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Abstract. Establishing dense semantic correspondences requires deal-
ing with large geometric variations caused by the unconstrained setting
of images. To address such severe matching ambiguities, we introduce
a novel approach, called guided semantic flow, based on the key insight
that sparse yet reliable matches can effectively capture non-rigid geo-
metric variations, and these confident matches can guide adjacent pixels
to have similar solution spaces, reducing the matching ambiguities sig-
nificantly. We realize this idea with learning-based selection of confident
matches from an initial set of all pairwise matching scores and their
propagation by a new differentiable upsampling layer based on moving
least square concept. We take advantage of the guidance from reliable
matches to refine the matching hypotheses through Gaussian parametric
model in the subsequent matching pipeline. With the proposed method,
state-of-the-art performance is attained on several standard benchmarks
for semantic correspondence.

Keywords: Dense semantic correspondence · Matching confidence ·
Moving least square

1 Introduction

Finding pixel-level correspondences across semantically similar images facilitates
a variety of computer vision applications, including non-parametric scene pars-
ing [22,30,52], image manipulation [10,26,51], visual localization [41,47], and to
name a few.

Classical approaches for dense correspondence take visually similar images
taken under constraint settings, such as 1D epipolar line for stereo matching [43,
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50] and 2D small motion for optical flow estimation [1,9]. Contrarily, semantic
correspondence has no such constraints on the input image pairs except that two
images describe the same object or scene category, posing additional challenges
due to large appearance and geometric intra-class variations. Recent state-of-
the-art methods [17,19,20,23,26,28,39–41,44] have attempted to address these
challenges by carefully designing convolutional neural networks (CNNs) that
mimic the classical matching pipeline [36]: feature extraction, similarity score
computation, and correspondence estimation.

(a) image pair (b) guidance displacements (c) our result

Fig. 1. Visualization of our intuition: (a) image pair, (b) selected confident matches,
and (c) warped image using the correspondences from our method. The proposed
method, guided semantic flow, establishes reliable dense semantic correspondences by
leveraging the guidance from confident matches to reduce matching ambiguities.

Since no viewpoint constraint is imposed on the source and target images, the
search space for each pixel on the source image have to be defined with all pixels
of the target image. However, searching over the full set of pairwise matching
candidates inevitably increases the uncertainty in the matching pipeline, espe-
cially in the presence of non-rigid deformations and repetitive patterns.

One possible approach to this issue is to design additional modules that
can vote for plausible transformation candidates from the full set of pairwise
matches [17,39–41,44]. Following the pioneering work of [39], several meth-
ods [40,44] attempted to directly regress an image-level global transformation
(e.g. affine or thin plate spline) between images. However, all matching scores
are equally treated regardless of how confident they are, thus these approaches
are inherently vulnerable to inaccurate matching scores that are often produced
under severe intra-class variations. Without the need of global geometry, some
methods [17,41] recently proposed to identify locally consistent matches by ana-
lyzing neighborhood consensus patterns. They down-weight ambiguous matches
by assessing the confidence of matching scores, but this is performed only with
a hand-crafted criterion (e.g. mutual consistency) that may often produces high
confidence scores even for unconfident pixels.

Alternatively, similar to stereo matching and optical flow estimation [9,50],
one can simply discard ambiguous matches by constraining the search space
within a predefined local region centered at the querying pixel [20,26], but these
approaches disregard the possibility of non-local matches that often appear
across the semantically similar images. To address this issue, dilation tech-
nique [49] was utilized in [23], but the number of ambiguous matches increases at
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the same time. Some methods alleviated this by limiting the search space based
on the heuristic matching cues, e.g. computing the discrete argmax [28] or start-
ing with an image-level global transformation [19] estimated from a full set of
pairwise similarity scores. However, such heuristics are often violated under large
intra-class variations where the feature representations are quite inconsistent to
measure accurate matching similarity or non-rigid geometric deformations that
cannot be modeled with a global transformation model.

