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Abstract—Stereo matching is one of the most popular techniques to estimate dense depth maps by finding the disparity between
matching pixels on two, synchronized and rectified images. Alongside with the development of more accurate algorithms, the research
community focused on finding good strategies to estimate the reliability, i.e. the confidence, of estimated disparity maps. This
information proves to be a powerful cue to naively find wrong matches as well as to improve the overall effectiveness of a variety of
stereo algorithms according to different strategies. In this paper, we review more than ten years of developments in the field of
confidence estimation for stereo matching. We extensively discuss and evaluate existing confidence measures and their variants, from
hand-crafted ones to the most recent, state-of-the-art learning based methods. We study the different behaviors of each measure when
applied to a pool of different stereo algorithms and, for the first time in literature, when paired with a state-of-the-art deep stereo
network. Our experiments, carried out on five different standard datasets, provide a comprehensive overview of the field, highlighting in
particular both strengths and limitations of learning-based strategies.

Index Terms—Stereo matching, confidence measures, machine learning, deep learning.
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1 INTRODUCTION

D epth estimation is often the starting point for solving
higher level computer vision tasks such as tracking,

localization, navigation and more. Although a variety of
active sensors are available for this purpose, image-based
techniques are often preferred thanks to the increasing
availability of standard cameras on most consumer devices.
Among them, binocular stereo [1] is one of the most popu-
lar and studied in the literature. Given two synchronized
images acquired by a calibrated stereo rig, depth can be
estimated by means of triangulation after finding the dis-
placement between matching pixels on the two images, i.e.
the disparity. This search is limited to a 1D search range
in case of rectified images. Specifically, by selecting one of
the two images as reference, for each pixel we look for the
corresponding one on the other view, namely target, among
a number of candidates on the same, horizontal scanline.

Over the past few decades, a great variety of algorithms
have been proposed, broadly classified into local or global
methods according to the deployed steps formalized in [1],
that are i) matching cost computation, ii) cost aggregation,
iii) disparity optimization and selection, and iv) refinement.
Common to all algorithms is the definition of a cost volume,
collecting for each pixel in the reference image matching
costs for corresponding candidates on the target image.
Among all, solutions based on the Semi-Global Matching
pipeline (SGM [2]) resulted in the years the most popular
thanks to the good trade-off between accuracy and compu-
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tational complexity.
Similar to other computer vision tasks, deep learning

has hit stereo matching as well [3], at first replacing single
steps in the pipeline such as matching cost computation
with convolutional neural networks (CNNs) [4], rapidly
converging towards end-to-end deep networks [5] embody-
ing the entire pipeline. Nowadays, the state-of-the-art is
represented by these latter approaches [6], although several
limitations still preclude their seamless deployment in real
world applications [7], [8], [9].

In parallel with this rapid evolution, estimating the confi-
dence of estimated disparity maps, as shown in Figure 1, has
grown in popularity. At first used for selecting most reliable
estimates or filtering out outliers, more techniques leverag-
ing confidence measures have been studied and developed.
Specifically, most methods aim at improving pre-existing
stereo algorithms [10], [11], with particular focus on SGM
variants [12], [13], [14], [15], [16]. Other notable applications
consist into fusion with Time-Of-Flight sensors [17], [18],
as well as domain adapation of deep stereo networks [9],
[19]. Starting from the first review in the field [20], several
strategies to estimate a confidence measure have been pro-
posed in the literature, either hand-made or learned from
data by means of machine learning [21]. More recent works
belonging to this latter category [22], [23], [24], [25] rapidly
established as state-of-the-art.

In this paper, we provide a comprehensive review and
evaluation of confidence measures, covering more than 10
years of studies in this field. This extensive survey extends
our previous work [21], representing the most recent evalu-
ation available in literature, with the following novelties:

• We include the latest advances in the field of confi-
dence estimation, either hand-made [26] or based on
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Fig. 1. Confidence estimation example. From left to right, reference image, disparity map and estimated confidence map (pixels from black to
white encode confidence from lower to higher).

deep learning [22], [23], [24], [25]
• We evaluate each confidence measure on a total of

4 realistic datasets, respectively KITTI 2012 [27] and
2015 [28], Middlebury 2014 [29] and ETH3D [30], to-
gether with the SceneFlow Driving synthetic dataset
[5]. Indeed, for the first time, we assess the ability
of learning-based measures to tackle domain shift
issues, training in one domain (e.g., on a synthetic
dataset) and testing in different ones (e.g., real).

• For the first time in literature, we evaluate all the
considered measures when applied to state-of-the-art
3D end-to-end stereo network, i.e. GANet [6].

The rest of the manuscript is organized as follows:
Section 2 briefly resumes the progressive development in
the field of confidence estimation and its applications, Sec-
tion 3 introduces the taxonomy of hand-crafted confidence
measures, while Section 4 lists and classifies learning based
approaches. Then, Section 5 collects the outcome of our
extensive experiments, summarized in Section 6 before
drawing conclusions in Section 7.

2 RELATED WORK

In last decades, there have been extensive works in stereo
confidence measures, mainly based on handcrafted con-
fidence measures [31], [32], [33]. Hu and Mordohai [20]
performed a taxonomy and evaluation of stereo confidence
measures, considering 17 confidence measures and two local
algorithms on the two datasets available at that time. Since
then novel confidence measures were proposed [10], [11],
[12], [13], [34], [35] and more importantly this field was
affected by methodologies inspired by the machine learning.
To account for the fact that there is no single confidence
feature yielding stably optimal performance for all datasets
and stereo matching algorithms, methods aiming to benefit
from the combination of multiple confidence measures have
been proposed [10], [35] with a random forest. Following
this strategy, the reliability of confidence measures was fur-
ther improved by considering more effective features [12],
[13], an efficient O(1) computation [15], and hierarchical
aggregation at a superpixel-level [36].

Recent approaches have tried to measure the confidence
through deep CNNs [14], [22], [23], [24], [25], [37], [38],
[39], [40], [41], [42]. Formally, CNN-based methods first
extract the confidence features directly from input cues, i.e.
reference image, cost volume, and disparity maps, and then
predict the confidence with a classifier. Various methods
have been proposed that use the single- or bi-modal input,
i.e. left disparity [37], both left and right disparity [14], a
matching cost [40], matching cost and disparity [41], and
disparity and color image [22], [38]. More recently, Kim et
al. [25] present a deep network that estimates the confidence
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Fig. 2. Example of cost curves for a pixel p: on x axis, disparity
hypotheses i, on y axis, matching cost ci. We show an ambiguous curve
in black, for which d1 and d2 (respectively equal to 46 and 48) compete
for the role of minimum and other local minima exist (at disparities 22
and 60, the former corresponding to d2m). We also show an ideal cost
curve in blue with a clear winner. Best viewed in color.

by making full use of tri-modal input, including matching
cost, disparity, and reference image with a novel fusion
technique. Concerning unsupervised training of confidence
measures, Mostegel et al. [43] proposed to determine train-
ing labels made of a set of correct disparity assignment and a
set of wrong ones, exploiting, respectively, consistencies and
contradictions between multiple depth maps. Differently,
Tosi et al. [44] leveraged on a pool of confidence measures
for the same purpose.

This field has also seen the deployment of confidence
measures plugged into stereo vision pipelines to improve
the overall accuracy as proposed in [17], [21], [45]. Most
previous approaches aimed at improving the accuracy of
SGM [46] algorithm exploiting as a cue an estimated match
reliability. In addition, confidence measures have been ef-
fectively deployed for sensor fusion combining depth maps
from multiple sensors [17] and for embedded stereo sys-
tems [45].

3 HAND-CRAFTED CONFIDENCE MEASURES

Common to the variety of confidence measures proposed
in the literature is using the cost volume as the source
of information. However, most measures only process a
portion of the cues available from it, ranging from properties
of the per-pixel full cost curve down to simply leveraging
the output disparity map only. In compliance with previous
works [13], [20], [21], we define a taxonomy with the aim of
grouping confidence measures into categories according to
the input cues extracted from the cost volume.

We first define the naming convention used in the rest of
this section. Given two rectified images l and r and assum-
ing the former as reference, for each pixel p at coordinates
(x, y) a cost curve c(p) is computed. We define the following
terms
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• l(p), r(p): pixel intensity in image l, r
• ci(p): matching cost for disparity hypothesis i ∈ D
• d1(p): winning disparity hypothesis
• d2(p): disparity hypothesis of the second minimum
• d2m(p): disparity hypothesis of the second smallest

local minimum. Any ci is a local minimum if ci <
ci±1, yet d2m(p) may not be defined

• cd1
(p): minimum cost in the curve

• cd2
(p): second minimum in the cost curve

• cd2m
(p): second local minimum in the cost curve

• pr : pixel on r at coordinates x− d1(p)
• µ: mean over a local window, e.g. µ(l(p)) represents

the mean intensity over a window in image l.

When omitted, costs and disparities always refer to l as
the reference image. Otherwise, we label them as cr and
dr when assuming r as reference. Fig. 2 depicts an example
of a cost curve, highlighting the positions of specific costs
defined earlier. In particular, we show an ambiguous curve
(black) where several scores compete for the minimum,
increasing the likelihood of selecting a wrong disparity with
respect to the case of having an ideal curve (blue).

We are now going to define, in Sec. from 3.1 to 3.7,
different families of measures according to the input cues
they process. To each category, we assign a color that will be
recalled when discussing the results of our evaluation.

3.1 Minimum cost and local properties

We group here methods considering only local information
in the cost curve, mostly encoded by cd1 , cd2 , and cd2m , from
pixel p and eventually its neighbors. Most measures use
cd2m , that may not be defined as in the case, for instance,
of an ideal cost curve. Indeed, variants of these measures,
called naive, use cd2 that is always defined.

Matching Score Measure (MSM) [32], expressed by the
negative minimum cost itself (the lower, the higher confi-
dence)

MSM(p) = −cd1
(p) (1)

Maximum Margin (MM) [21], has the difference be-
tween the second smallest local minimum and the minimum
cost

MM(p) = cd2m
(p)− cd1

(p) (2)

Maximum Margin Naive (MMN) [20], has the difference
between the second minimum and the minimum cost

MMN(p) = cd2
(p)− cd1

(p) (3)

Non-Linear Margin (NLM) [47], has exponential of the
MM

NLM(p) = e
cd2m

(p)−cd1 (p)

2σ2 (4)

Non-Linear Margin Naive (NLMN) [21], has exponen-
tial of the MMN

NLMN(p) = e
d2

(p)−cd1 (p)

2σ2 (5)

Curvature (CUR) [32], as the local shape of the cost curve
in correspondence of the minimum cost

CUR(p) = −2cd1(p) + cd1−1(p) + cd1+1(p) (6)

Local Curve (LC) [48], as the slope of the cost curve
between the minimum cost and the higher of its neighbors

LC(p) =
max [cd1−1(p), cd1+1(p)]− cd1

(p)

γ
(7)

Peak Ratio (PKR) [32], as the ratio between the second
local minima and the minimum cost

PKR(p) =
cd2m

(p)

cd1(p)
(8)

Peak Ratio Naive (PKRN) [20], as the ratio between the
second minima and the minimum cost

PKRN(p) =
cd2

(p)

cd1(p)
(9)

Disparity Ambiguity Measure (DAM) [35], as the dis-
tance between two disparity hypotheses expressed by the
minimum cost and the second minima

DAM(p) = |d1(p)− d2(p)| (10)

Average Peak Ratio (APKR) [49], as the average of ratios
between costs for pixels q in window, respectively in the
same position of the second smallest local minimum and
the minimum cost in p

APKR(p) =
∑

q∈N(p)

cd2m(p)(q)

cd1(p)(q)
(11)

Average Peak Ratio Naive (APKRN) [21], naive variant
of the previous measure replacing second smallest local
minimum with second minimum

APKRN(p) =
∑

q∈N(p)

cd2(p)(q)

cd1(p)(q)
(12)

Weighted Peak Ratio (WPKR) [50], as the average of
ratios as defined for APKR. Each ratio is multiplied by a
binary weight α(p, q) = 1 if the difference between pixel
intensities l(p) and r(q) is lower than a threshold w

WPKR(p) =
∑

q∈N(p)

α(p, q) ·
cd2m(p)(q)

cd1(p)(q)
(13)

Weighted Peak Ratio Naive (WPKRN) [21], naive vari-
ant of the previous measure replacing second smallest local
minimum with second minimum

WPKRN(p) =
∑

q∈N(p)

α(p, q) ·
cd2(p)(q)

cd1(p)(q)
(14)

Semi-Global Energy (SGE) [35], inspired by the the
Semi-Global Matching algorithm and computing confidence
by summing penalties P1, P2 to the minimum cost as

SGE =
∑
s∈S

∑
q∈s(p)

cd1
(q) + P1 · t[d1(q)− d1(q′) = 1]

+ P2 · t[d1(q)− d1(q′) > 1]

(15)

with s being a scanline ray from a set of rays S emerging
from p, s(p) a set of pixels along the ray in a local window
N(p) and q′ the successor of q along the ray. The binary
operator t[·] is 1 when the expression holds and 0 otherwise.
Thus, P1 and P2 penalize respectively small and larger
disparity margins between neighboring pixels along s.
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3.2 The entire cost curve
We group here methods considering the entire cost curve,
from pixel p and eventually its neighbors.

