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Abstract

The rise of deep neural networks has led to several break-
throughs for semantic segmentation. In spite of this, a model
trained on source domain often fails to work properly in new
challenging domains, that is directly concerned with the gen-
eralization capability of the model. In this paper, we present
a novel memory-guided domain generalization method for
semantic segmentation based on meta-learning framework.
Especially, our method abstracts the conceptual knowledge
of semantic classes into categorical memory which is con-
stant beyond the domains. Upon the meta-learning concept,
we repeatedly train memory-guided networks and simulate
virtual test to 1) learn how to memorize a domain-agnostic
and distinct information of classes and 2) offer an externally
settled memory as a class-guidance to reduce the ambiguity
of representation in the test data of arbitrary unseen domain.
To this end, we also propose memory divergence and feature
cohesion losses, which encourage to learn memory reading
and update processes for category-aware domain general-
ization. Extensive experiments for semantic segmentation
demonstrate the superior generalization capability of our
method over state-of-the-art works on various benchmarks.1

1. Introduction
Semantic segmentation, assigning a semantic class la-

bel to each pixel, is a classical research topic for visual
understanding in computer vision. The recent tremendous
progress in semantic segmentation has been dominated by
deep neural networks trained on large amounts of densly
annotated datasets. Despite its success, models trained with
a given dataset (source) do not generalize well in a new do-
main (target) that the models have not seen during training.
Overcoming the domain shift issue caused by the different
data distributions of two domains is crucial to deal with un-
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Figure 1. The illustration of our memory-guided meta-learning
algorithm for domain generalization. Our method learns how to
memorize domain-agnostic categorical knowledge that can provide
an external guide to the test data in unseen target domain.

expected and unseen data, especially for replacing human
tasks such as medical diagnosing or autonomous driving.

In order to mitigate severe performance degradation from
the domain shift [5, 21], unsupervised domain adaptation
(UDA) approaches [17, 42, 57] have been proposed to bridge
the domain gap using unlabelled images of the target domain.
These methods have introduced inventive learning strategies
to learn domain invariant features [22, 29, 66, 67, 75, 78]
or align source and target domain to unified space [23, 25,
52, 71, 72]. Though they have shown impressive results
against domain shift, collecting data from the target domain
is often impractical. Moreover, the scalability of the model is
restricted as UDA requires network re-training or fine-tuning
for the new target domain, thereby exposing limitations in
terms of being able to generalize to ‘any’ unseen domains.

To overcome those limitations, domain generalization
(DG) methods have been developed to learn robust models
against variants of data distribution across arbitrary unseen
domains [8,30,36,38,59,79]. It is much harder than UDA in
that no target domain data is available during training. Some
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methods heuristically define domain-biased information as
style (e.g., texture, color) to explicitly augment it [28,64], or
erase style through instance normalization [47] and channel
covariance whitening [14]. Despite their efforts, existing
methods still show limited performance for use in real-world
applications. But, it is natural that human visual system
adapts stably even when facing scenes that they have never
seen before. Where does this difference in generalization
ability between humans and machines come from?

We argue that there is an important missing piece in
this puzzle. The conceptual knowledge of humans [6], also
known as semantic memory, is abstracted from actual expe-
riences in the reusable form and is generalized to support
a variety of cognitive activities such as event reconstruc-
tion [31, 32] and object recognition [54]. Inspired by this,
we consider that human’s knowledge concept can be effec-
tively utilized in domain generalization by remembering the
shared information of each class. For example, the style of
the car may vary depending on the domain, but the basic
features to configure the car (e.g. wheel, door, bumper, head-
light) remain unchanged. Namely, the guidance of such prior
knowledge about concurrent features can help to improve
the generalization capability of machines.

In this work, we propose a novel memory-guided meta-
learning framework to capture and memorize co-occurrent
categorical knowledge between objects of the same class
across domains. The objective of this framework is to assign
shared information of each class into external memory slots
and reuse the categorical concept for robust semantic seg-
mentation in arbitrary unseen domains. To this end, we split
source domain data into meta-training and meta-testing sets
to explicitly mimic domain shift in the inference, allowing
the network to store and invoke memory corresponding to
domain-agnostic prototypes of class patterns, as shown in
Fig. 1. That is, our method enables category-aware gen-
eralization for semantic segmentation, unlike previous DG
approaches [14, 47, 64] that only concentrate on globally
inferring domain-agnostic representations. Moreover, we
introduce a memory divergence loss and a feature cohesion
loss which boost discriminative power of memory and make
more domain-invariant representations from the encoder,
respectively. Consequently, our method achieves superior
performance gain over existing DG approaches on multi-
ple unseen real-world benchmarks. Without re-training or
fine-tuning, our results are even on par with the multi-source
UDA methods [23, 70–72], where the training images are
given from both source and target domains.