In this paper, we propose a novel approach, dubbed as guided semantic flow,
that reliably infers dense semantic correspondence fields under large intra-class
variations, as illustrated in Fig. 1. Our key idea is based on two observations:
sparse yet reliable matches can effectively capture non-rigid geometric varia-
tions, and these confident matches can guide the adjacent pixels to have similar
solution spaces, reducing the matching ambiguities significantly. Our method
realizes this idea through three different modules consisting of pruning, prop-
agation, and matching. We first select confident matches from a complete set
of pairwise matching candidates through deep networks, and then propagate
their reliable information to invalid neighborhoods through a new differentiable
upsampling layer inspired by moving least square (MLS) approach [42]. Lastly,
dense correspondence fields are reliably inferred from the refined correlation vol-
ume by constraining the search space with Gaussian parametric model that is
centered at the interpolated displacement vector. Experimental results on var-
ious benchmarks demonstrate the effectiveness of the proposed model over the
latest methods for dense semantic correspondence.

2 Related Works

Stereo Matching and Optical Flow Estimation. There have been numer-
ous efforts on reducing the matching ambiguitiy for classical dense correspon-
dence problems, i.e. stereo matching and optical flow estimation.

Based on the seminal work of PatchMatch [2], the randomized search scheme
has been utilized and extended in numerous literature thanks to its effectiveness
in pruning the search space [7,15,16]. Another popular idea is to leverage the
spatial pyramid of an image, naturally imposing the hierarchical smoothness con-
straint in a coarse-to-fine manner [5,38,45]. Also, in order to enhance matching
scores, recent approaches for depth estimation [35,37] additionally exploit sparse
yet reliable measurements retrieved from an external source (e.g. LiDAR). How-
ever, since these approaches are tailored to the specific problem constraints such
as epipolar geometry and relatively small motion, they are not directly appli-
cable to the semantic correspondence task where two images may have large
variations in terms of appearance and geometry.

Semantic Correspondence. Most conventional methods for semantic corre-
spondence that use hand-crafted features and regularization terms [22,30,32]
have provided limited performance due to a low discriminative power. Recent
state-of-the-art approaches have used deep CNNs to extract their features [11,
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25,27] and/or spatially regularize correspondence fields in an end-to-end man-
ner [19,23,39,44].

To deal with large geometric deformations, several approaches [17,39–41,44]
first computed similarity scores with respect to all possible pairwise matching
candidates and then predicted the semantic correspondence through deep net-
works. As a pioneering work, Rocco et al. [39,40] estimates a global geometric
model such as an affine and thin plate spline (TPS) transformation through
CNN architecture mimicking the traditional matching pipeline. Seo et al. [44]
proposed an offset-aware correlation kernel to put more attention to reliable sim-
ilarity scores. Without the need of global geometric model, Rocco et al. [41] pro-
posed to identify sets of spatially consistent matches by analyzing neighborhood
consensus patterns. Huang et al. [17] extended this architecture by leveraging
context-aware semantic representation to further resolve local ambiguities.

Rather than considering all possible matching candidates, some meth-
ods [19,20,23,26,28] constrain matching candidates within pre-defined local
regions, like stereo matching and optical flow approaches [9,50]. In [20,23,26],
locally-varying affine transformation fields are iteratively estimated within
locally constrained cost volume. More recently, Lee et al. [28] proposed to lever-
age a kernel soft argmax function to deal with multi-modal distribution within
a correlation volume.

The most relevant method to ours is [19] that utilizes intermediate results
from the previous level to constrain the search space of the current level in a
coarse-to-fine manner. However, they start with the global affine transformation
estimation that often fails to capture reliable matches under large geometric
variations with non-rigid transformation.