Perturbation measure (PER) [35], capturing the devia-
tion of the cost curve to an ideal one as shown in Fig. 2

PER(p) =
∑
i 6=d1

e−
[cd1

(p)−ci(p)]
2

s2 (16)

Maximum Likelihood Measure (MLM) [51], as a proba-
bility density function for the predicted disparity given the
matching costs, by assuming that the cost function follows a
normal distribution and that the disparity prior is uniform
[20]

MLM(p) =
e−

cd1
(p)

2σ∑
i∈D e

− ci(p)2σ

(17)

Attainable Likelihood Measure (ALM) [51], modeling
the cost function in p using a Gaussian distribution centered
at cd1

(p), thus making the numerator equal to 1

ALM(p) =
1∑

i∈D e
− ci(p)2σ

(18)

Number of Inflections (NOI) [20], as the number of local
minima in the cost curve

NOI(p) = #
⋃
i∈D

ci(p) < ci±1(p) (19)

with # denoting the cardinality of the set.
Local Minima in Neighborhood (LMN) [49], as the

number of pixels q in a local window N(p) for which costs
cd1(p)(q) are local minima

LMN(p) = #
⋃

q∈N(p)

cd1(p)(q) < cd1(p)±1(q) (20)

Winner Margin (WMN) [52], as the difference between
the second local minima and the minimum cost, normalized
over the entire cost curve

WMN(p) =
cd2m(p)− cd1(p)∑

i∈D ci
(21)

Winner Margin Naive (WMNN) [20], as the difference
between the second minima and the minimum cost, normal-
ized over the entire cost curve

WMNN(p) =
cd2

(p)− cd1
(p)∑

i∈D ci
(22)

Negative Entropy Measure (NEM) [52], relates the de-
gree of uncertainty to the negative entropy of the minimum
matching cost

NEM(p) =
∑ e−cd1∑

i∈D e
−ci
· log e−cd1∑

i∈D e
−ci

(23)

Pixel-Wise Cost Function Analysis (PWCFA) [26],
aimed at detecting multiple local minima close to cd1

PWCFA(p) =
1∑

i∈D
max(min(|i−d1|−1,

dmax−dmin
3 ),0)2

max(ci−cd1−
∑
i∈D ci

3(dmax−dmin) ,1)

(24)

In our experiments, being costs normalized in [0, 1], we
replace dmax−dmin

3 with 1
3 .

3.3 Left-right consistency
This category evaluates the consistency between corre-
sponding pixels across left and right views according to
symmetric (on both left and right views) or asymmetric cues
(based on left view only).

Left-Right Consistency (LRC) [31], measures the differ-
ence between disparity d1 estimated for p on the left map
and disparity dr1 on the right map for pr. The lower the
difference, the higher the confidence

LRC(p) = −|d1(p)− dr1(pr)| (25)

Left-Right Difference (LRD) [20], encodes the margin
between the first and second minima on the left disparity
map, divided by the difference between minimum costs of
corresponding pixels p, pr , respectively on left and right
disparity maps

LRD(p) =
cd2(p)− cd1(p)

|cd1
(p)− cdr1(pr)|

(26)

Zero-Mean Sum of Absolute Differences (ZSAD) [35],
as the zero-mean difference in intensities between local
windows centered in p and pr

ZSAD(p) =
∑

q∈N(p)

|l(q)− µl(p)− r(qr) + µr(pr)| (27)

Asymmetric Consistency Check (ACC) [53], checking if
any neighbor of p, on the same horizontal scanline, collides
with it, i.e. if it matches with the same pixel on the right
image. In such a case, low confidence is assigned if d1(p)
is not the maximum hypothesis among colliding hypothesis
d1(q) or if cd1(p) is not the minimum among costs cd1(q)

ACC(p) =


0 if pr ∈

⋃
q∈Q q

r and
[d1(p) 6= max q ∈ Qd1(q) or
c1(p) 6= min q ∈ Qc1(q)]

1 otherwise

(28)

with Q being the set of pixels q having x coordinate varying
between −d1(p) and (dmax − d1(p)) around p.

Uniqueness Constraint (UC) [54], a binary confidence
assigning 0 to all colliding pixels, except the one with
minimum cost

UC(p) =


0 if pr ∈

⋃
q∈Q q

r and
c1(p) 6= min q ∈ Qc1(q)]

1 otherwise
(29)

Uniqueness Constraint Cost (UCC) [21], assigning 0 to
all colliding pixels, except the one with minimum cost for
which the cost itself is assumed as confidence (the lower,
the more confident)

UCC(p) =


0 if pr ∈

⋃
q∈Q q

r and
c1(p) 6= min q ∈ Qc1(q)]

−cd1 otherwise
(30)

Uniqueness Constraint Occurrence (UCO) [21], as the
number of pixels q colliding with p (the lower, the more
confident)

UCO(p) = −#
⋃
q∈Q

pr = qr (31)
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3.4 Disparity map analysis

Confidence measures belonging to this group are obtained
by extracting features from the reference disparity map,
with no additional cues from the cost volume.

Distance to Discontinuities (DTD) [10], as the minimum
distance to a depth discontinuity, which often represents a
challenge for correct matching

DTD(p) = min
q∈d̂
|p− q| (32)

with d̂ being obtained by applying an edge detector to the
disparity map

Disparity Map Variance (DMV) [35], defined as the
norm of the gradient computed over the disparity map

DMV(p) = ||∇d1(p)|| (33)

Variance of disparity (VAR) [12], as the statistical vari-
ance on a neighborhood N(p). The higher is the variance,
the noisier the disparity map is

VAR(p) = − 1

#N(p)

∑
q∈N(p)

[d1(q)− µ(d1(p))]2 (34)

Disparity skewness (SKEW) [13], as the asymmetry on
the statistical distribution on a neighborhood N(p). High
skewness can identify noisy regions in the disparity map

SKEW(p) = − 1

#N(p)

∑
q∈N(p)

[d1(q)− µ(d1(p))]3 (35)

Median Disparity Deviation (MDD) [10], as the distance
from the median disparity (MED) computed over N(p) (the
lower, the more confident)

MDD(p) = −|d1(p)−MED(d1(p))| (36)

Mean Disparity Deviation (MND) [13], as the distance
from the mean disparity computed over N(p) (the lower,
the more confident)

MND(p) = −|d1(p)− µ(d1(p))| (37)

Disparity Agreement (DA) [15], as the number of pixels
sharing the same disparity estimate in a local neighborhood
(the higher, the more confident)

DA(p) = H[d1(p)](p) (38)

with H being the histogram of disparity distribution defined
over N(p)

H[i](p) = #
⋃

q∈N(p)

d1(q) = i (39)

Disparity Scattering (DS) [15], encoding the amount of
different disparity hypothesis in a local neighborhood (the
lower, the more confident)

DS(p) = − log

∑
i∈D t[H[i](p) > 0]

#N(p)
(40)

with t[..] being 1 when the expression holds and 0 otherwise.

3.5 Reference image analysis

Confidence measures belonging to this category use as input
domain only the reference image or some priors

Distance from Border (DB) [10], encoding the distance
from the closest image border, where information is lower

DB(p) = min(x, y,W − x,H − y) (41)

with W,H respectively image width and height.
Distance from Left Border (DLB) [12], as the distance

from the left border with dmax as upper bound, encoding a
portion of the reference image l with no matches on r

DLB(p) = min(x, dmax) (42)

Horizontal Gradient Magnitude (HGM) [35], as the
horizontal gradient over image intensity. Higher gradients
should encode regions rich of texture and easier to be
matched

HGM(p) = |∇xl(p)| (43)

Distance to image edge (DTE) [12], as the minimum dis-
tance to an image edge, which often represents a challenge
for correct matching

DTE(p) = min
q∈l̂
|p− q| (44)

with l̂ being obtained by applying an edge detector to
reference image l.

Intensity Variance (IVAR) [13], as the statistical variance
of pixel intensity on a neighborhood N(p). The higher
variance should encode regions rich of texture and easier
to be matched

IVAR(p) =
1

#N(p)

∑
q∈N(p)

[l(q)− µl(p)]2 (45)

3.6 Self-matching

The idea behind these confidence measures is to exploit the
notion of distinctiveness of the examined point within its
neighborhoods along the horizontal scanline of the same
image. To study such a cue, the self-matching between two
instances of the same image is performed, e.g. a cost curve
cll(p) is obtained by running the stereo algorithm on two l
images, assuming Dll = [−dmax, dmax] centered on p and
symmetric as in [20].

Distinctiveness (DTS) [55], as the minimum among all
costs over Dll range. It encodes the presence of pixels that
are very similar to p on the same horizontal scanline

DTSl(p) = min
i∈Dll

clli (p) (46)

Distinctive Similarity Measure (DSM) [56], combining
distinctiveness over l and r and considering the similarity
between two potentially corresponding pixels

DSM(p) =
DTSl(p) · DTSr(pr)

cd1
(p)2

(47)

Self-Aware Matching Measure (SAMM) [33], as the
correlation coefficient between cost curves c(p) and cll(p)
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SAMM(p) =

∑
i∈D[ci−d1

(p)− µ(c(p))] · [clli (p)− µ(cll(p))]
σ(p) · σll(p)

(48)
with σ and σll being respectively the variance of costs c(p)
and cll(p).

3.7 Semi-Global Matching measures

This family of measures is tailored to the SGM algorithm,
considering specific cues available through this pipeline.

Sum of Consistent Scanlines (SCS) [57], as the number
of scanline optimizations out of s sharing the same disparity
outcome ds1(p) of the full SGM algorithm

SCS(p) = # ∪s ds1(p) = d1(p) (49)

Local-global relationship (PS) [17], it studies the rela-
tionship between matching costs before and after the semi-
global cost aggregation

PS(p) =
c∗d2

(p)− c∗d1
(p)

c∗d1
(p)

·(1− min |d∗2(p)− d∗1(p)|, γ
γ

)·

(1− min |d∗1(p)− d1(p)|, γ
γ

)

(50)

4 LEARNED CONFIDENCE MEASURES

The most recent trend in stereo confidence estimation con-
cerns the possibility of learning this task directly from data,
as in the case of most computer vision problems. We can
broadly classify these approaches into two main families:
machine learning frameworks and deep learning frame-
works. In both, we can distinguish between approaches
processing or not the cost volume.

4.1 Machine learning approaches

Methods belonging to this category use classifiers, more
specifically random forests [34], fed with a subset of the
confidence measures reviewed so far to infer a new con-
fidence value. Among these frameworks, we distinguish
three main subcategories, respectively processing the cost
volume, the disparity map or being specifically designed for
SGM algorithm. In the remainder, we report the composition
of the per-pixel features vectors adopted by each proposal,
omitting p in the notation for the sake of space.

4.1.1 Cost-volume forests
Ensemble Learning (23 features) (ENS23) [35], the

first attempt to infer a confidence estimate by means
of machine learning. It combines several hand-crafted
measures and features extracted by running the stereo
algorithm at multiple resolutions. The main configura-
tion consists into the following features F(ENS23) =
(PKRf,h,q,NEMf,h,q,PERf,h,q,LRCf ,HGMf,h,q,
DMVf,h,q,DAMf,h,q,ZSADf,h,q, SGEf ), with f,h,q apexes
referring to results obtained by running stereo algorithms
on l, r at full, half and quarter resolution respectively.

Ground Control Points (GCP) [10], [11], it proposes a
compact feature vector computed at single scale
F(GCP) = (MSM, DB, MMN, ALM, LRC, LRD, DTD, MDD)
with MDD being obtained over a 5× 5 window N(p).

Leveraging stereo confidence (LEV) [12], [13], it intro-
duces features computed on multiple windows N(p) of
increasing size. Two versions with respectively 22 and 50
features have been proposed: F(LEV22) = (PKR, PKRN,
MSM, MM, WMN, MLM, PER, NEM, LRD, LC, VAR1,...,4,
DTD, MDD1,...,4, LRC, HGM, DLB) and F(LEV50) =
(MSM, PKR, PKRN, MM, MMN, WMN, WMNN, MLM,
PER, NEM, LRD, LC, ALM,DTD, DTE, LRC, HGM, DLB,
DB, NOI, VAR1,3,4,6,9,14, MDD1,3,4,6,9,14, MND1,3,4,6,9,14,
SKEW1,3,4,6,9,14, IVAR1,3,4,6,9,14). Features with apex i are
computed on (3+2i)×(3+2i) windows, e.g. MDD1 is com-
puted over a 5× 5. We replace image gradients with HGM,
achieving slightly better results. The authors also propose
a method to select the most important features and reduce
the vector dimensionality. In our evaluation, we consider
the complete vectors, being them the best performing.

Feature Augmentation (FA) [36]. Unlike previous meth-
ods that predict the confidence based on per-pixel features,
FA [36] imposes a spatial consistency on the confidence esti-
mation by introducing a robust set of features extracted from
super-pixels, F(FA1) = (LRC, DB, LRD, MDD1,2,3, MLM,
MSM) and F(FA2) = (LRD, PKRN, MDD1,2,3,4, MLM,
NEM), which are concatenated with per-pixel features and
enhanced through adaptive filtering.

4.1.2 Disparity forests
Ensemble Learning (7 features) (ENS7) [35], a vari-

ant of ENS23 extracting seven features from the dispar-
ity map and the reference image, resulting in F(ENS7) =
(LRCf ,HGMf,h,q ,DMVf,h,q).

O(1) Features (O1) [15], [16], these methods aim at
learning to infer a confidence score only from features
that can be computed in constant time from the reference
disparity map domain, thus not requiring the cost vol-
ume. Two version with respectively 20 [15] and 47 [16]
features have been proposed: F(O1) = (DA1,...,4, DS1,...,4,
MED1,...,4, MDD1,...,4, VAR1,...,4) and F(O2) = (DA1,...,9,
DS1,...,9, MED1,...,9, MDD1,...,9, VAR1,...,9, DLB, UC)

4.1.3 SGM-specific forest
SGMForest (SGMF) [58], suited for the SGM algorithm,

it consider the disparities ds1 selected by each single scanline
s ∈ S and their cost czds1 for each scanline z ∈ S

SGMF = (
⋃
s∈S

ds1,
⋃

(s,z)∈S×S

czds1) (51)

Originally proposed to improve SGM by selecting the most
reliable scanline for each pixel, we recast it to infer a confi-
dence value for the SGM algorithm.

4.2 Deep learning approaches

This latter family groups methods leveraging on CNNs to
infer confidence maps. Conversely from previous machine
learning approaches, these techniques directly process the
input cues, i.e. reference image, cost volume and disparity
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maps, without explicit features extraction. In this case we
define two subcategories, respectively processing the dis-
parity map as main cue or the cost volume as well.

4.2.1 Disparity CNNs

Confidence CNN (CCNN) [37], a patch-based CNN
processing 9 × 9 patches from the reference disparity map
only. A full confidence map can be processed in a single
forward pass by means of a fully-convolutional design.