In summary, our key contributions are as follows: (i) We
present a novel approach to domain generalization for seman-
tic segmentation with memory module to exploit domain-
agnostic categorical knowledge of classes. (ii) We introduce
the memory-guided meta-learning algorithm that improves
the representation power of the memory-guided feature by

exposing the model to mismatched data distribution. (iii) We
propose two complementary losses, including memory diver-
gence loss and feature cohesion loss, that promote power for
an embedded feature to find the apposite class memory. (iv)
Extensive experiments prove the significance of category-
aware generalization on both single- or multi-source settings.

2. Related Work
Domain adaptation and generalization. There are wide
investigations towards better generalization of deep net-
works to mitigate the domain distribution discrepancy be-
tween source (training) and target (testing) domains. In
particular, unsupervised domain adaptation (UDA) ap-
proaches have been proposed to rectify such domain mis-
match by leveraging the unlabeled target images for train-
ing [9, 17, 25, 35, 42, 57, 66, 68]. Recently, multi-source
UDA methods [23, 70–72] have been introduced in a more
practical scenario, where the training data is collected from
multiple synthetic datasets [20, 49, 50]. Despite those ef-
forts, deep networks often suffer from unseen novel domains
in the real-world. It yields a domain generalization (DG)
problem [7], that is more challenging than UDA in that the
target domain data is not available. Recent works on DG are
roughly categorized as two-fold: learning domain-invariant
features [39, 43, 44, 79] and augmenting the training sam-
ples [8, 30, 59, 76, 77]. However, the majority of the DG
methods still focuses on the task of classifying the entire im-
age into one class, while our approach aims to generalize the
networks to prevent a large performance drop of semantic
segmentation in urban scene.
Domain generalization for semantic segmentation. This
task has received relatively less attention compared to its
importance in many real-world applications including au-
tonomous driving in the wild. One of the promising solutions
is a domain randomization [28, 64] to generate new train-
ing samples using data augmentation. However, it requires
a lot of cost for training and it is practically difficult to
cover the real-world distribution with the data augmentation
only. Alternatively, based on the theoretical intuition from
the normalization, some approaches have tried to normal-
ize global feature by erasing the style-specific information
of each domain [14, 47, 55]. In contrast to those methods
that concern global representation only, we propose a cate-
gorical memory-guided framework for class-wise domain
generalization. Meanwhile, recent papers [12, 13] pointed
out a crucial role of the diversity of learned feature from the
synthetic data to prevent overfitting to the source domain
in segmentation task. Inspired by this, we employ a meta-
learning to our framework for virtually testing the stored
memory under different data distribution, promoting the only
common knowledge of class to be saved for generalization.
Meta-learning. The model-agnostic meta-learning [18, 19]
is one of the most popular methods of meta-learning (a.k.a
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Figure 2. Overall training process of our method, consisting of domain split, meta-training and meta-testing steps for every iteration.

learning-to-learn), where an episodic training scheme has
been designed for making multi-order of gradient descent
for few-shot learning. The key idea of the episodic training,
separating the learning steps into meta-train and meta-test to
mimic the training and evaluation steps, has inspired other
studies [3, 16, 34, 36–38, 40] to develop meta-learning based
methods for domain generalization. Most related to ours,
Zhen et al. [74] recently proposed a long-term memory with
meta-learning that stores semantic information for few-shot
learning, where the gradient from the updating memory does
not feedback to the networks. Zhao et al. [73] claimed that
the asynchronous gradient update among the sub-networks
destabilizes meta-optimization, and simply treated the mem-
ory as a non-parametric module to solve the problem. Our
method is orthogonal to these works in that we aims to learn
the network to generalize categorical memory update and
reading process through meta-learning.
Memory networks. The recent advances of memory net-
works [4, 48, 53] enhance the capability of neural networks
by recording information stably. Although [61, 74] proposed
the long-term memory modules with meta-learning like our
method, they improved reading performance only without
consideration for memory writing. Compared to the previ-
ous works, our memory module stores long-term memory
in whole training steps with meta-learning, which helps to
robustly read and write memory to domain shift. The mem-
ory in [4] approximated to neural networks requiring several
computations to read memory, but our method is more effi-
cient than [4] with a once estimation. Significantly, the mem-
ory networks have been effective in several segmentation-
related tasks [1, 26, 27, 33, 46, 60–62]. For instance, Jin et
al. [33] stored dataset-level surrounding contexts of various
classes to augment pixel-level representations. On the con-
trary, we store domain-agnostic information into the memory
to contain common features of semantic categories.