3 Problem Statement

Let us denote semantically similar source and target images as Is and It,
respectively. The objective is to establish a two dimensional correspondence field
τi = [ui, vi]T between the two images that is defined for each pixel i = [ix, iy]T

in Is.
Analogously to the classical matching pipeline [36], this objective involves

first extracting dense feature maps from Is and It, denoted by F s, F t ∈ R
h×w×d

where (h,w) denotes the spatial resolution of the image, and d the dimension-
ality of feature. Then, given two dense feature maps, a correlation volume C is
computed by encoding the similarity as cosine distance:

Cij(F s, F t) = 〈F s
i , F t

j 〉/‖F s
i ‖2‖F t

j ‖2 (1)

where i and j indicate the individual feature position in the source and target
images, respectively.

In this stage, several methods [17,39–41,44] construct a full correlation vol-
ume Cf considering a set of all possible matching candidates J f

i , such that

J f
i = {j|jx ∈ [1, ..., w], jy ∈ [1, ..., h]}. (2)
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Fig. 2. (a) Given an image pair and a reference pixel i, we visualize its corresponding
match (j = argmaxl(Cil)) and correlation score map (Cil), computed with: (b) match-
ing candidates J f [17,39–41,44], (c) matching candidates J p

i [19,20,23,26,28], and (d)
the proposed method. (e) Our key observation is that sparse yet reliable matches can
guide the adjacent pixels to have similar solution spaces, reducing matching ambiguities
significantly.

Note that J f
i is independent to pixel i and identical for all i pixels. However,

as exemplified in Fig. 2 (a), the similarity scores in Cf are not guaranteed to
be accurate due to inconsistent feature representations under large semantic
variations. To address this, several approaches [39,40,44] design an additional
module that can vote for the transformation candidates by regressing an image-
level single transformation, but they treat the matching scores of all pixels evenly
regardless of their confidence. While some methods [17,41] alleviate this by fil-
tering the correlation volume with mutual consistency constraint, they assess the
confidences based on a simple criterion such as maximum normalization which
may lack the robustness that is attainable with deep CNNs.

Meanwhile, as shown in Fig. 2(b), some approaches [19,20,23,26,28] con-
struct a partial correlation volume Cp by constraining the search space of each
reference pixel i as the restricted local region Nk centered at the pixel k on the
target image. Formally, denoting the pixel k that is dependent on pixel i as k(i),
the constrained matching candidates J p

i can be defined as

J p
i = {j|j ∈ Nk(i)}. (3)

The center of the local region, k(i), is determined in various ways; as a refer-
ence pixel i itself (k(i) = i) [20,23,26] or by finding the matching cues from
the fully constructed correlation volume through applying the discrete argmax
function [28] (k(i) = argmaxj(C

f
ij)) or estimating an image-level coarse trans-

formation τg(Cf ) [19] (k(i) = i + τg
i (Cf )). However, as exemplified in Fig. 2(b),

these approaches often fail to constrain the search space correctly under the
large intra-class variations where the feature representations between two input
images are quite inconsistent to measure accurate matching scores or complex
geometric deformations cannot be modeled with a global affine transformation
model.
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4 Guided Semantic Flow

The proposed method leverages guidance cues from the confident matches to
generate reliable likelihood matching hypotheses, as illustrated in Fig. 2(c).
Unlike the existing methods that alleviate matching ambiguities with inaccu-
rately assessed matching confidences [17,41] or with the heuristically constrained
search spaces [19,20,23,26,28], we address this issue with a learning-based selec-
tion of confident matches and their propagation, reducing matching ambiguities
significantly while maintaining the robustness to large geometric variations.

Fig. 3. (a) Our overall framework consists of pruning, propagation, and matching mod-
ules. (b) The pruning module takes a full correlation volume C as an input and pre-
dicts pairwise confidence scores Q′ from it by retaining confident matches and rejecting
ambiguous ones with the parameters WP . The propagation module converts this vol-
ume Q′ into a dense guidance map G′ in a fully differentiable manner. The matching
module refines the initial correlation volume C with the guidance map G′ and then
estimates a dense correspondence field τ with the pararmeters WM .