Patch Based Confidence Prediction (PBCP) [14], a patch-
based network jointly processing 15× 15 patches from both
reference and target disparity map. This latter is warped
according to the former. Two versions exist, trading-off ac-
curacy for speed: one for which pixels in the patches are nor-
malized according to the central pixel disparity (disposable),
for which each patch needs to be process independently, and
one for which normalization is turned off (reusable), allowing
for a single inference on the full-resolution disparity map.

Early Fusion Network (EFN) [38], extending CCNN by
processing the input reference image together with the dis-
parity map. In this variant, 9×9 image and disparity patches
are concatenated and fed to a single features extractor.

Late Fusion Network (LFN) [38], combining image and
disparity as EFN does, but processing the two 9× 9 patches
by means of two distinct features extractor, then concatenat-
ing the resulting features before confidence estimation.

Multi Modal CNN (MMC) [39], extending the late fu-
sion model proposed in [38]. In particular, 15 × 15 patches
from the two modalities are processed by two different
encoders for disparity and RGB, the latter using dilated
convolutions to enlarge the receptive field.

Global Confidence Network (ConfNet) [22], deploying
an U-Net like architecture with larger receptive field in
order to include larger content from both the image and
disparity map. This network decimates the input resolution
by means of max-pool operations, then restoring it by means
of transposed convolutions in the decoding part.

Local-Global Confidence Network (LGC) [22], com-
bines patch-based methodologies [37] with ConfNet allow-
ing to reason for both local and global cues at once, combin-
ing the fine-grained features extracted by the former with
the large image context of the latter.

4.2.2 Cost-volume CNNs
Reflective Confidence Network (RCN) [40] proposes to

jointly estimate a confidence measure together with cost
optimization at the end of the stereo matching pipeline. By
deploying a two-layer fully connected network processing
the matching costs, a confidence map is predicted together
with the final disparity map.

Matching Probability Network (MPN) [59] processes
the matching cost volume together with the disparity map,
through a novel network consisting of cost feature extrac-
tion, disparity feature extraction, and fusion modules. To
deal with a varying size of cost volume according to stereo
pairs, a top-K matching probability volume layer is also
proposed in the cost feature extraction module.

Unified Confidence Network (UCN) [41]. Similar to
RCN [40], it is also based on the observation that jointly
learning cost optimization and confidence estimation is

effective at improving the accuracy of the final disparity
map of a stereo matching pipeline. UCN [41] proposes
a unified network architecture for cost optimization and
confidence estimation. An encoder-decoder module refines
the matching costs with a larger receptive field in order to
obtain a more accurate disparity map. Then a subnetwork
processes it together with top-K refined costs to output a
confidence map.

Locally Adaptive Fusion Network (LAF) [25] estimates
a confidence map of an initial disparity by making full use of
tri-modal input, including cost, disparity, and color image.
A key element is to learn locally-varying attention and scale
maps to fuse the tri-modal confidence features. In addition,
the confidence map is recursively refined to enforce a spatial
context and local consistency.

Adversarial Confidence Network (ACN) [42]. Similar
to RC [40] and UN [41], it jointly estimates disparity and
confidence from stereo image pairs. Especially, ACN [42]
accomplishes this via a minmax optimization to learn the
generative cost aggregation networks and discriminative
confidence estimation networks in an adversarial manner.
To fully exploit complementary information of cost, dis-
parity, and color image, a dynamic fusion module is also
proposed.

Pixel-Wise Confidence RNN (CRNN) [23] is the first
attempt to use a recurrent neural network architecture to
compute confidences. To maintain a low complexity, the
confidence for a given pixel is purely computed from its
associated costs without considering any additional neigh-
bouring pixels.

Cost Volume Analysis Network (CVA) [24]. In order to
combine the advantages of deep learning and cost volume
features, it directly learns features for estimating confidence
from the volumetric data. Specifically, CVA [24] first fuses a
cost volume into a single cost curve using 3D convolutions,
and the curve is then processed along the disparity axis by
other 3D convolutions with varying depth.

4.3 Others
For completeness, we report techniques aimed at improv-
ing the effectiveness of pre-computed confidence maps,
although not directly evaluating them in this paper.

Learning Local Consistency (++) [60]. This framework
learns a more reliable measure exploiting local consistency
within neighboring points by processing a pre-computed
confidence map by means of a patch-based CNN.

Even More Confident (EMC) [61]. In this framework,
random forest based measures are improved by replacing
the ensemble classifier with a patch-based CNN.

5 EXPERIMENTAL RESULTS

In this section, we introduce the reader to our experimental
evaluation by describing each dataset and stereo algorithm
involved, as well as the evaluation metrics.

5.1 Evaluated measures
We collect the names, acronyms and definition of each of
the measures classified in our taxonomy and involved in
our evaluation in Table 1. Measures belonging to the same
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Measure Acronym Definition

Average Peak Ratio [49] APKR Eq. 11
Average Peak Ratio Naive [21] APKRN Eq. 12
Curvature [32] CUR Eq. 6
Disparity Ambiguity Measure [35] DAM Eq. 10
Local Curve [48] LC Eq. 7
Maximum Margin [21] MM Eq. 2
Maximum Margin Naive [20] MMN Eq. 3
Matching Score Measure [32] MSM Eq. 1
Non-Linear Margin [47] NLM Eq. 4
Non-Linear Margin Naive [21] NLMN Eq. 5
Peak Ratio [32] PKR Eq. 8
Peak Ratio Naive [20] PKRN Eq. 9
Semi-Global Enery [35] SGE Eq. 15
Weighted Peak Ratio [50] WPKR Eq. 13
Weighted Peak Ratio Naive [21] WPKRN Eq. 14
Attainable Likelihood Measure [51] ALM Eq. 18
Local Minima in Neightrhood [49] LMN Eq. 20
Maximum Likelihood Measure [51] MLM Eq. 17
Negative Entropy Measure [52] NEM Eq. 23
Number of Inflections [20] NOI Eq. 19
Perturbation measure [35] PER Eq. 16
Pixel-Wise Cost Function Analysis [26] PWCFA Eq. 24
Winner Margin [52] WMN Eq. 21
Winner Margin Naive [20] WMNN Eq. 22
Local-global relationship [17] PS Eq. 50

Measure Acronym Definition

Disparity Agreement [15] DA Eq. 38
Disparity Scattering [15] DS Eq. 40
Disparity Map Variance [35] DMV Eq. 33
Distance To Discontinuities [10] DTD Eq. 32
Median Disparity Deviation [10] MDD Eq. 36
Mean Disparity Deviation [13] MND Eq. 37
Disparity skewness [13] SKEW Eq. 35
Disparity Variance [12] VAR Eq. 34
Asymmetric Consistency Check [53] ACC Eq. 28
Left-Right Consistency [31] LRC Eq. 25
Left-Right Difference [20] LRD Eq. 26
Uniqueness Constraint [54] UC Eq. 29
Uniqueness Constraint (Cost) [21] UCC Eq. 30
Uniqueness Constraint (Occurrence) [21] UCO Eq. 31
Zero-Mean Sum of Absolute Differences [35] ZSAD Eq. 27
Distinctiveness [55] DTS Eq. 46
Distinctive Similarity Measure [56] DSM Eq. 47
Self-Aware Matching Measure [33] SAMM Eq. 48
Distance from Border [10] DB Eq. 41
Distance from Left Border [12] DLB Eq. 42
Distance to image Edge [12] DTE Eq. 44
Horizontal Gradient Magnitude [35] HGM Eq. 43
Intensity Variance [13] IVAR Eq. 45

Sum of Consistent Scanlines [57] SCS Eq. 49

Measure Acronym Forest CNN Image Volume Disparity

Ensemble Learning (23 features) [35] ENS23 3 3 3 3
Ground Control Points [10] GCP 3 3 3 3
Leveraging stereo confidence (22 features) [12] LEV22 3 3 3 3
Leveraging stereo confidence (50 features) [13] LEV50 3 3 3 3
Feature augmentation [36] FA 3 3 3 3
Ensemble Learning (7 features) [35] ENS7 3 3 3
O(1) (20 features) [15] O1 3 3
O(1) (47 features) [16] O2 3 3 3
Confidence CNN [37] CCNN 3 3
Patch-based confidence prediction (reusable) [14] PBCPr 3 3
Patch-based confidence prediction (disposable) [14] PBCPd 3 3
Early Fusion Network [38] EFN 3 3 3
Late Fusion Network [38] LFN 3 3 3
Multi Modal CNN [39] MMC 3 3 3
Global Confidence Network [22] ConfNet 3 3 3
Local-Global Network [22] LGC 3 3 3
Reflective Confidence Network [40] RCN 3 3
Matching Probability Network [59] MPN 3 3 3
Unified Confidence Network [41] UCN 3 3 3
Locally Adaptive Fusion Network [25] LAF 3 3 3 3
Adversarial Confidence Network [42] ACN 3 3 3 3
Pixel-Wise Confidence RNN [23] CRNN 3 3
Cost Volume Analysis Network [24] CVA 3 3

SGMForest [58] SGMF 3 3

TABLE 1
Taxonomy of confidence measures. Different colors encode different categories. For each measure, we report its full name, reference paper and

acronym. For hand-crafted measures, We point to their definition. For learned measures, we highlight the type of classifier and its input cues.

category are grouped in blocks colored according to the
category and listed in alphabetical order. For hand-crafted
measures, we point to equations detailing their definition.
For learned measures (right-most in the table), we highlight
the classifier they use and the input cues they process.
The same table structure will be used when evaluating the
measures on the different datasets and stereo algorithms.

5.2 Datasets

We describe in detail the datasets on which our evaluation
is carried out. Since ground truth disparity is required to
assess the performance of confidence estimation, we refer to
the training sets made available by each dataset.

SceneFlow Driving. The Freiburg SceneFlow dataset [5]
is a large collection of synthetic images, made of about
39K stereo pairs with ground truth disparity maps. We
run experiments on this dataset, aiming in particular at
studying the impact of domain shifts on the confidence
estimation task for the first time in literature. Purposely,
we sample a training set made of 22 stereo pairs from
the backwards sequences Driving split, since learned-based
approaches require very few images for training [14], [37].
We also collect a testing set made of 22 images from forward
sequences, thus non-overlapping with those from which the
training images are sampled.

KITTI 2012. An outdoor dataset, acquired from static
scenes in a driving environment. It is composed of 194
grayscale stereo pairs, recently made available in color
format as well. Sparse ground truth disparity was obtained
from LIDAR measurements, post-processed by registering
a set of consecutive frames (5 before and 5 after) with ICP,
then re-projecting accumulated point clouds onto the image
and finally manually filtering all ambiguous depth values.
We manually split them into 20 training images and keep the
remaining 174 for testing following [21], in order to allow for
training learned measures on real data as well.

KITTI 2015. Improved with respect to KITTI 2012 and
thought for scene flow evaluation, this dataset frames dy-
namic scenes in driving environments. It is composed of 200
color stereo pairs for which sparse ground truth disparity
was obtained with a similar procedure, except for moving
objects that were replaced by 3D CAD models (e.g., in the

case of cars) fitted into accumulated point clouds and re-
projected onto the image and manually filtered.

Middlebury 2014. An indoor dataset, made of 15 stereo
pairs reaching up to 6 megapixels resolution. Dense ground
truth maps are obtained by means of an active stereo
pipeline [29]. It represents an open challenge for most stereo
algorithms, either hand-crafted or based on deep learning.
In our experiments, we process quarter resolution images as
in previous works [21].

ETH3D. One of the most recent among real-world
datasets, made of 27 low-resolution grayscale stereo pairs.
To obtain ground truth disparities, the authors recorded the
scene geometry with a Faro Focus X 330 laser scanner, taking
one or more 360◦ scans with up to 28 million points each.
We evaluate confidence measures on this dataset for the first
time in literature.

5.3 Evaluation metrics

We measure the effectiveness of each confidence measure
at detecting correct matches, as introduced in [20]. To this
aim, we sort pixels in a disparity map following decreasing
order of confidence and gradually compute the error rate
(D1) on sparse maps obtained by iterative sampling (e.g., 5%
of pixels each time) from the dense map. D1 is computed as
the percentage of pixels having absolute error larger than
τ . Plotting the error rates results in a ROC curve, whose
AUC quantitatively assesses the confidence effectiveness
(the lower, the better). Optimal AUC is obtained if the con-
fidence measure is capable of sampling all correct matches
first and is equal to:

AUCopt =

∫ 1

1−ε

x− (1− ε)
x

dx = ε+(1− ε) ln (1− ε) (52)

with ε being the D1 computed over the disparity map. To
have a view over an entire dataset, we compute macro-
average AUC scores over the total number of images. To
ease readability, we report each AUC score, together with
optimal AUCs, multiplied by a factor ×102. In all the exper-
iments, we set τ to 3 for Driving, KITTI 2012 and KITTI 2015
datasets, to 1 for Middlebury 2014 and ETH3D. According
to [20], we may also define the AUC for the random chance
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(i.e., assuming no knowledge about pixels confidence). This
is equal to the D1 itself, since no correct matches can be
selected in absence of confidence information. Every time
the AUC achieved by a confidence measure is lower than
the D1, it means it is somehow useful for selection with
respect to the random choice.

For each stereo algorithm, we will report AUC for the
five considered datasets. We will also report the ranking (R.)
for each confidence measure according to its average per-
formance over them. Concerning measures computed over
a local window, we report in the table the top performing
configuration, while we show the behavior of each of them
by varying the window size in form of plots.

Concerning learned measures, we report results in two
main configuration: 1) when trained on the Driving train
split and 2) when trained on the 20 KITTI 2012 stereo pairs,
on left and right columns in a single table. In the former
case, we rank measures both according to their performance
on synthetic data (R.) and their cross-domain ranking (CR.)
on real data averaging over the four real datasets. In the
latter case, we rank measures according to performance on
the real domain (R.).

5.4 Stereo Algorithms
We measure the effectiveness of each confidence measure
when dealing with the output of four different stereo al-
gorithms, ranging from noisier to more robust, as well as
on a deep stereo network. The four hand-crafted pipelines
are obtained selecting among two matching costs and two
aggregation strategies, described in detail in the remainder.

