metrics: label transfer accuracy (LT-ACC) [73], the IoU met-
ric, and the localization error (LOC-ERR) of corresponding
pixel positions. Table 8 summarizes the matching accuracy
compared to the state-of-the-art correspondence methods.
Fig. 16 visualizes estimated dense flow fields with mask
transfer. For the results, our FCSS descriptor clearly outper-
forms the comparison techniques.

4.3.3 Non-Parametric Semantic Segmentation

We also applied our descriptor to the non-parameteric
semantic segmentation task on the PASCAL-VOC 2012

benchmark [29]. Similar to the preceding experiments, we
cast the non-parametric segmantic segmentation problem as
a segmentation mask transfer between source and target
images. In [73], similar approaches were used for single
image scene parsing by leveraging its nearest neighbors
from a large database containing fully annotated images. In
this experiment, we only consider a simplified version of [73]
in which we transfer ground truth segmentation masks from
a single target image queried using GIST [74]. For quantita-
tive evaluations, we adopted the mean intersection over
union (mIoU) between the predicted segmentations and
ground truths on the validation sets of [29]. Fig. 17 shows
the predicted semantic segmentation using dense corre-
spondences. Table 9 presents quantitative comparisons to

Fig. 15. Visualizations of non-parametric part segmentation on the PASCAL-VOC part dataset [27]: (a) Source image, (b) target image, (c) source
mask, (d) LSS [70], (e) DeepD. [16], (f) LIFT [17], (g) FCSS, (h) CAT-FCSS w/Lcl, and (i) target mask.

TABLE 8
Quantitative Results for Foreground Mask Detection

on the Caltech-101 Dataset [28]

Methods LT-ACC IoU LOC-ERR

DSP [3] 0.77 0.47 0.35
SIFT Flow [2] 0.75 0.48 0.32
Proposal Flow [13] 0.78 0.50 0.25
VGG [18] w/SF [2] 0.78 0.51 0.25

FCSS w/SF [2] 0.80 0.50 0.21
FCSS w/PF [2] 0.83 0.52 0.22
CAT-FCSS w/Lcl,SF [2] 0.81 0.53 0.19
CAT-FCSS w/Lcl,PF [13] 0.84 0.55 0.20

Fig. 17. Visualization of non-parametric semantic segmentation on the the PASCAL-VOC 2012 benchmark [29]: (a) Source image, (b) target image,
(c) source semantic segments, (d) DAISY [11], (e) VGG [18], (f) FCSS w/Lcl, (g) CAT-FCSS w/Lcl, and (h) target semantic segments. For visualiza-
tion, color-coded source semantic segments were warped to the target images using correspondences.

Fig. 16. Visualizations of foreground mask transfer on the Caltech-101 dataset [28]: (a) Source image, (b) target image, (c) source mask, (d)
SIFT [10], (e) DASC [23], (f) MatchN. [14], (g) LIFT [17], (h) FCSS, and (i) target mask.

TABLE 9
Quantitative Results for Non-Parametric

Semantic Segmentation on the
PASCAL-VOC 2012 Benchmark [29]

Methods mIoU

DeepD. [16] 0.39
DeepC. [15] 0.38
MatchN. [14] 0.46
LIFT [17] 0.51
VGG [18] 0.46

FCSS w/Lcl 0.59
CAT-FCSS w/Lcl 0.62
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state-of-the-art correspondence methods. Our FCSS and
CAT-FCSS show state-of-the-art performance even for chal-
lenging scenarios in semantic segmentation.

4.3.4 Non-Parametric Object Detection

Finally, we applied our descriptor to the non-parametric
object detection task on the Proposal Flow-PASCAL bench-
mark [25]. In this experiment,we demonstrate that dense fea-
ture descriptors such as our FCSS andCAT-FCSS can be used
to detect objects in a non-parametric manner. Specifically, for
each feature descriptor of ground truth bounding boxes in
the source image, we first estimate the similarities between
the features of possible object bounding boxes detected by an
object proposal method [72] in the target image, and then
detect the objects based on the similarities. We extracted fea-
tures for the kth object proposals Dop

k using spatial pyramid
matching [75] from dense descriptors Di as in [25]. We also
measured the normalized feature similarity that minimizes
expð�jDop

k �D0;op
k jÞ. Note that we did not apply any post-

processing techniques such as non-maximum suppression.
For quantitative evaluation, we measured the mean average
precision (mAP) as in [57], [58], [76] for 1,351 image pairs
from [25]. Fig. 18 visualizes the object detection results, and
Table 10 shows quantitative evaluations. These experiments
demonstrate that our FCSS and CAT-FCSS can be used for
the non-parameteric object detection task.

4.4 Runtime Analysis

In Table 11, we compared the computational speed of FCSS
and CAT-FCSS to state-of-the-art descriptors including

handcrafted and CNN-based descriptors. For the CNN-
based methods including VGG [18], FCSS, and CAT-FCSS,
the computation times were also measured on a GPU. Even
though our descriptors need more computation compared
to the handcrafted descriptors such as DAISY [11] on a
CPU, they exhibit clearly better matching performance.

5 CONCLUSION

We presented the FCSS descriptor, which formulates local
self-similarity within a fully convolutional network. In con-
trast to the previous LSS-based techniques, the sampling pat-
terns and the self-similarity measure were jointly learned
within the proposed network in an end-to-end and multi-
scale manner. Furthermore, to address affine deformations in
dense semantic correspondence, we proposed the CAT layer
that first estimates explicit affine transformation fields at
each pixel and then transforms the sampling patterns and
corresponding receptive fields. The network was addition-
ally trained in aweakly-supervisedmanner, using correspon-
dence consistency within object bounding boxes provided in
the training image pairs.

Even though our descriptor has shown reliable perfor-
mance on various benchmarks and applications, it has some
limitations. Since our descriptor can be learned with sailent-
object database, it might not estimate correspondences of
the background well as shown in Fig. 10, which would limit
the applicability of the descriptor for scene-level correspon-
dence. Furthermore, the computation time of our descriptor
does not allow it to be used in real-time applications. To
overcome these, our further works will be focused on the
generalizaion of our descriptor to deal with scene-level
matching and more efficient computation.
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