4.1 Network Architecture

The proposed method consists of three modules as illustrated in Fig. 3: pruning
module that estimates the confidence probability volume Q′, propagation module
that converts the confidence probability volume into a guidance displacement
map G′, and matching module that refines the initial correlation volume and
estimates dense correspondence fields τ from it.

To extract convolutional feature maps of source and target images, the input
images are passed through the shared feature extraction networks with param-
eters WF such that F = F(I;WF ) where F denotes a feed-forward operation.
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The initial correlation volume Cf is then constructed considering all possible
pairwise matching candidates, following (1) and (2), to consider the large intra-
class geometric deformations.

Pruning Module. To establish an initial set of confidence probabilities over all
pairwise matches, we adopt a differentiable mutual consistency criterion [17,41],
such that

Qij =
(Cij)

2

maxiCij · maxjCij
(4)

where Qij equals one if and only if the match between i and j satisfies the
mutual consistency constraint, and becomes smaller than 1 otherwise. Recent
works [17,41] utilized this confidence volume Q to filter their similarity scores C
(e.g. Q·C), but the confidence of each pixel is assessed only with the handcrafted
criterion as in (4), thus often producing a high confidence score even for an
unconfident pixel as exemplified in Fig. 4(a).

In this work, we propose to refine the initial confidence volume with the
pruning networks that consist of an encoder-decoder style architecture and a
sigmoid function, yielding a value in (0, 1) to suppress false positives, as exem-
plified in Fig. 4(b). Formally, the refined confidence probability volume Q′ can
be obtained by

Q′
ij = T (Qij · [F(Q;WP )]ij , ρ) (5)

where WP is the parameters of the pruning networks and T (·, ρ) is a truncation
function that discards a probability lower than a threshold ρ to retain only
confident matches, such that T (X, ρ) = X if X > ρ and T (X, ρ) = 0 otherwise.

It should be noted that several works have also attempted to find the reliable
correspondences from the full pairwise similarity scores by thresholding [40], the
correspondence consistency [19], or learning with the probabilisitic model [20].
However, these constraints are used in the loss functions only as a supervision for
training their deep networks, and are not explicitly used to refine the correlation
volume.

Propagation Module. Taking the refined confidence volume Q′ as an input,
our propagation module first extracts the displacement vectors of the confident
matches that can guide nearby ambiguous ones to have similar solution space.
Specifically, given a set of the collected confident pixels S = {i|∑j Q′

ij �= 0},
our propagation module converts the confidence volume Q′ into 2-dimensional
displacement map G through a soft argmax layer [21], such that

Gi =
{∑

j j · exp(Q′
ij)/

∑
l exp(Q′

il) − i, if i ∈ S
invalid, otherwise.

(6)

The displacement map G can then be used to constrain the plausible search
range from all possible matching candidates, but this guidance is valid only
for confident pixels (i ∈ S). To guide the search space of the invalid pixels
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(a) image pair (b) confident matches in Q (c) confident matches in Q′

Fig. 4. The effectiveness of the pruning networks: (a) matches that satisfy the mutual
consistency criterion (i.e. Qij = 1), and (b) matches from the refined confidence volume
Q′ (i.e. Q′

ij > ρ). Our pruning networks effectively suppress the false positive confidence
matches that often occur at ambiguous regions.

(i /∈ S) with the help of confident pixels, we attempted to interpolate the sparse
displacement map G using the existing bilinear upsampler of [18]. However, this
cannot be directly realized since the confident matches in S are sparsely and
irregularly distributed in the spatial dimension. In this work, we introduce a
new differentiable upsampling layer that interpolates the sparse displacement
map G into a dense guidance map G′. Concretely, inspired by moving least
square approach [42], the displacement vector G′

i at a pixel i can be computed
with a spatially-varying weight function w as

G′
i =

∑

s∈S Gs · w(s − i)/
∑

s∈S w(s − i) (7)

where w(z) = exp(−||z||2/2cP
2) is formed with a coefficient cP . The differen-

tiability of this operator G′
i with respect to Gi can be easily derived similar

to [18].