5.4.1 Matching cost functions
The very first step in a stereo pipeline consists into comput-
ing per-pixel matching costs. To this aim, we selected two
popular choices, AD-CENSUS and MCCNN-fst.

AD-CENSUS. A robust matching function based on the
census transform [62]. For both left and right images, pixels
intensities are replaced by 81 bits strings, computed by
cropping a 9× 9 image patch centered around a given pixel
and comparing the intensity values of each neighbor in the
patch to the intensity value of the pixel in the center. Then,
the absolute distance between pixels is computed in form of
the Hamming distance between bits strings.

MCCNN-fst. In this case, matching costs are inferred by
a deep neural network [4] trained to compare image patches
and estimate a similarity score between the two. We use
the MCCNN-fst variant, because it is much faster, although
almost equivalent to the accurate one MCCNN-acrt. We use
weights made available by the authors and respectively
trained on KITTI 2012, KITTI 2015 and Middlebury 2014
for the corresponding datasets. We used weights trained
on Middlebury 2014 to run experiments on ETH3D as well,
while we trained from scratch a model on the Driving train
split for experiments on the same dataset test split.

5.4.2 Aggregation strategies
Given an initial cost volume, the aggregation step aims at
reducing noise and ambiguity in the cost curves. Accord-
ing to the strategy deployed, stereo algorithms are usually
classified into local and global [1]. We select two main

approaches representative of the two worlds, Cross-based
Cost Aggregation (CBCA) and SGM. For both, the source
code and parameters as defined in [4] are used in our
experiments.

CBCA. An adaptive, local aggregation strategy. Given a
pixel, it builds a support window over a cross [63] including
neighbors for which both spatial distance and intensity dif-
ference are lower than two respective thresholds. Supports
regions Ul, Ur are computed over Il, Ir and combined as

Ud(p) = {q|q ∈ Ul(p), (q − d) ∈ Ur(p− d)} (53)

Then, initial costs C0(p, d) sharing the same disparity hy-
pothesis d are summed over the support region Ud(p) to
obtain aggregated costs CCBCA(p, d).

SGM. A semi-global aggregation strategy [2] combining
multiple scanline optimizations. For each, smoothness is
enforced by means of two penalties P1 and P2, starting from
locally aggregated costs by means of CBCA, as follows:

Cs(p, d) =CCBCA(p, d) + min
o>1

[CCBCA(q, d),

CCBCA(q, d± 1) + P1, CCBCA(q, d± o) + P2]−
min

k<dmax
(C(q, k))

(54)

The outcome Cs over each scanline s is then summed to ob-
tain the final cost volume CSGM. Four paths are considered,
along horizontal and vertical directions.

5.4.3 End-to-end stereo
Confidence measures have always been studied in synergy
with hand-crafted stereo algorithms, but nowadays end-to-
end deep networks represent the preferred choice to infer
dense disparity maps. Thus, for the first time in literature,
we deeply investigate about confidence estimation in the
case of deep stereo networks.

GANet [6]. A state-of-the-art 3D architecture whose out-
put is a feature volume C of size D ×H ×W similar to the
cost volume processed by hand-crafted stereo algorithms,
from which disparity is selected by means of soft-argmax

d =
∑
i∈D

i · Ci(p) (55)

Accordingly, C encodes matching probabilities. In our ex-
periments, we convert C into matching costs by multiplying
for −1 and compute disparity by replacing the soft-argmax
operation with a traditional WTA selection during disparity
inference at testing time. This way, all confidence measures
can be applied seamlessly as done with hand-crafted al-
gorithms, being disparity selected from the minimum cost.
Table 2 shows how the WTA selection impacts on disparity
accuracy compared to soft-argmax. In general, WTA selec-
tion seems better when assuming higher threshold τ , such
as on Driving, KITTI 2012 and KITTI 2015. On the other
hand, the subpixel accuracy enabled by the soft-argmax
strategy allows to improve the error rate when considering
τ = 1, as in Middlebury and ETH3D dataset.

For our experiments, we use the weights made available
by the authors trained on SceneFlow to avoid over-fitting to
any real dataset and simulate deployment in-the-wild.
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Driving KITTI 2012 KITTI 2015 Middlebury ETH
(bad3) (bad3) (bad3) (bad1) (bad1)

soft-argmax 17.65% 9.51% 10.77% 26.89% 8.73%
WTA 16.66% 8.47% 10.02% 28.61% 10.80%

TABLE 2
GANet disparity map accuracy, with different selection strategies.

5.5 Hyper-parameters, training setup, implementation.
In this section, we resume implementations details and
parameters tuning for both hand-crafted and learned confi-
dence methods, referring to existing works the sake of space.

Concerning hand-crafted measures, all hyper-
parameters have been set following our previous work [21]1.
To study the impact of the local windows over confidence
measures exploiting local content, we considered the
following window sizes, already used in previous works
[12], [13], [15], [16]: 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13,
15× 15, 17× 17, 19× 19, 21× 21 and 31× 31.

Concerning learning-based measures, we follow the au-
thors training settings, using the original source code when
available23. For methods for which the source code has not
been released, we ran experiments using our own code,
implementing each approach following the authors’ advice
at the best of our knowledge.

5.6 CBCA Algorithms
We start by evaluating the performance on local stereo
algorithms leveraging CBCA cost optimization. Although
they rarely are the final source of disparity maps, several
works [12], [13], [14], [15], [16] proposed improved SGM
variants exploiting the confidence estimated over interme-
diate results, often coming from CBCA methods. This makes
the evaluation of confidence in this setting valuable as well.

In the remainder, all results will be collected in tables,
where each entry is colored differently to recall the afore-
mentioned classes of measures.

5.6.1 CENSUS-CBCA
In this section, we discuss the outcome of our experiments
carried out with Census-CBCA algorithm.

Hand-crafted measures. Table 3 shows the performance
achieved by the hand-crafted measures, i.e.not involving
machine learning at all. Among them, the top-3 measures
are DA31, VAR9 and APKR7, that are computed over a
local window. This suggests that the local context, ei-
ther from the disparity domain or the cost volume, can
be a powerful cue to estimate the per-pixel confidence.
The first measures using single pixel information are LRD
and PKR. The top-9 measures, except LRD, belong to the
local properties or disparity domain families, with WMN

and WMNN ranking 11 and 12 and being the first mea-
sures using the entire cost curve . Confidence estimated
from left-right consistency , after finding LRD at rank 5,
only appears at rank 25 with UCC, performing better than
LRC on the noisy outputs of Census-CBCA. Self-matching

1. http://vision.deis.unibo.it/∼mpoggi/code/ICCV2017.zip
2. https://github.com/fabiotosi92/LGC-Tensorflow
3. https://github.com/seungryong/LAF

Driv. 2012 2015 Midd. ETH R.

APKR7 20.64 9.32 7.78 12.54 8.33 3
APKRN5 25.95 11.15 9.79 11.91 8.74 14
CUR 33.33 19.94 14.71 14.51 10.72 33
DAM 30.56 17.81 15.97 22.07 16.13 36
LC 31.45 18.63 14.29 14.24 10.66 32
MM 21.50 10.46 8.83 12.14 8.57 7
MMN 28.51 13.15 11.68 12.31 9.47 20
MSM 22.28 17.12 15.06 17.61 15.30 30
NLM 21.50 10.46 8.83 12.15 8.57 8
NLMN 28.51 13.16 11.68 12.31 9.47 21
PKR 20.85 10.55 8.90 12.40 8.64 6
PKRN 25.66 11.83 10.32 11.42 8.84 15
SGE 22.06 16.98 14.97 17.81 15.41 29
WPKR5 21.96 10.16 8.63 12.49 8.51 9
WPKRN5 26.95 12.93 11.63 12.58 9.18 18
ALM 20.76 14.77 13.03 16.20 12.79 24
LMN 39.19 26.79 19.57 22.43 15.85 39
MLM 20.23 13.31 11.58 14.67 11.70 17
NEM 30.99 24.75 21.30 29.93 20.55 44
NOI 33.15 25.56 21.36 28.15 18.74 42
PER 20.70 14.59 12.84 15.98 12.65 23
PWCFA 20.72 12.91 11.63 14.01 11.21 16
WMN 20.94 11.25 9.45 12.63 9.07 11
WMNN 24.64 11.73 10.15 11.33 9.11 12

Opt. 12.00 4.72 3.40 5.31 4.07 -
D1(%) 43.58 27.19 22.28 28.70 21.27 -

Driv. 2012 2015 Midd. ETH R.

DA31 23.12 7.95 6.45 12.92 6.07 1
DMV 25.91 11.46 9.26 18.45 14.40 27
DS17 21.85 9.27 7.62 12.27 8.05 4
DTD 22.18 11.87 11.93 17.75 11.50 22
MDD21 22.79 7.88 6.01 17.95 12.54 13
MND19 20.93 9.93 7.98 14.05 9.57 10
SKEW7 22.25 11.27 9.47 17.57 13.22 19
VAR9 20.16 9.88 8.03 11.99 8.36 2
ACC 32.75 17.35 13.70 19.16 14.53 35
LRC 31.13 14.20 11.35 18.91 13.45 31
LRD 23.54 9.65 8.05 10.70 8.16 5
UC 31.49 16.52 13.11 19.29 14.81 34
UCC 21.58 14.01 12.49 16.27 13.40 25
UCO 36.19 18.54 14.85 22.60 15.18 37
ZSAD 29.63 23.52 18.70 21.07 16.86 38
DTS 50.75 30.49 22.71 23.65 21.32 46
DSM 25.03 15.06 12.33 16.00 13.44 28
SAMM 21.52 11.95 9.65 22.09 13.72 26
DB 37.90 22.96 19.69 26.13 17.38 40
DLB 39.70 22.26 20.01 25.26 18.57 41
DTE 42.64 20.24 17.64 27.94 18.82 43
HGM 42.11 23.40 19.21 27.72 19.38 45
IVAR5 43.57 34.29 41.03 30.11 22.76 47

Opt. 12.00 4.72 3.40 5.31 4.07 -
D1(%) 43.58 27.19 22.28 28.70 21.27 -

TABLE 3
Results with Census-CBCA algorithm, hand-crafted measures.
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Fig. 3. Impact of N(p) size, Census-CBCA algorithm.

measures show up at 26 and 28 positions with SAMM and
DSM, while image properties produce, not surprisingly,
poor results.

Impact of the windows size. Figure 3 plots the AUC
achieved by varying the radius of N(p) for measures com-
puted over a local neighborhood. Interestingly, we can
notice how different measures behave differently, high-
lighting that not always the larger local context leads to
the better performance. Indeed, this is true only for DA,
achieving its best performance with 31 × 31 windows. In
general, measures computed from the disparity domain
such as DS, MDD and MND get the best results with
medium/large windows size, respectively 17, 19 and 21 size.
Finally, measures APKR, APKRN, WPKR, WPKRN based
on local properties tend to perform better with smaller
kernels of size 5 or 7. Similarly, IVAR performs better with
a small window, i.e.5× 5.

Learned measures, synthetic data training. Table 4, on
the left, collects results for learned measures when trained
on synthetic images from the Driving train split.

Concerning results on the synthetic test split, LAF per-

http://vision.deis.unibo.it/~mpoggi/code/ICCV2017.zip
https://github.com/fabiotosi92/LGC-Tensorflow
https://github.com/seungryong/LAF
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Fig. 4. Qualitative results concerning Census-CBCA algorithm. Results on KITTI 2015 and Middlebury showing a variety of confidence
measures. From top left to bottom right: reference image, disparity map and confidence maps by APKR7, WMN, DA31, UCC, SAMM and LAF.

Train set: Driving

Driv. 2012 2015 Midd. ETH R. CR.

ENS23 17.08 8.49 7.44 13.29 9.36 19 16
GCP 16.10 7.16 5.93 11.84 8.33 16 5
LEV22 15.32 6.56 5.43 12.01 9.39 11 7
LEV50 14.59 6.25 5.26 12.37 7.80 2 3
FA 15.07 7.45 6.05 13.99 11.40 8 18
ENS7 19.11 8.86 7.85 15.72 11.72 21 21
O1 15.41 7.41 6.03 14.68 9.49 12 14
O2 14.77 6.73 5.60 13.17 7.83 6 6
CCNN 15.30 6.64 5.46 16.37 8.98 10 13
PBCPr 16.07 6.74 5.44 14.61 8.56 15 11
PBCPd 15.90 6.22 5.22 14.24 11.94 13 15
EFN 16.73 7.65 6.80 18.02 11.54 18 20
LFN 15.15 7.77 6.32 15.65 10.30 9 19
MMC 14.65 7.22 5.78 14.79 9.37 3 12
ConfNet 15.97 6.56 5.60 13.30 8.00 14 9
LGC 14.74 6.06 4.94 14.01 9.18 4 10
RCN 23.46 16.97 14.10 21.73 15.99 23 22
MPN 16.22 6.53 5.22 11.19 7.08 17 1
UCN 14.97 6.33 5.05 12.48 7.28 7 2
LAF 13.76 6.87 5.35 12.06 9.12 1 8
ACN 14.76 6.97 5.49 12.00 7.57 5 4
CRNN 22.27 16.87 13.91 21.99 16.86 22 23
CVA 17.38 9.47 7.52 12.82 8.87 20 17

Opt. 12.00 4.72 3.40 5.31 4.07 - -
D1(%) 43.58 27.19 22.28 28.70 21.27 - -

Train set: KITTI 2012

2012 2015 Midd. ETH R.