3. Proposed Method
3.1. Problem Statement and Overview

Given an image from an unseen target domain, domain
generalization aims to protect the performance of the seg-

mentation network trained with a set of observable source,
S, where the networks basically consist of encoder and de-
coder (pixel-wise classifier). An intuitive approach to DG
is to learn the segmentation networks by simply combining
all source domains into one training dataset and training
with standard segmentation loss such as cross-entropy [41].
However, this naive aggregation method is overly suited to
the source domain and thus shows enormous performance
deterioration when domain shift occurs in the inference.

To solve this problem, we propose a memory-guided
meta-learning framework to prevent performance degrada-
tion of semantic segmentation in the unseen domains at test
time, as shown in Fig. 2. By configuring an artificial domain
shift with data augmentation or domain splitting, we allow
the network to update and read memory on the specified
domains in the meta-learning framework so that the network
learns how to remember conceptual knowledge in the pres-
ence of the domain shift. In the following section, we first
describe the memory read and update procedure (Sec. 3.2)
and then memory-guided meta-learning framework with loss
functions (Sec. 3.3).

3.2. Memory Module
The memory module is incorporated with the segmenta-

tion backbone network to memorize the common features
of each class into memory matrixM∈ RN×C , where N is
the number of classes and C is a channel dimension of the
encoder feature. We next explain initialization, update and
reading processes of our memory module in details.
Initialization. As the preliminary step, ℓ2-normalized fea-
ture maps are extracted from all training images in the source
domains through an encoder E with parameters ΘE , pre-
trained on ImageNet [51]. To initialize the memory matrix
with these feature maps, we calculate a mean feature vec-
tor for each class by masking the regions with ground-truth
segmentation maps. Since the initial memory matrix com-
posing of class-wise mean vectors is in a very noisy state, our
method learns to update this by storing more discriminative
and domain-agnostic class-wise features in the memory.
Update. We adopt a memory updating network U consists
of a 1 × 1 convolution layer with the residual connection.
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(b) Memory Read

Figure 3. Illustration of memory update and reading operations.

As shown in Fig. 3a, the memory updating network with
parameters ΘU transforms ℓ2-normalized feature map F ∈
RC×H′×W ′

of an input image X ∈ R3×H×W into Z =
U(F), where H ×W is an original size of the image, and
H ′ × W ′ is a reduced size by a pooling operation in the
backbone networks2. In order to update the n-th itemM[n]
in the class-wise memory, we perform an average pooling
over the masked region by referring to the segmentation
mask of the n-th class as follows:

Ẑ[n] = (Y[n]Z⊤)/Kn, (1)

where Kn is the number of pixels belonging to n-th class in
the ground-truth, Ẑ ∈ RN×C is a masked feature map and
Y is a one-hot segmentation ground-truth which has a size
of N ×H ′W ′. Note that Z is reshaped as C ×H ′W ′. Then
the n-th channel of masked feature vector Ẑ[n] is used to
update a memory item using moving average.

M̂[n] = m · M[n] + (1−m) · Ẑ[n], (2)

where M̂[n] is an updated memory and the momentum m is
set as 0.8 empirically. This is repeated for all classes, which
is expressed as below:

M̂ = update(M,X ; {Θ}E,U ), (3)

where a set of parameters ΘE and ΘU is denoted as {Θ}E,U .
Read. As depicted in Fig. 3b, we read the stored memory
items with the encoded feature mapF to represent a memory-
guided feature map R ∈ RC×H′×W ′

which is used in the
decoder. To aggregate a corresponding memory item along
each feature location, we compute an memory weight matrix
W ∈ RN×H′×W ′

via cosine similarity and normalize it with

2H′,W ′ varies depending on the output stride of backbone networks
such as FCN [41], DeepLabV2 [10], DeepLabV3+ [11], etc.

softmax function as:

W[n] =
exp(M[n]F)∑N

n′=1 exp(M[n′]F)
, (4)

where F andW are permuted as C×H ′W ′ and N ×H ′W ′

respectively. The memory-guided feature mapR is obtained
by fusing the original feature map F and weighted memory
featureM⊤W as follows:

R = ReLU(Conv1×1(Π(F ,M⊤W))), (5)

where Π(·) denotes a concatenation operation. Note that
M⊤W is re-permuted to have a size of C ×H ′ ×W ′. We
add 1× 1 convolution layer to make the channel size ofR
to C. Finally, a predicted segmentation probability map Ŷ is
estimated by passingR into the decoder. From now on, we
denote the 1× 1 convolution layer with decoder as D with
parameters ΘD.