Matching Module. With a favor of densely interpolated guidance displace-
ments G′, we refine the initial correlation volume C by maintaining only the
similarity scores of highly probable matches. To be specific, we compute the
refined correlation volume C ′ by modulating the original volume C with Gaus-
sian parametric model centered at the guidance displacement vector G′:

C ′
ij = exp(−(j − G′

i)
2
/2cM

2) · Cij (8)

where cM adjust the distribution of Gaussian model. Unlike the existing meth-
ods [19,20,23,26,28] that constrain the search space with simple heuristics, our
method leverages the reliable information propagated from the confident matches
to effectively deal with large intra-class geometric variations.

With the resulting uni-modal likelihood hypotheses where matching ambigu-
ities are significantly reduced, we subsequently formulate matching networks to
regress residual displacements at sub-pixel level, facilitating fine-grained local-
ization. The final dense correspondence field τ is computed as

τi = G′
i + [F(C ′;WM )]i (9)

where WM is the parameters of our matching networks.
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4.2 Objective Functions

To overcome the limitation of insufficient training data for semantic correspon-
dence, our matching networks are learned using weak image-level supervision in
a form of matching image pairs. Additionally, we expedite the learning process
by allowing only the gradients of the foreground pixels to be backpropagated
within object masks of the source and target images, similar to [19,23,24,28].

Pruning Networks. To train the pruning networks with the parameter WP ,
we define a novel loss function that consists of silhouette consistency loss and
geometry consistency loss, such that

LP = Lsil + λLgeo (10)

where λ is the weighting parameter.
With the intuition that local structures between source and target image

features should be similar at the correct confident correspondences, we encourage
the pruning networks to automatically discard the matches that do not satisfy
the following local geometry consistency constraint

Lgeo =
∑

i∈S

∑

l∈Ni

||F s
l − [G′ ◦ F t]l||2F (11)

where Ni is a local window centered at the pixel i, ◦ is a warping operator, and
|| · ||2F denotes Frobenius norm. By aggregating the contextual information of Ni

through the parameters WP , we can predict more accurate confidence scores
than the handcrafted criterion of (4) that relies only on the pixel-level similarity
scores.

Additionally, we formulate the silhouette consistency loss that encourages the
refined confidence volume Q′ to lie within the silhouette of the initial volume Q:

Lsil =
∑

{i,j}∈S∗ | log(Q′
ij/Qij)| (12)

where S∗ = {i, j|Qij > ρ}, hence Q′
ij/Qij becomes [F(Q;WP )]ij . Note that

similar loss function is used in the object landmark detection literature [46] to
encourage the landmarks to lie within the silhouette of the object of interest.

Matching Networks. Thanks to the guidance displacements G′, most of geo-
metric deformations are already resolved, and thus computing the residual trans-
formation field F(C ′;WM ) with the weakly-supervised loss function of [23] is
tractable, such that

LM =
∑

i
− log(Pi(τ)) (13)

where P (τ) is the softmax matching probability defined with a local neighbor-
hood Mi as

Pi(τ) =
exp(< F s

i , [τ ◦ F t]i >)
∑

l∈Mi
exp(< F s

i , [τ ◦ F t]l >)
. (14)
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This objective allows us to consider both positive and negative samples by
maximizing the similarity score at the correct transformation while minimizing
the scores of remaining candidates within local neighborhood Mi.

Final Objective Function. We additionally utilize L1 regularization loss Lsm

for the spatial smootheness in the final correspondence field τ [26,28]. A final
objective is defined as a weighted summation of the presented three losses:

Lfinal = λPLP + λMLM + λsmLsm. (15)

4.3 Training Details

Inspired by recent works on finding good matches for wide-baseline stereo [4,34],
we first freeze the network parameters WF , WM and learn the pruning networks
WP only with the gradients from LP. This allows the pruning networks to be
converged stably by fixing the values Q of silhouette consistency loss (12). In
second stage, we train the whole networks in an end-to-end manner with Lfinal

where the properly selected confident matches from the pruning networks boost
the convergence of the feature extraction and matching networks by providing
well-defined negative samples within the neighborhood Mi of matching loss (14).