ENS23 6.62 5.60 11.15 8.20 15
GCP 6.37 5.29 11.18 8.54 14
LEV22 5.75 4.56 11.47 8.33 6
LEV50 5.67 4.49 11.88 8.70 11
FA 6.01 4.71 13.34 12.68 19
ENS7 7.53 6.28 14.59 10.92 20
O1 6.15 4.77 11.45 9.73 16
O2 5.81 4.53 11.06 9.28 10
CCNN 5.76 4.40 11.24 9.09 9
PBCPr 6.01 4.89 10.20 9.19 7
PBCPd 5.54 4.44 15.01 14.43 21
EFN 6.16 4.74 13.64 9.84 17
LFN 5.80 4.43 11.81 9.02 13
MMC 5.71 4.36 11.26 8.98 8
ConfNet 6.11 4.85 11.85 8.24 12
LGC 5.59 4.25 9.93 7.58 4
RCN 14.79 13.29 17.59 13.21 23
MPN 5.58 4.31 9.00 6.23 1
UCN 5.52 4.28 9.17 6.55 3
LAF 5.33 4.20 10.30 9.50 5
ACN 5.69 4.35 8.86 6.49 2
CRNN 11.81 10.48 15.52 11.62 22
CVA 8.12 6.39 11.04 9.63 18

Opt. 4.72 3.40 5.31 4.07 -
D1(%) 27.19 22.28 28.70 21.27 -

TABLE 4
Results with Census-CBCA algorithm, learned measures.

forms the best, followed by LEV50. This highlights that,
either using cost-volume forests or cost-volume CNNs ,
the information in the cost volume can be useful if properly
leveraged, in particular with adequate receptive fields. Nev-
ertheless, MMC and LGCNet show that disparity CNNs
can be very close to the top-2 methods using the cost
volume. Finally, comparing tables 3 and 4 we can notice
that, excluding RF and CRNN, learned measures always
outperform hand-crafted ones on the synthetic test split.

Concerning generalization to real data, comparing the
two tables again, we point out that most learned mea-
sures outperform the top-performing hand-crafted measure
(DA31) on KITTI 2012 and 2015, except ENS23. This evidence
suggests that learning confidence estimation suffers from
the domain shift from synthetic to real much less than other
tasks such as, for instance, learning stereo matching [7], [8],
[9], [19]. A possible reason we ascribe it to is the much more
structured appearance observed in the disparity domain, the
primary cue processed for this task, where smooth surfaces
are very likely to be met, and sharp edges occur near depth
discontinuities either in real or simulated environments,
conversely to raw image appearance that differs a lot from
synthetic to real scenes, for instance, because of lightning
conditions and noise. Thus, detecting outliers in such a
well-defined domain is a simpler task than facing stereo
matching from raw images.

Despite this fact, many learned measures (e.g.FA) poorly
perform on Middlebury and ETH, being often outperformed
by the best hand-crafted ones, such as DA and VAR. This
behavior is probably due to the different geometry of indoor

vs outdoor scenes, confirming our previous findings in [21].
Other methods performing very well on synthetic images
and affected by domain shift issues are LAF and LGC.

One might argue that methods trained by assuming τ =
3 are penalized when the dataset threshold is lower, i.e. τ =
1. However, by setting τ = 3 for Middlebury and ETH3D,
the relative order is, in most cases, unaltered.

In contrast, some methods keep their good ranking unal-
tered (e.g.LEV50, O2) or even significantly improve it, such
as GCP and ConfNet. Moreover, MPN surprisingly jumps
to rank 1, exposing excellent generalization properties.

Learned measures, real data training. Table 4, on the
right, collects results for measures trained on KITTI 2012
20 training images. By comparing the numbers on the left
and right side of the table, on KITTI 2012 and 2015, we can
notice how, not surprisingly, training on real images allows
for better accuracy on these datasets. However, the tiny
improvements (we recall that reported AUC are multiplied
by 102) confirm a marginal impact of domain-shift on the
confidence estimation task. A similar behavior, except for
PBCPd, can be noticed on Middlebury while on ETH3D,
many learned measures trained on KITTI 2012 (e.g.LEV50,
O2, PBCPs, LAF and CVA) achieve worse performance. We
ascribe this behavior to the same reason outlined previously.
Overall, the top-performing learned measures training on
KITTI 2012 turn out cost-volume CNNs and LGC belong-
ing to disparity CNNs category. Finally, we observe that
top-performing hand-crafted measures are competitive and,
sometimes, better than learned ones training on KITTI 2012.

Qualitative results. We report in Fig. 4 disparity maps
from KITTI 2015 and Middlebury. The figure also shows,
on different columns, confidence maps for five hand-crafted
measures to highlight their behaviors and the outcome of a
learned confidence measure trained on KITTI 2012 splits to
highlight the effects of the domain shift. We can notice how
most traditional measures tend to assign low confidence,
probably because of the noisy cost volumes and disparities
produced by Census-CBCA. More advanced measures like
SAMM or learned as LAF, when assigning low confidence,
can better focus on the real outliers.

Summary. When dealing with noisy algorithms such as
Census-CBCA, hand-crafted measures computed on a local
window result very effective, even without processing the
cost volume. This is also confirmed for learned measures,
where a large receptive field exploited by networks and
forests always improves the results. The disparity map
alone allows for the best results in the case of hand-crafted
measures and for competitive effectiveness in the case of
learned methods.
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Driv. 2012 2015 Midd. ETH R.

APKR19 16.18 4.91 4.88 8.63 13.94 1
APKRN5 24.07 8.47 8.42 10.97 17.11 27
CUR 30.86 13.17 12.10 14.14 23.14 34
DAM 29.83 12.95 12.66 19.69 24.98 37
LC 29.93 12.80 11.94 13.60 23.01 33
MM 17.34 6.23 6.17 10.21 17.73 13
MMN 28.68 10.54 10.42 13.05 19.68 29
MSM 18.38 9.70 8.84 10.40 21.37 25
NLM 17.34 6.63 6.17 10.21 17.73 14
NLMN 28.68 10.54 10.42 13.05 19.68 30
PKR 16.48 6.55 6.25 9.53 18.09 12
PKRN 22.75 8.24 8.16 11.06 17.98 23
SGE 17.80 9.36 8.48 10.18 20.93 22
WPKR11 16.47 5.44 5.47 8.71 15.34 4
WPKRN5 24.34 9.42 9.56 11.17 17.53 28
ALM 15.82 6.26 6.47 9.37 17.71 11
LMN 27.37 9.59 8.41 15.68 21.99 31
MLM 15.55 5.56 5.77 9.23 16.71 6
NEM 27.22 19.36 17.06 26.06 33.36 42
NOI 31.06 22.20 18.94 27.40 32.63 46
PER 15.78 6.13 6.34 9.35 17.54 8
PWCFA 16.63 5.60 6.09 9.78 17.42 10
WMN 16.84 7.19 6.90 9.31 18.67 15
WMNN 20.23 7.63 7.52 10.40 17.67 18

Opt. 9.63 2.29 2.16 5.63 10.31 -
D1(%) 39.00 18.71 16.93 29.80 34.28 -

Driv. 2012 2015 Midd. ETH R.

DA31 17.45 5.38 5.16 8.81 12.70 2
DMV 18.44 6.16 6.01 11.29 17.68 16
DS9 16.15 5.07 4.71 8.95 15.24 3
DTD 17.69 6.78 6.82 13.43 20.99 20
MDD21 16.85 4.58 4.42 11.62 15.38 7
MND9 16.43 5.32 5.12 10.85 17.53 9
SKEW5 17.33 6.24 6.23 12.21 18.81 17
VAR5 15.64 5.33 5.02 9.57 16.52 5
ACC 28.95 12.50 11.29 19.32 26.47 36
LRC 26.66 10.27 9.24 18.76 23.90 32
LRD 20.86 8.02 7.66 10.68 18.45 19
UC 28.33 12.26 11.06 19.21 26.36 35
UCC 18.84 8.74 8.08 10.73 19.70 21
UCO 32.70 13.59 11.59 22.73 27.16 38
ZSAD 25.55 19.49 16.77 22.51 28.79 39
DTS 34.11 22.87 20.95 38.30 37.16 47
DSM 18.39 9.73 8.85 10.54 21.49 26
SAMM 15.91 6.07 5.47 19.33 21.70 24
DB 34.69 16.71 15.52 27.59 29.84 43
DLB 34.39 14.78 14.52 26.39 31.21 41
DTE 40.06 14.49 13.75 28.73 27.64 44
HGM 38.23 16.31 14.78 28.17 30.05 45
IVAR5 40.21 12.71 12.75 27.11 25.54 40

Opt. 9.63 2.24 2.16 5.63 10.31 -
D1(%) 39.00 18.88 16.93 29.80 34.28 -

TABLE 5
Results with MCCNN-CBCA algorithm, hand-crafted measures.
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Fig. 5. Impact of N(p) size, MCCNN-CBCA algorithm.

5.6.2 MCCNN-CBCA

Hand-crafted measures. Table 5 reports the performance
achieved by hand-crafted measures highlighting how, with
MCCNN-CBCA, the top-performing measure is APKR17.
Similar to Census-CBCA experiments measures process-
ing the disparity map perform very well, with DA31

and DS9 in the top-3 with others three out of six po-
sitionings in the top-10. Confidence measures process-
ing local properties , in particular WPKR11 in addition

to APKR17, or the entire cost curve as MLM, PER and
PWCFA perform very well. In contrast, the best methods
exploiting left-right consistency features rank 19 and 21

with LRD and UCC, respectively. Among self-matching
measures, SAMM achieves better results and ranks 24,
while estimating confidence only from image properties
confirms ineffective as always.

Impact of the windows size. Figure 5 plots the AUC
achieved by varying the radius of N(p) for measures com-
puted over a local neighborhood. DA confirms to per-
form better on large 31 × 31 windows, while the other

Train set: Driving

Driv. 2012 2015 Midd. ETH R. CR.

ENS23 13.67 4.30 4.75 10.36 16.21 20 20
GCP 12.65 3.64 3.78 10.27 17.34 18 18
LEV22 12.16 3.11 3.43 9.26 14.72 13 7
LEV50 11.70 3.04 3.37 10.13 14.10 5 9
FA 11.38 3.66 3.66 9.32 13.79 2 5
ENS7 14.88 5.05 5.46 11.03 16.67 21 21
O1 12.19 3.88 4.16 9.73 13.39 14 12
O2 11.82 3.77 4.02 9.79 13.00 7 8
CCNN 12.15 3.45 3.78 10.10 13.13 12 6
PBCPr 12.51 3.21 3.35 9.28 13.68 17 3
PBCPd 11.95 3.96 4.49 9.73 14.57 10 15
EFN 12.48 4.31 4.84 10.58 14.65 15 17
LFN 11.79 4.36 4.53 9.76 14.18 6 16
MMC 11.40 4.14 4.21 9.41 13.74 3 14
ConfNet 12.48 3.56 3.77 9.17 13.59 16 4
LGC 11.66 3.12 3.52 8.84 13.31 4 2
RCN 18.94 6.89 6.77 24.35 28.77 23 23
MPN 11.99 3.80 4.13 9.96 13.51 11 13
UCN 11.86 3.34 3.69 10.10 13.99 8 12
LAF 11.00 3.79 4.00 9.24 14.08 1 11
ACN 11.88 3.45 3.60 8.59 12.81 9 1
CRNN 16.01 5.89 5.67 21.69 26.06 22 22
CVA 12.67 4.24 4.52 11.48 15.09 19 19

Opt. 9.63 2.35 2.16 5.63 10.31 - -
D1(%) 39.00 18.88 16.93 29.80 34.28 - -

Train set: KITTI 2012

2012 2015 Midd. ETH R.

ENS23 3.53 3.76 9.58 14.48 17
GCP 3.44 3.44 9.86 15.69 19
LEV22 3.05 3.05 8.48 13.74 10
LEV50 2.89 2.97 8.45 13.45 5
FA 3.00 3.02 8.33 14.00 11
ENS7 3.94 4.33 10.95 16.37 21
O1 2.96 2.93 8.25 15.18 14
O2 2.79 2.87 8.09 14.92 13
CCNN 2.84 2.91 8.23 14.23 9
PBCPr 3.27 3.48 7.86 14.98 15
PBCPd 2.95 3.06 11.26 17.10 20
EFN 3.22 3.15 9.44 13.98 16
LFN 3.04 3.00 8.45 14.15 12
MMC 2.95 2.94 8.15 13.78 6
ConfNet 3.22 3.32 8.31 13.34 8
LGC 2.96 2.77 8.09 14.37 7
RCN 5.53 5.35 17.75 24.99 23
MPN 3.03 3.09 8.26 13.02 4
UCN 2.85 2.90 8.07 13.01 1
LAF 2.81 2.90 8.03 13.17 2
ACN 2.94 3.03 8.24 13.09 3
CRNN 5.08 4.87 17.75 25.02 22
CVA 3.31 3.38 9.34 15.78 18

Opt. 2.35 2.16 5.63 10.31 -
D1(%) 18.88 16.93 29.80 34.28 -

TABLE 6
Results with MCCNN-CBCA algorithm, learned measures.

disparity map features show mixed behaviors, with VAR
and SKEW preferring a small window of size 5, MND
and DS of size 9 and MDD of 21. Methods based on
Local properties perform differently, with APKR achieving

the top-1 position with a kernel of size 19 and WPKR
ranking 4th with a window of size 11. Naive variants, as
well as IVAR, worsen with kernels larger than 5.

Learned measures, synthetic data training. Table 6, on
left, collects results for learned measures when trained on
synthetic images from the Driving train split.

When testing on synthetic data, LAF outperforms all
the competitors as observed on Census-CBCA experiments,
this time followed by FA. MMC and LGC follow, con-
firming that for noisy CBCA algorithms, disparity CNNs

are competitive with both cost-volume forests and
cost-volume CNNs . This fact is confirmed by O1 and O2,

being both outperformed with minor margins, respectively
by LEV and LEV50. Again, larger receptive fields seem
beneficial when the cost volume is not processed.

Concerning generalization to real data, as for Census-
CBCA, we observe that most learned measures outperform
the top-performing hand-crafted one APKR17 on KITTI 2012
and 2015, confirming that the domain shift from synthetic
to real is much less evident when dealing with CBCA
algorithms. Nonetheless, the performance on Middlebury
and ETH3D are still comparable with hand-crafted methods.
Overall, ACN surprisingly jumps to rank 1, while LAF
drops to rank 11, while LGC and O2 and show a more stable
behavior and keep their position almost unaltered, with the
former achieving rank 2.