Following [20,26,40], this two-stage learning procedure first utilizes synthet-
ically generated image pairs, by applying random synthetic transformations to
a single image of PASCAL VOC 2012 segmentation dataset [8] using the split
in [28]. Then, our networks are finetuned with semantically similar image pairs
from PF-PASCAL dataset [12] using the split in [40].

5 Experimental Results

5.1 Implementation Details

For feature extraction, we used two CNNs as main backbone networks; Ima-
geNet [6]-pretrained ResNet 101 [14] and PASCAL VOC 2012 [8]-pretrained
SFNet [28], where activations are sampled at ‘conv4-23’ and ‘conv5-3’. The acti-
vations adapted from ‘conv5-3’ are upsampled using bilinear interpolation. We
denote these backbone networks in the following evaluations as “Ours w/ResNet”
and “Ours w/SFNet”. We set threshold ρ to 0.9, the variances {cP , cM} to {7, 5},
and Referring to the ablation study of [23], the radius of local window Mi is set
to 5. More details about the implementation and the performance analysis with
respect to the hyper-parameters are provided in the supplemental material.

5.2 Results

PF-WILLOW and PF-PASCAL Dataset. PF-WILLOW dataset [11]
includes 10 object sub-classes with 10 keypoint annotations for each image, pro-
viding 900 image pairs. PF-PASCAL dataset [12] contains 1,351 image pairs over
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20 object categories with PASCAL keypoint annotations [3]. Following the split
in [13,40], we used only 300 testing image pairs for the evaluation. We used a
common metric of the percentage of correct keypoint (PCK) by computing the
distance between flow-warped keypoints and the ground-truth ones [31]. The
warped keypoints are determined to be correct if they lie within α·max(h,w) pix-
els from the ground-truth keypoints for α ∈ [0, 1], where h and w are the height
and width of either an image (αimg) or an object bounding box (αbb). PCK with
αbb is more stringent metric than that of αimg [33]. In line with the previous
works, we used αbb for PF-WILLOW [11] and αimg for PF-PASCAL [12].

Table 1. Matching accuracy compared to state-of-the-art correspondence techniques
on PF-WILLOW dataset [11], PF-PASCAL dataset [12], and Caltech-101 dataset [29].
Results of [13,39–41,44] are borrowed from [33].

Methods PF-PASCAL (PCK@αimg) PF-WILLOW (PCK@αbb) Caltech-101

α = 0.05 α = 0.1 α = 0.15 α = 0.05 α = 0.1 α = 0.15 LT-ACC IoU

Unsupervised CNNgeo [39] 41.0 69.5 80.4 36.9 69.2 77.8 0.79 0.56

A2Net [44] 42.8 70.8 83.3 36.3 68.8 84.4 0.80 0.57

Fully supervised SCNet [13] 36.2 72.2 82.0 38.6 70.4 85.3 0.79 0.51

HPF [33] 60.1 84.8 92.7 45.9 74.4 85.6 0.87 0.63

Weakly supervised CNNinlier [40] 49.0 74.8 84.0 37.0 70.2 79.9 0.85 0.63

NCNet [41] 54.3 78.9 86.0 33.8 67.0 83.7 0.85 0.60

RTNs [23] 55.2 75.9 85.2 41.3 71.9 86.2 0.86 0.65

SFNet [28] 50.0 78.7 88.9 37.5 71.1 88.5 0.88 0.67

SAMNet [26] 60.1 80.2 86.9 – – – – –

DCCNet [17] – 82.3 – 43.6 73.8 86.5 – –

Ours w/ResNet 62.8 84.5 93.7 47.0 75.8 88.9 0.88 0.69

Ours w/SFNet 65.6 87.8 95.9 49.1 78.7 90.2 0.89 0.69

The average PCK scores are summarized in Table 1 showing that our model
(“Ours w/ResNet”) exhibits a competitive performance to the latest weakly-
supervised and even fully-supervised techniques for semantic correspondence,
demonstrating the benefits of generating highly probable hypotheses based on
the confident matches. When combined with sophisticate CNN features (“Ours
w/SFNet”), the outstanding performance was attained.

Caltech-101 Dataset. We also evaluated our method on Caltech-101
dataset [29] which provides the images of 101 object categories with ground-truth
object masks. For the evaluation, we used the 1,515 image pairs used in [13,40],
i.e. 15 image pairs for each object category. Compared to other datasets described
above, the Caltech-101 dataset [29] enable us to evaluate the performances under
more general settings with the image pairs from more diverse classes. Following
the experimental protocol in [22], the matching accuracy was evaluated with two
metrics: the label transfer accuracy (LT-ACC), and the intersection-over-union
(IoU) metric.
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In Table 1, our method achieves a competitive performance compared to
state-of-the-art methods in terms of both LT-ACC and IoU metrics. In particu-
lar, our results show better performances with significant margins compared to
the methods [39–41,44] that consider all possible matching scores.

This reveals the effectiveness of the proposed pruning and propagation modules
where only reliable information is propagated and leveraged to reduce thematching
ambiguity.

(a) image pair and our result (b) RTNs [23], NCNet [41], SFNet [28]

Fig. 5. Qualitative results of the semantic alignment on the testing pair of SPair-71k
benchmark [33]: (a) input image pairs and warped source images using correspon-
dences obtained from our method, and (b) warped source images from state-of-the-art-
methods; (left) RTNs [23], (middle) NCNet [41], (right) SFNet [28].

SPair-71k Benchmark. The evaluation was also performed on the SPair-
71k benchmark [33] that includes 70,958 image pairs of 18 object categories
from PASCAL 3D+ [48] and PASCAL VOC 2012 [8], providing 12,234 pairs
for testing. This benchmark is more challenging than other datasets [11,12,29]
for semantic correspondence evaluation, as it covers significantly large variations
of 4 factors as shown in Table 2. For the evaluation metric, we used the PCK
setting the threshold with respect to the object bounding box to αbb = 0.1.
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Table 2. Matching accuracy compared to the state-of-the-art techniques on SPair-71k
benchmark [33]. Difficulty levels of viewpoints and scales are labeled ‘easy’, ‘medium’,
and ‘hard’, while those of truncation and occlusion are indicated by ‘none’, ‘source’,
‘target’, and ‘both’. The performances are evaluated by fixing the levels of other vari-
ations as ‘easy’ and ‘none’. Results of [39–41,44] are borrowed from [33].

Methods Viewpoint Scale Truncation Occlusion All

easy medi hard easy medi hard none src tgt both none src tgt both

CNNgeo [39] 25.2 10.7 5.9 22.3 16.1 8.5 21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1

A2Net [44] 27.5 12.4 6.9 24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1

CNNinlier [40] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1

NCNet [41] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

RTNs [23] 34.8 18.2 11.7 33.4 24.7 14.3 30.1 20.9 22.7 20.5 28.8 19.5 20.9 18.8 25.7

HPF [33] 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

Ours w/ResNet 40.6 22.3 17.8 39.5 30.1 18.7 37.0 28.7 27.1 27.7 36.4 27.8 27.5 23.7 33.5

Ours w/SFNet 42.1 25.7 20.1 42.3 34.0 20.8 39.8 31.1 30.0 29.9 38.8 29.3 28.3 26.9 36.1