Looking at patch-based methods, the comparison be-
tween PBCPr, CCNN and PBCPd confirms the previous
findings, with the latter performing better on images similar
to the training set but dropping when evaluating across do-
mains. PBCPr variant is, on the contrary, much more robust
to domain shifts and reaches rank 3 in this case. Since RGB
data can be significantly affected by the domain shift, most
measures processing the reference image witness a massive
drop in accuracy when crossing domains. Nonetheless, a
notable exception is ConfNet, a component of LGC, which
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Fig. 6. Qualitative results concerning MCCNN-CBCA algorithm. Results on KITTI 2015 and Middlebury showing a variety of confidence
measures. From top left to bottom right: reference image, disparity map and confidence maps by APKR7, WMN, DA31, UCC, SAMM and LAF.

seems particularly good at generalization, as observed in the
previous experiments.

Learned measures, real data training. Table 6, on the
right, gathers results for learned measures when trained
on KITTI 2012 20 training images. Cost-volume CNNs
cover the top-4 positions in the leaderboard, followed by
LEV50. Then MMC, LGC, ConfNet and CCNN that are
disparity CNNs . Finally, cost-volume forests such as FA

and LEV outperform, on average, O1 and O2, while being
less effective on specific datasets such as in the case of KITTI
2015 and Middlebury.

Concerning patch-based methods, this time CCNN out-
performs both PBCP variants, with PBCPr better at general-
izing compared to PBCPd as observed so far. On the other
hand, MMC outperforms CCNN thanks to the much larger
receptive field. Moreover, MMC also surpasses networks,
such as ConfNet and LGC, with comparable receptive fields.

Qualitative results. To conclude this section, Fig. 6
shows some disparity maps from KITTI 2015 and Middle-
bury together with confidence maps. In particular, it high-
lights how hand-crafted measures belonging to different
categories behave very differently and, in the rightmost col-
umn, the effects introduced by the domain shift on a learned
measure. Compared to what seen with Census-CBCA, the
traditional measures assign high confidence more often,
probably because of the more robust cost volumes and
disparities produced by replacing the census transform with
MCCNN-fst. However, from confidence maps by LAF it is
still easier to discriminate good matches from outliers.

Summary. By replacing the matching costs computed by
the census transform with those computed by MCCNN-
fst, the behavior of most confidence measures remains
unaltered, both for hand-crafted measures, among which
several measures processing the disparity map only still
result the most effective among the hand-crafted ones, or
are competitive in the case of learned measures.

5.7 SGM Algorithms
We now assess confidence estimation performance with
stereo methods leveraging SGM for cost volume optimiza-
tion, one of the most versatile and popular solutions for its
good trade-off between accuracy and computational com-
plexity. Differently from the local algorithms tested so far,
SGM disparity maps are much more accurate due to the
global nature of the optimization carried out, making the
outlier detection task significantly more challenging.

5.7.1 CENSUS-SGM
In this section, we discuss the outcome of our experiments
carried out with the Census-SGM algorithm.

Hand-crafted measures. Table 7 shows the performance
achieved by hand-crafted measures. The top-performing
measure is VAR19 while, interestingly, the remaining ones
processing the disparity map perform poorly this time be-
cause of the much smoother outputs by Census-SGM. Mea-
sures processing local properties or the entire cost curve
perform better in general, with MM, NLM and some
of those based on peak ratio (e.g.APKR5 and PKR)
achieving excellent results. Confidence estimated from
left-right consistency , UCC and LRD in particular, turns

out better than measures computed from the left disparity
map only. Among self-matching measures, DSM achieves
the best accuracy despite far from top-performing ones,
while estimating confidence only from image properties

confirms ineffective once again. SGM-specific measures
tailored for SGM such as PS and SCS show an average
performance, placing at the middle of the leaderboard.

Impact of the windows size. Figure 7 plots the AUC
achieved by varying the radius of N(p) for measures com-
puted over a local neighborhood. Despite the very different
outcome of the stereo algorithm deployed in this experi-
ment, we can observe behaviors similar to the Census-CBCA
case. For instance, DA and DS perform better on 31 × 31
windows, MDD and MND get the best results with a size
of 21 while those based on local properties perform better
with kernels of size 5. IVAR yields the best performance
with the smallest 5×5 kernel.

Learned measures, synthetic data training. Table 8, on
the left, collects results for learned measures when trained
on synthetic images from the Driving train split.

Concerning results on the synthetic test split,
cost-volume CNNs achieve the top-4 positions with

LAF leading, followed by methods acting in the disparity
domain MMC, LGC and O2. This outcome is not surprising
since for disparity maps with a much lower error rate,
as in the case of Census-SGM, the cost volume becomes
a much more meaningful cue to detect outliers. Both
disparity CNNs and disparity forests can compete

only when using a very large receptive field. Compared
to general-purpose methods, most of them outperform
SGMF specifically tailored for SGM whose ranking is 16.

Analyzing the capability of generalizing to real data,
very rarely learned measures perform better than the top-1
hand-crafted measure VAR on KITTI datasets. This evidence
suggests that the domain shift impacts more when dealing
with more accurate stereo algorithms producing smoother
disparity maps. Moreover, the effect is even more evident
on Middlebury and ETH3D. Despite this outcome, interest-
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Driv. 2012 2015 Midd. ETH R.

APKR5 14.34 2.64 2.81 11.06 5.48 4
APKRN5 21.95 4.13 4.01 12.04 5.95 21
CUR 23.97 5.51 4.77 13.05 6.79 29
DAM 29.20 8.67 8.21 22.67 13.28 43
LC 22.08 5.47 4.91 12.96 6.95 28
MM 14.47 2.82 2.83 10.68 5.39 2
MMN 25.95 5.36 5.05 13.40 6.94 30
MSM 14.52 3.55 3.46 13.04 7.82 14
NLM 14.47 2.82 2.83 10.68 5.39 3
NLMN 25.95 5.36 5.05 13.40 6.94 31
PKR 13.85 2.81 2.92 11.15 5.60 5
PKRN 20.62 4.03 3.88 11.74 6.01 20
SGE 14.22 3.38 3.30 13.11 7.83 12
WPKR5 14.60 2.70 2.86 11.03 5.49 7
WPKRN5 21.98 4.64 4.50 12.52 6.21 25
ALM 13.57 2.97 2.89 12.05 6.52 10
LMN 30.86 7.43 5.90 20.92 11.24 40
MLM 13.49 2.74 2.70 11.29 6.13 6
NEM 24.76 10.33 9.04 28.90 14.59 44
NOI 30.49 14.77 12.09 29.36 15.00 48
PER 13.55 2.91 2.82 11.83 6.42 9
PWCFA 14.94 3.29 3.22 12.03 6.48 11
WMN 13.79 2.89 3.04 11.50 5.95 8
WMNN 18.78 3.61 3.47 11.44 5.95 16
PS 21.50 5.37 4.79 11.98 7.24 27

Opt. 6.85 0.79 0.74 4.57 2.14 -
D1(%) 33.25 10.33 9.00 26.68 15.74 -

Driv. 2012 2015 Midd. ETH R.

DA31 23.53 3.92 4.23 14.51 4.39 26
DMV 24.59 4.77 4.67 18.77 11.10 34
DS31 18.41 3.05 3.47 12.80 5.38 15
DTD 14.89 3.61 3.80 17.67 8.68 22
MDD21 21.24 3.70 3.64 18.97 10.35 32
MND21 16.34 2.99 3.00 14.23 7.27 18
SKEW21 15.92 4.03 4.12 15.91 9.21 24
VAR19 13.75 1.97 1.92 12.02 5.37 1
ACC 24.05 6.08 5.59 18.43 11.09 35
LRC 25.30 6.16 5.57 19.65 11.38 37
LRD 20.12 3.08 3.22 11.28 5.88 17
UC 24.23 6.28 5.83 18.79 11.37 36
UCC 14.76 3.48 3.48 13.04 7.41 13
UCO 26.94 7.44 6.41 19.95 11.88 39
ZSAD 21.59 9.49 8.14 19.86 12.59 38
DTS 37.20 22.53 6.39 21.17 15.03 49
DSM 16.43 4.50 2.78 13.66 7.80 19
SAMM 14.31 11.89 3.71 19.17 8.97 33
DB 27.68 8.45 8.75 23.84 11.87 42
DLB 29.02 6.79 6.93 23.26 13.01 41
DTE 33.69 9.36 8.92 26.45 13.55 47
HGM 32.49 9.27 8.19 25.86 13.99 46
IVAR5 34.08 8.64 8.51 25.41 12.47 45

SCS 22.13 3.55 3.79 13.08 6.54 23

Opt. 6.85 0.79 0.74 4.57 2.14 -
D1(%) 33.25 10.33 9.00 26.68 15.74 -

TABLE 7
Results with Census-SGM algorithm, hand-crafted measures.
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Fig. 7. Impact of N(p) size, Census-SGM algorithm.

ingly, LAF keeps rank 1, showing to be the most stable so-
lution in these experiments with LEV50, CVA and ConfNet
following. MPN and O2 substantially keep their position
moving from synthetic to real data showing a much higher
generalization capability than most other methods. SGMF
achieves average generalization performance yet improving
its ranking from 16 to 10.

Looking at patch-based methods, PBCPr again better
generalizes than CCNN and PBCPd, although the latter is
better on the same training domain. As for Census-CBCA,
measures processing the reference image witness drop in
ranking when crossing the domains since the RGB data
is directly exposed to image content variation. However,
such a drop is moderate for LGC and a notable exception
is ConfNet that jumps from rank 12 to 4.

Learned measures, real data training. Table 8, on the
right, collects results for learned measures when trained
on KITTI 2012 20 training images. On KITTI datasets and
Middlebury, they frequently outperform VAR thanks to
the much more similar domain observed during training.
Specifically, this fact always occurs for O1, O2, MMC,

Train set: Driving

Driv. 2012 2015 Midd. ETH R. CR.

ENS23 11.16 2.87 3.21 15.63 9.06 17 17
GCP 11.42 2.35 2.52 16.52 8.95 19 16
LEV22 10.68 1.84 1.99 16.48 11.33 13 20
LEV50 10.12 2.04 2.08 12.90 6.96 9 2
FA 10.83 3.63 3.51 14.28 9.41 14 18
ENS7 13.46 4.30 4.63 16.17 9.49 23 22
O1 10.20 3.08 3.25 13.45 6.84 10 14
O2 9.92 2.66 3.01 12.77 6.29 7 6
CCNN 10.84 2.73 3.03 15.64 7.90 15 15
PBCPr 12.02 2.96 2.73 13.37 5.98 22 9
PBCPd 11.76 3.09 3.93 12.56 6.87 20 13
EFN 32.42 10.07 8.77 26.01 15.08 24 24
LFN 10.37 4.31 4.71 16.27 9.03 11 21
MMC 9.63 2.93 2.97 13.76 6.54 5 11
ConfNet 10.39 2.42 3.11 12.89 5.92 12 4
LGC 9.82 2.25 2.79 13.77 6.20 6 8
RCN 11.99 4.08 3.68 21.00 9.25 21 23
MPN 9.60 1.93 2.23 12.95 7.39 4 5
UCN 9.58 2.35 2.80 12.97 6.80 3 7
LAF 8.41 2.24 2.54 11.48 7.21 1 1
ACN 9.51 2.38 2.30 12.89 8.82 2 12
CRNN 11.41 3.71 3.35 17.05 7.19 18 19
CVA 10.11 2.84 2.99 13.00 5.18 8 3
SGMF 11.00 3.16 3.29 12.59 6.38 16 10

Opt. 6.85 0.79 0.74 4.57 2.14 - -
D1(%) 33.25 10.33 9.00 26.68 15.74 - -

Train set: KITTI 2012

2012 2015 Midd. ETH R.

ENS23 1.99 2.18 12.82 7.82 16
GCP 2.02 2.47 13.12 6.34 15
LEV22 1.79 1.98 12.20 6.79 11
LEV50 1.72 1.89 12.50 7.47 14
FA 2.24 2.35 13.02 7.55 18
ENS7 2.71 2.86 15.21 8.71 21
O1 1.69 1.72 11.40 7.20 9
O2 1.64 1.55 10.82 8.08 10
CCNN 1.90 1.92 12.01 7.39 13
PBCPr 1.87 2.03 10.73 7.33 8
PBCPd 1.92 2.04 16.27 14.03 22
EFN 2.27 2.14 13.98 7.53 20
LFN 2.02 2.04 12.74 8.04 17
MMC 1.75 1.69 11.64 7.89 12
ConfNet 2.33 2.27 13.84 7.08 19
LGC 1.80 1.49 10.89 6.63 5
RCN 3.04 2.65 20.67 11.94 24
MPN 1.57 1.67 8.92 5.16 1
UCN 1.57 1.62 8.88 5.28 2
LAF 1.44 1.60 10.44 6.44 4
ACN 1.70 1.74 9.20 5.19 3
CRNN 3.14 2.80 18.54 10.49 23
CVA 2.20 2.23 10.65 6.45 7
SGMF 2.16 2.28 11.04 5.47 6

Opt. 0.79 0.74 4.57 2.14 -
D1(%) 10.33 9.00 26.68 15.74 -

TABLE 8
Results with Census-SGM algorithm, learned measures.

LGC, MPN, UN, ACN and LAF. On the other hand, on
ETH3D, they are competitive but often worse than top-
performing hand-crafted measures. Only the overall top-
performing LAF, UN and ACN, are always more effec-
tive than VAR with each dataset. This outcome confirms
Cost-volume CNNs as the most effective solution fol-

lowed by LGC and SGMF , the latter tailored explicitly
for SGM pipelines. Interestingly, disparity forests methods

O1 and O2 outperform cost-volume forests , as well as
most disparity CNNs . About the latter, using the right
disparity map allows PBCPr to perform better than CCNN
in the case of smooth disparity maps, while PBCPd still
generalizes worse. Again, including the reference image and
the disparity map only is effective only in the case of a large
receptive field, as for MMC.