Table 2 reports the quantitative performance with respect to different lev-
els of four variation factors. The qualitative results are visualized in Fig. 5. As
shown in Table 2 and Fig. 5, our results have shown highly improved perfor-
mances qualitatively and quantitatively compared to the state-of-the-art tech-
niques on all variation factors. In contrast to the methods [23,28] that cannot
capture large geometric variations due to the simple heuristics used to constrain
the search space, a large PCK gain for difficult image pairs in Table 2 indi-
cates that our method is effective especially in the presence of severe appearance
and shape variations thanks to the guidance by the confident matches learned
from all matching candidates. Though the performance was evaluated only on
the sparsely annotated keypoints provided from the benchmark, the qualitative
results in Fig. 5 indicates that the objective measure can be significantly boosted
if dense ground-truth annotations are given for evaluation.

5.3 Ablation Study

Lastly, we conducted an ablation study on different modules and losses in our
model of “Ours w/ResNet” evaluating on the testing image pairs of SPair-71k
benchmark [33].

Network Architecture. We report the quantitative assessment when one of
our modules is removed from the network architecture in Table 3(a) in terms
of average PCK at αbb = 0.1. Interestingly, the guidance displacement map
G′, which is the result obtained with only the pruning and propagation mod-
ules, already outperforms state-of-the-art methods by a large margin as shown
in Table 2. The performance degradation due to the lack of the pruning or
propagation modules highlights the importance of the learning-based selection
of confident matches and the MLS layer. Figure 6 shows the intermediate results
of our method.
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Training Loss. To validate the effectiveness of the utilized losses, we exam-
ined the performance of our model when learned with different loss functions.
In Table 3(b), the first three rows compare the performances for the variants of
the pruning networks. The performance gain from 25.1 to 28.5 with respect to
Lgeo indicates the effectiveness of imposing local geometry consistency constraint
by aggregating the contextual information. On the other hand, with respect to
Lsil, the degraded performance from 28.5 to 24.3 demonstrates the importance
of regularizing the refined confidence scores to be similar with the initial ones,
so that the retained confident matches also satisfy mutual consistency.

Table 3. Ablation study on the testing pairs of SPair-71k benchmark [33] for (a) differ-
ent components and (b) different loss functions. Note that, in (a), when the ‘MLS layer’
in the propagation module is removed, the refined correlation volume C′ is computed
by applying Gaussian parametric model only on the confident pixelsa.

Pruning MLS layer Matching PCK

(Q → Q′) (G → G′) (C, G′ → τ) (αbb = 0.1)

✓ ✓ ✗ 29.3

✓ ✗ ✓ 26.8

✗ ✓ ✓ 25.1

✓ ✓ ✓ 33.5

(a) network architecture

Lsil Lgeo LM Lsm Training stage PCK

– ✓ – — 1st 24.3

✓ – – – 1st 25.1

✓ ✓ – – 1st 28.5

✓ ✓ ✓ ✓ only 2nd 30.2

✓ ✓ ✓ ✓ 1st & 2nd 33.5

(b) training loss
aC′

ij =

{
exp(−(j − Gi)

2/2cM
2) · Cij , if i ∈ S

Cij , otherwise.

(a) confident matches in Q′ (b) matching result with G′ (c) matching result with τ

Fig. 6. The visualization of the intermediate results: (a) source and target images, (b)
the selected confident matches Q′, (c) matching results with the guidance displacements
G′, and (d) matching results with the final correspondence fields τ .

The last two rows in Table 3(b) reveal the effect of the used two-stage learn-
ing process. The performance drop from 33.5 to 30.2 by removing the first stage
highlights that the properly selected confident matches from the pruning net-
works can boost the convergence of our training by allowing only well-defined
matching candidates to be utilized during the second stage.
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6 Conclusion

We presented a novel framework, guided semantic flow, that reliably infers dense
semantic correspondences under large appearance and spatial variations. Taking
advantage of the reliable information of confident matches, we effectively han-
dle severe non-rigid geometric deformations and reduce matching ambiguities.
The outstanding performance was validated through extensive experiments on
various benchmarks.
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