Qualitative results. Figure 8, as for previous qualitative
results, reports an example of disparity map computed by
the Census-SGM algorithm on KITTI 2015 and Middlebury
and the outcome of six confidence measures, five hand-
crafted and LAF in the rightmost column. Other than the
different behavior of hand-crafted measures, we can notice
the effects of the different domains on the learned one.
In this case, being both cost volumes and disparity maps
much smoother, hand-crafted measures now assign high
confidence to most pixels as well as learned measures (i.e.
LAF) do.

Summary. When dealing with more accurate stereo algo-
rithms, based on SGM, the disparity map alone rarely allows
for top-performing confidence estimation, except in the case
of VAR. Indeed, the much smoother disparity map makes
it harder to detect outliers without taking into account the
cost volume. This is observed for learned measures as well,
among which those processing the cost volume results more
effective with fewer exceptions (when using large receptive
fields – LGC, or the right disparity map as well – PBCPr).
Measures tailored to SGM results in average performance.

5.7.2 MCCNN-SGM
Hand-crafted measures. Table 9 reports the performance
achieved by hand-crafted measures with the accurate
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Fig. 8. Qualitative results concerning Census-SGM algorithm. Results on KITTI 2015 and Middlebury showing a variety of confidence measures.
From left to right: reference image, disparity map and confidence maps by APKR7, WMN, DA31, UCC, SAMM and LAF.

Driv. 2012 2015 Midd. ETH R.

APKR5 10.88 0.86 1.57 6.05 4.03 4
APKRN5 17.75 2.48 2.73 8.44 4.82 22
CUR 17.14 2.84 2.93 9.65 6.62 29
DAM 23.16 5.26 5.19 17.97 10.73 44
LC 16.53 3.05 3.09 10.14 7.52 32
MM 10.60 1.11 1.94 6.95 5.26 8
MMN 17.98 3.08 3.04 10.10 6.26 33
MSM 13.30 0.88 1.96 6.09 3.59 7
NLM 10.60 1.11 1.94 6.95 5.26 9
NLMN 17.98 3.08 3.04 10.10 6.26 34
PKR 10.51 0.88 1.65 5.93 4.19 3
PKRN 15.34 2.11 2.38 8.07 5.05 16
SGE 13.12 0.81 1.86 5.96 3.41 6
WPKR5 10.91 0.90 1.64 6.19 4.11 5
WPKRN5 17.63 2.86 3.05 9.05 5.05 26
ALM 12.45 1.87 2.69 12.78 7.79 25
LMN 23.28 3.15 3.75 11.34 5.73 35
MLM 12.22 1.75 2.58 12.13 7.53 21
NEM 17.66 4.38 4.43 18.24 12.03 41
NOI 30.79 12.18 8.88 26.70 15.41 49
PER 12.43 1.86 2.67 12.69 7.75 24
PWCFA 11.85 1.45 2.18 8.33 6.33 13
WMN 10.91 0.81 1.58 5.45 3.33 1
WMNN 13.80 1.33 2.03 6.53 4.07 11
PS 15.83 2.33 2.83 9.88 7.46 27

Opt. 4.57 0.25 0.44 2.94 1.41 -
D1(%) 26.92 6.08 6.03 21.80 12.59 -

Driv. 2012 2015 Midd. ETH R.

DA15 18.31 2.65 3.18 7.63 3.20 17
DMV 18.18 2.43 2.90 10.37 6.27 31
DS15 15.01 1.43 2.08 6.93 3.76 12
DTD 11.39 2.26 1.89 12.46 7.76 20
MDD21 15.82 2.40 2.61 12.18 5.93 28
MND21 12.49 1.62 1.84 9.86 4.92 14
SKEW21 12.31 1.97 2.36 10.84 7.71 19
VAR17 10.11 0.78 1.22 6.97 3.64 2
ACC 19.09 3.21 3.58 14.01 9.20 36
LRC 20.04 3.58 4.08 14.92 9.08 38
LRD 14.52 1.69 2.28 7.50 5.15 15
UC 19.31 3.40 3.70 14.48 9.60 37
UCC 13.10 1.06 1.99 6.37 3.70 10
UCO 21.17 4.40 4.60 15.94 9.74 40
ZSAD 15.53 5.39 4.69 15.94 10.36 39
DTS 24.67 15.47 7.42 28.52 14.30 48
DSM 13.35 6.96 2.98 7.17 4.67 18
SAMM 11.56 7.90 2.14 11.73 6.44 30
DB 22.39 5.07 5.61 19.43 8.96 43
DLB 22.45 3.64 4.34 18.25 9.98 42
DTE 29.67 5.73 6.13 22.40 10.59 47
HGM 27.25 5.57 5.72 21.04 11.17 45
IVAR5 30.37 5.22 5.90 21.06 9.74 46

SCS 16.50 2.40 3.17 9.11 5.14 23

Opt. 4.57 0.25 0.44 2.94 1.41 -
D1(%) 26.92 6.08 6.03 21.80 12.59 -

TABLE 9
Results with MCCNN-SGM algorithm, hand-crafted measures.

MCCNN-SGM algorithm. The top-performing measure is
WMN, followed by VAR17 and PKR, all using different
strategies. The outcome of this evaluation is very similar
to the behavior observed in the Census-SGM experiments,
confirming with SGM pipelines the excellent affinity of
VAR and measures built from cd1

and cd2
. Similarly to

the previous experiments, the smooth disparity maps make
measures processing the disparity map much less effec-
tive, with DS15 the second-best in the category and only
ranking 12 overall. On the other hand, confidences based on
local properties covers ranks from 3 to 9 while measures

exploiting the entire cost curve , excluding WMN, shows
up at positions 11 and 13 with WMNN and PWCFA. The
best left-right consistency features rank 10 and 15, respec-
tively, with UCC and LRD. As for Census-SGM experiments,
DSM confirms the best among self-matching measures

ranking 18 and SGM-specific measures show an average
performance, placing over the middle of the leaderboard.
As usual, image properties confirms ineffective.

Impact of the windows size. Figure 9 plots the AUC
achieved by varying the radius of N(p) for measures com-
puted over a local neighborhood. DA now saturates on
13 × 13 windows, while the other disparity map features
mostly perform better with size 21, except for DS and VAR
preferring respectively 15 and 17 windows size. All mea-
sures computed from local properties and IVAR achieve
their best results on 5× 5 windows.

Learned measures, synthetic data training. Table 10, on

5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21 31x31
Window size

6

8

10

12

14

AU
C

DA DS MDD 

5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21 31x31
Window size

5.0

7.5

10.0

12.5

15.0

AU
C MND SKEW VAR IVAR 

5x5 7x7 9x9 11x11 13x13 15x15 17x17 19x19 21x21 31x31
Window size

6

8

AU
C

APKR APKRN WPKR WPKRN 

Fig. 9. Impact of N(p) size, MCCNN-SGM algorithm.

Train set: Driving

Driv. 2012 2015 Midd. ETH R. CR.

ENS23 8.40 1.40 1.97 8.45 5.97 18 15
GCP 9.00 1.37 1.66 12.33 6.57 19 20
LEV22 8.29 1.26 1.71 7.78 4.83 17 11
LEV50 7.60 1.06 1.51 6.75 4.23 11 5
FA 7.07 2.54 2.38 10.60 6.83 5 21
ENS7 9.41 2.15 2.59 9.64 6.11 21 18
O1 7.48 1.70 2.09 8.10 5.04 10 14
O2 7.34 1.59 2.15 7.84 4.82 9 13
CCNN 8.05 1.64 2.05 10.10 4.74 16 16
PBCPr 9.74 0.91 1.40 5.98 3.33 23 1
PBCPd 7.76 1.41 1.98 6.74 3.25 15 4
EFN 9.40 3.26 3.52 11.45 6.42 20 22
LFN 7.67 2.66 2.96 10.60 5.34 13 19
MMC 7.24 1.60 1.99 8.34 4.26 6 12
ConfNet 7.31 1.16 1.81 8.40 3.31 8 8
LGC 7.03 1.15 1.76 7.56 3.76 4 6
RCN 11.40 1.83 2.86 15.58 9.46 24 24
MPN 7.30 1.43 1.60 5.99 3.85 7 2
UCN 7.01 1.23 1.63 6.22 3.80 3 3
LAF 6.21 0.99 1.76 6.88 5.96 1 10
ACN 6.81 1.59 2.00 6.46 4.28 2 7
CRNN 9.54 1.30 2.21 16.61 9.38 22 23
CVA 7.62 1.61 2.23 9.49 5.36 12 17
SGMF 7.71 1.72 1.53 6.64 4.85 14 9

Opt. 4.57 0.25 0.44 2.94 1.41 - -
D1(%) 26.92 6.08 6.03 21.80 12.59 - -

Train set: KITTI 2012

2012 2015 Midd. ETH R.

ENS23 0.82 1.64 7.94 5.39 17
GCP 1.00 1.91 7.53 5.61 18
LEV22 0.81 1.37 8.43 4.13 13
LEV50 0.75 1.15 6.46 3.92 3
FA 1.08 1.33 7.76 5.50 16
ENS7 1.27 1.82 9.84 6.55 21
O1 0.80 1.21 6.46 5.03 10
O2 0.72 1.07 6.24 5.36 9
CCNN 0.89 1.22 7.64 5.11 14
PBCPr 0.86 1.25 6.09 5.07 7
PBCPd 1.08 1.44 12.71 12.18 22
EFN 1.27 1.41 9.52 4.71 19
LFN 0.99 1.17 7.75 5.35 15
MMC 0.93 1.11 7.01 4.75 12
ConfNet 0.87 1.36 6.93 3.40 5
LGC 0.85 1.10 6.87 4.83 11
RCN 1.02 2.52 22.54 12.38 24
MPN 0.63 1.14 6.76 3.82 4
UCN 0.67 1.19 6.32 3.54 2
LAF 0.61 1.21 6.01 3.72 1
ACN 0.63 1.22 7.31 3.83 6
CRNN 0.98 2.24 21.80 12.20 23
CVA 0.77 1.49 8.61 6.06 20
SGMF 0.83 1.83 6.46 4.25 8

Opt. 0.25 0.44 2.94 1.41 -
D1(%) 6.08 6.03 21.80 12.59 -

TABLE 10
Results with MCCNN-SGM algorithm, learned measures.

the left, collects results for learned measures when trained
on synthetic images from the Driving train split.

As for Census-SGM, on the synthetic test split, LAF
performs the best, followed by ACN and UN all of the
cost-volume CNNs . Close follow-up methods are LGC and

FA, respectively a disparity CNN and a disparity forest .
In general, we can notice two opposite trends with CNNs
and forests. When processing the cost volume, the former
class is typically more effective, while forest-based methods
processing the disparity map (e.g., O1 and O2) yield better
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Fig. 10. Qualitative results concerning MCCNN-SGM algorithm. Results on KITTI 2015 and Middlebury showing a variety of confidence
measures. From top left to bottom right: reference image, disparity map and confidence maps by APKR7, WMN, DA31, UCC, SAMM and LAF.

results than those working in the cost volume space (e.g.,
LEV50, LEV and GCP). Focusing on patch-based models, the
left-right consistency enforced by PBCPd allows it to outper-
form CCNN, while PBCPr results less effective than both.
Finally, SGMF ranks in the lower half of the leaderboard,
yielding, for instance, better accuracy than the majority of
cost-volume forests .

Concerning generalization to real data, as for Census-
SGM, the impact of domain shift is more significant. This
time, none of the learned measures outperform the top-
performing hand-crafted one WMN on KITTI 2012. On
the other hand, this occurs in only three cases on KITTI
2015 (SGMF, LEV50 and PBCPr) and ETH3D (both PBCBs
and ConfNet). In contrast, WMN is always more effec-
tive than any learned method on the Middlebury dataset.
Conversely to Census-SGM, LAF loses rank 1, dropping to
10 in favor of PBCPr . This outcome and the fourth place
achieved by PBCPd highlights that the information from
the right disparity map is highly impactful for MCCNN-
SGM, a stereo algorithm producing very smooth disparity
maps. In particular, enforcing left-right consistency allows
for more substantial generalization even on Middlebury
and ETH3D. Again, PBCPr better generalizes than PBCPd.
Most cost-volume forests gain positions, conversely to
disparity forests and disparity CNNs . In general, most

cost-volume CNNs keep their rankings with LAF, ACN
and CVA notable negative exceptions and MPN a positive
one. Finally, SGMF improves its position from 14 to 9
confiming its effectiveness with SGM-based stereo methods.

Learned measures, real data training. Table 10, on the
right, collects results for learned measures when trained on
KITTI 2012 20 training images. We can notice that many of
them now outperform the top-1 hand-crafted measure on
the KITTI 2012 dataset, and more frequently on KITTI 2015,
thanks to the much more similar domain observed during
training. Specifically, the following measures, belonging to
four different categories, are more effective than WMN on
both KITTI datasets: LEV50, O1, O2, MPN, UN, LAF, ACN
and CVA. In contrast, none of the learned measures achieves
better accuracy than WMN on Middlebury and ETH3D.
In summary, cost-volume CNNs confirm to be the most
effective solution, with LAF and UN covering the top-2
positions, followed by LEV50, MPN and ConfNet.

O1 and O2, disparity forests , results the best in their

category and better than all cost-volume forests except
LEV50. Overall, in this experiment, SGMF achieves an accu-
racy slightly better than O1 and O2. Concerning patch-based
networks, PBCPr once again stands as the best choice in
these experiments. As already witnessed with the previous

Census-SGM, disparity CNNs are rarely effective although
ConfNet ranks 5.

Qualitative results. Finally, as for previous qualitative
results, Figure 10 shows an example of disparity maps from
KITTI 2015 and Middlebury computed with the MCCNN-
SGM algorithm and the output of six confidence maps,
five hand-crafted and one learned (rightmost column). As
observed in the case of Census-SGM, most measures assign
high confidence to most pixels, correctly finding out that the
amount of outliers in the disparity maps is very low.

Summary. As observed for Census-SGM, the cost vol-
ume becomes a precious source of information to estimate
confidence. Measures processing the disparity map alone
rarely ranks on top of the leaderboard. A similar trend
is observed, again, for learned measures as well that can
properly learn to estimate confidence from the disparity
map when processing a large receptive field or the right
disparity map as well, while measures tailored to SGM
confirm their average effectiveness among all methods.

5.8 GANet

To conclude our evaluation, we report experiments carried
out with GANet to highlight how the final volumes pro-
duced by 3D neural networks for stereo can be converted
into costs, allowing for the deployment of traditional and
learned measures. Such an evaluation, using volumes from
a deep neural network, is performed here for the first time.

Hand-crafted measures. Table 11 shows the performance
achieved by hand-crafted measures. At first, we can no-
tice how measures processing the disparity map performs
much worse in this case. All of them dropping their rank
below 20. We ascribe this fact to the extremely smooth
disparity maps delivered by GANet, making it extremely
hard to find outliers by only looking at disparity distri-
butions. Most of top-20 positions mix measures processing
local properties or the entire cost curve . In particular, we

point out the excellent performance achieved by MSM,
reaching rank 1. We ascribe this fact to the soft-argmax
operator used during training, forcing the output volume
to have a strong maximum (converted to minima in our
experiments). The results achieved by MSM suggest that
the network itself produces weaker maxima when it is less
certain about the predicted disparity. Other classic measures
perform very well, such as ALM and MLM, rarely ranking
in the top-10 positions in the previous experiments. Con-
cerning measures with naive variants, for the first time, some
of them perform better than the original counterpart, such
as PKRN, NLMN, and MMN. Probably, as another effect
of the soft-argmax operator used during training. UCC
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Driv. 2012 2015 Midd. ETH R.

APKR5 11.45 2.48 3.91 12.82 3.47 11
APKRN5 10.75 3.61 5.41 15.21 4.71 17
CUR 5.96 2.74 4.38 14.08 4.01 5
DAM 16.10 8.33 9.69 27.82 10.50 40
LC 5.42 2.88 4.59 16.67 6.43 12
MM 17.98 8.96 10.54 26.08 9.81 43
MMN 8.35 3.87 5.64 17.09 5.33 18
MSM 6.71 2.69 4.33 13.47 3.65 1
NLM 17.97 8.95 10.53 26.07 9.81 42
NLMN 8.35 3.87 5.64 17.09 5.33 19
PKR 21.75 11.67 12.87 33.87 17.70 47
PKRN 8.09 3.58 5.40 15.73 4.88 14
SGE 7.11 2.60 4.26 13.37 4.16 7
WPKR5 10.55 2.61 4.28 13.03 3.59 10
WPKRN5 9.72 3.83 5.76 15.49 4.77 16
ALM 6.71 2.69 4.33 13.47 3.65 2
LMN 16.61 8.12 9.52 23.78 7.85 36
MLM 6.71 2.69 4.33 13.47 3.65 3
NEM 6.56 2.67 4.33 13.73 4.08 6
NOI 10.46 5.66 6.98 23.10 8.69 25
PER 6.71 2.69 4.33 13.47 3.65 4
PWCFA 7.14 2.72 4.20 14.48 3.59 9
WMN 16.04 8.31 9.89 26.81 10.72 39
WMNN 8.05 3.53 5.36 15.43 4.79 13

Opt. 1.69 0.57 0.85 5.28 0.99 -
D1(%) 16.66 8.62 10.02 28.61 10.80 -

Driv. 2012 2015 Midd. ETH R.

DA11 12.85 7.85 9.21 23.41 6.24 29
DMV 16.84 7.16 8.55 24.39 8.84 35
DS15 12.95 6.44 7.68 23.32 6.63 26
DTD 13.21 7.61 9.17 27.13 7.88 34
MDD21 11.44 6.42 7.31 25.02 9.20 28
MND21 11.04 4.91 5.50 23.74 8.90 24
SKEW21 9.90 3.95 4.51 22.57 8.23 23
VAR21 7.08 3.42 4.26 22.52 6.74 21
ACC 13.89 6.59 8.18 24.20 9.45 30
LRC 13.53 6.98 8.09 25.39 9.86 32
LRD 8.06 3.53 5.22 16.67 5.17 15
UC 13.81 6.80 8.45 24.39 9.61 31
UCC 7.02 2.82 4.45 13.93 3.67 8
UCO 15.33 7.77 8.84 26.95 10.01 38
ZSAD 7.28 7.23 8.62 24.53 9.57 27
DTS 18.87 12.36 12.14 34.33 14.69 46
DSM 9.26 4.60 7.11 16.58 9.15 22
SAMM 8.01 3.63 5.11 19.12 6.29 20
DB 12.62 7.63 10.26 26.10 7.93 33
DLB 16.34 7.05 9.09 26.50 9.35 37
DTE 21.34 8.19 9.95 28.04 10.01 44
HGM 18.33 8.10 9.49 27.02 9.81 41
IVAR5 23.52 8.08 9.99 26.71 10.01 45

Opt. 1.69 0.57 0.85 5.28 0.99 -
D1(%) 16.66 8.62 10.02 28.61 10.80 -

TABLE 11
Results with GANet model, hand-crafted measures.
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Fig. 11. Impact of N(p) size, GANet model.

is the first measure leveraging the left-right consistency

and reaches rank 8, while within self-matching measures
SAMM achieves the best results and ranks 20. Finally, mea-
sures based on image properties confirm ineffective as in
any previous experiment.

Impact of the windows size. Figure 11 plots the AUC
achieved by varying the radius of N(p) for measures com-
puted over a local neighborhood. Except for DA and DS,
saturating respectively on 11× 11 and 15× 15 windows, all
features computed from the disparity map show their best

performance with a window size of 21. Local properties
and IVAR achieve their best accuracy on 5 × 5 kernels,
rapidly degrading with larger windows.

Learned measures, synthetic data training. Table
12, on the left, collects results for learned measures
when trained on synthetic images from the Driving
train split. Not surprisingly, cost-volume CNNs cover
the top 3 positions with MPN, ACN and CRNN, fol-
lowed by cost-volume forests . O1 and O2 are the only
disparity forests appearing in the first ten positions and

Train set: Driving

Driv. 2012 2015 Midd. ETH R. CR.

ENS23 3.48 4.15 4.85 27.53 8.58 6 12
GCP 5.35 3.60 5.07 20.68 7.35 19 6
LEV22 3.67 4.63 4.66 30.98 7.62 10 14
LEV50 3.49 3.18 4.96 20.73 6.19 7 4
FA 3.41 4.54 5.63 27.81 10.11 4 16
ENS7 5.75 7.09 8.43 25.49 9.19 20 19
O1 3.62 7.65 9.66 25.63 8.68 9 21
O2 3.55 7.53 9.80 25.38 8.05 8 20
CCNN 4.33 4.78 6.72 24.71 9.75 14 13
PBCPr 4.81 3.51 4.28 23.48 7.95 17 8
PBCPd 4.48 5.69 6.96 22.55 8.56 15 10
EFN 8.91 7.20 9.38 27.05 10.48 23 22
LFN 5.88 5.92 8.08 26.35 9.16 22 18
MMC 5.19 5.04 6.78 24.07 8.22 18 11
ConfNet 5.85 6.33 8.38 29.12 11.12 21 23
LGC 3.72 5.73 7.43 25.59 9.28 11 15
RCN 4.61 3.63 5.38 16.56 5.18 16 1
MPN 3.21 2.71 4.06 20.19 6.43 1 3
UCN 3.76 3.27 4.98 21.02 6.49 12 5
LAF 3.46 3.81 4.94 22.64 7.32 5 7
ACN 3.25 3.72 5.58 23.64 7.42 2 9
CRNN 3.32 3.20 5.28 17.93 6.29 3 2
CVA 3.81 5.54 7.92 26.11 9.92 13 17

Opt. 1.69 0.57 0.85 5.28 0.99 - -
D1(%) 16.66 8.62 10.02 28.61 10.80 - -

Train set: KITTI 2012

2012 2015 Midd. ETH R.

ENS23 3.18 4.52 18.28 5.58 7
GCP 4.19 5.39 21.00 5.24 9
LEV22 2.26 3.32 17.58 3.70 1
LEV50 1.99 2.87 17.87 4.17 2
FA 4.59 5.68 23.09 7.92 20
ENS7 5.05 6.00 22.46 6.37 18
O1 3.20 4.02 22.54 7.36 11
O2 2.76 3.67 22.03 7.10 8
CCNN 3.29 3.93 23.34 7.02 14
PBCPr 4.02 4.93 19.83 8.59 13
PBCPd 3.46 4.14 22.50 12.56 22
EFN 4.84 5.36 23.83 4.96 17
LFN 3.77 4.25 23.00 6.13 12
MMC 3.84 4.49 23.89 5.45 16
ConfNet 5.46 5.21 22.31 4.69 15
LGC 3.53 4.61 22.42 6.31 10
RCN 2.81 3.82 16.12 6.04 4
MPN 3.89 4.40 26.64 12.67 23
UCN 2.62 3.18 23.31 12.23 21
LAF 1.70 2.58 18.19 7.40 5
ACN 2.17 2.96 17.99 6.89 6
CRNN 2.41 3.20 16.33 6.18 3
CVA 4.00 4.90 23.12 8.75 19

Opt. 0.57 0.85 5.28 0.99 -
D1(%) 8.62 10.02 28.61 10.80 -

TABLE 12
Results with GANet, learned measures.

disparity CNNs perform much worse with the best one,
LGC, ranking 11. This outcome occurs because of the very
smooth disparity maps produced by GANet, over which
finding outliers without analyzing the cost volume is par-
ticularly challenging.

Regarding generalization to real data,
cost-volume CNNs cover the top-3 positions with RC,

CRNN and MPN. They are followed by LEV50 and GCP,
respectively, with ranks 4 and 6. The first disparity CNN

is PBCPd with rank 8. Finally, disparity forests such as
O1 and O2, very effective on synthetic data, shows poor
generalization and are at the bottom of the leaderboard.

Learned measures, real data training. Table 12, on the
right, reports results for learned measures trained on KITTI
2012 20 training images. Surprisingly, the top-2 methods
are LEV and LEV50, i.e. cost-volume forests , followed by
cost-volume CNNs CRNN, RC, LAF and ACN. The first

method processing disparity only is a disparity forest , i.e.

O2 ranking 8, while disparity CNNs show up only from
position 10 with LGC. Within patch-based methods, LFN,
PBCPr and CCNN are the three most effective, starting with
rank 12, while PBCPd is at the bottom of the leaderboard.

Qualitative results. As for previous experiments, Figure
12 reports disparity and confidence maps from KITTI 2015
and Middlebury. When dealing with the volumes produced
by GANet, we can notice how some hand-crafted measures
are not particularly meaningful, as in the case of WMN,
while others remain effective. Not surprisingly, learned
measures (i.e. LAF) better distinguish the few outliers from
the large amount of correct matches.

Summary. When dealing with a modern, deep network
such as GANet, measures processing the disparity map
alone, either learned or not, lose most of their effective-
ness. Given the extremely regular structure of the estimated
disparity maps, the cost volume becomes a crucial cue to
properly estimate the confidence.
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Fig. 12. Qualitative results concerning GANet. Results on KITTI 2015 and Middlebury showing a variety of confidence measures. From top left
to right: reference image, disparity map and confidence maps by APKR7, WMN, DA31, UCC, SAMM and LAF.

6 OVERALL SUMMARY AND DISCUSSION

Given the exhaustive experiments carried out in this paper,
we summarize next the key findings.

Concerning hand-crafted measures:

• For traditional algorithms, disparity features are
meaningful cues to estimate a confidence measure
and some of them (e.g., DA, VAR) often achieves
surprising results.

• The local content is also a strong cue in both
cost volume/disparity map allowing APKR to rank
within the top 4 hand-crafted methods with any
CBCA/SGM variant.

• Although very popular, measures exploiting the con-
sistency between left-right images achieve aver-
age performance. Among them, LRD and, more fre-
quently, the uniqueness constraint consistently rep-
resent the best approaches.

• Not surprisingly, image priors alone can not pro-
vide reliable information about confidence since dif-
ferent stereo algorithms may be less or more robust
to image content, such as in the case of textureless
regions. In particular, their AUC is often higher than
D1, worse than random selection.

• When dealing with GANet, disparity features alone
are no longer enough and consistently achieve poor
results. Measures processing the entire cost curve
or local properties seem the most effective. Sur-
prisingly, PKR and WMN perform poorly and are
outperformed by their naive counterparts, probably
because of the soft-argmax operator used for training
that forces matching distributions to be unimodal.
This effect is softened by local content, as seen for
APKR and WPKR.

Concerning learned measures:

• These methods generalize well across synthetic and
real environments compared to other tasks, such as
disparity estimation, without requiring aggressive
data augmentation or thousands of training samples.
This behavior is due to the much more regular do-
main (i.e., disparity and matching costs) observed by
forests and networks.

• Despite the inliers/outliers distribution is sometimes
strongly unbalanced (i.e., for SGM algorithms and
GANet), forests and CNNs learn to infer significant
confidence scores that outperform traditional ones,
although with minor margins compared to what
occurs for CBCA algorithms.

• Drops occurring when moving between KITTI and
Middlebury/ETH3D datasets are not marginal, be-
cause of the very different structure (i.e., geometry)
of the observed environments and results to have
higher impact with respect to image content. This
fact makes learned methods often close to hand-
crafted measures on Middlebury/ETH3D and, in
some cases, even outperformed.

• Among learned methods, cost-volume CNNs con-
firm to be the overall winning family, with
disparity CNNs being competitive in particular

when dealing with noisy stereo algorithms.

7 CONCLUSION

In this paper, we have presented an exhaustive review
and evaluation of the state-of-the-art strategy to estimate
stereo matching confidence. We have reviewed more than
ten years of developments in this field, ranging from hand-
engineered confidence measures to modern machine learn-
ing and deep learning solutions. Moreover, we have carried
out an extensive evaluation for a thorough understanding
of the topic, involving five stereo algorithms/networks and
five datasets. We believe this review can represent a useful
reference for researchers working in depth from stereo and
practitioners willing to deploy stereo algorithms in the wild.
Despite the significant improvement yielded by learning-
based strategies, improving their generalization across real
domains is crucial as a future research direction.
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