3.3. Learning to Generalize Update and Read
Compared to the previous DG methods based on meta-

learning [3, 36, 37] that do not use external prior knowledge,
our method leverages meta-learning to achieve two goals.
First, the domain invariant categorical knowledge of each
class is saved in a form of external memory that can of-
fer a class-wise guidance for robustly segmenting an image
from unseen domains. Second, we reinforce our network
to robustly classify each unseen image pixel to a category
label against intra-class and cross-domain variations. Specif-
ically, we randomly split the available source domains S into
meta-train domains Smtr and meta-test domains Smte at every
iteration step. Then, we repeatably memorize class-wise
features from Smtr and test whether the network properly
works with the memory on the held-out Smte. The overall
training procedure is summarized in Fig. 2 and Alg. 1.
Meta-training. Given an input image Xmtr ∈ Smtr, the en-
coder computes a feature map Fmtr and augments it by using
the memoryM through the reading operation. We calculate
a per-pixel cross-entropy loss [41], i.e. segmentation loss
Lseg, with ground-truth map Ymtr and the estimated output
Ŷmtr from the decoder. However, Lseg does not necessar-
ily guarantee that the encoder features in the same class lie
close in the feature embedding space. Therefore, we further
propose a feature cohesion loss Lcoh to encourage semantic
features to be locally assembled based on each memory item:

Lcoh =
1

H ′W ′

∑H′W ′

j=1
−Y⊤

mtr[j] log(Wmtr[j]), (6)

whereWmtr is computed as (4).
In addition, the class-wise features in the memory should

be far enough apart from each other to be discriminative. To
ensure this, we propose a memory divergence loss Ldiv that
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increases the distance between memory items, as well as
maximizes the decision margin:

Ldiv =
∑N

n=1
(−I[n] log(G(M̂[n]⊤))

+ 2 ·
∑N

n′ ̸=n

max(M̂[n]M̂[n′]⊤, 0)

N(N − 1)
),

(7)

where I is the identity matrix of size N ×N , and a memory
classifier G includes a FC layer with parameters ΘG and
has an output size of N after the softmax. In (7), the first
term is for the memory classification, and the second term
is similar to cosine embedding loss [58] with a margin set
to 0, empirically scaled double. While the divergence loss
improves inter-class dispersion, the feature cohesion loss
increases intra-class compactness of the encoder features
among distinct memory items. We carefully note that Ldiv
is calculated for the newly estimated memory M̂, while the
reading process use theM updated in the last iteration step.
It is because the reading process aims to guide the feature
map well with previously saved memory, and the update
process focuses on saving even better patterns into memory
and widening the gap between memory items with Ldiv.

To clarify, we define Lread with the segmentation and
feature cohesion losses computed in the memory reading
operation, and Lupdate with the memory divergence loss com-
puted when updating the memory item, respectively:

Lread(M,Xmtr ; {Θ}E,D) = Lseg + λ1Lcoh,

Lupdate(M,Xmtr ; {Θ}E,U,G) = λ2Ldiv,
(8)

where λ1 and λ2 are hyper-parameters. Consequently, the
updated network parameters are obtained as follows:

{Θ}′E,U,D,Θ∗
G ← {Θ}E,U,D,G

− α∇ΘLread(M,Xmtr ; {Θ}E,D)

− α∇ΘLupdate(M,Xmtr ; {Θ}E,U,G),

(9)

where α is a learning rate of the meta-training step. Since the
memory classifier G is not used in the meta-testing step, Θ∗

G

is the final updated parameter of G in this training iteration.
Meta-testing. The goal of meta-testing in our method is to
not only virtually simulate testing the networks on new data
statistics but also characterize learning to update categorical
memory to work well across the domains. Moreover, the
effectiveness of the memory divergence loss for the updating
network U should be tested within the meta-testing process.

With these reasons, we carefully design meta-testing pro-
cess that re-updates the memory using the meta-updated net-
works’ parameters {Θ}′E,U and the meta-train image Xmtr:

M′ = update(M,Xmtr ; copy(Θ′
E),Θ

′
U ), (10)

where copy(Θ′
E) indicates Θ′

E is frozen. We obtain the
memory once again with meta-train data, not meta-test data,
because we will reuse the learned memory without update
process in inference. Since this memory M′ is used to

Algorithm 1: Overall Training Procedure
Initialize {Θ}E,U,D,G andM at t = 0
while t < T do

Randomly split S into Smtr and Smte

Meta-training:
Sample batch X t

mtr = {X b
mtr}Bb=1 from Smtr

Compute Lread with (X t
mtr,M, {Θ}E,D)

M̂ ← update(M,X t
mtr; {Θ}E,U )

Compute Lupdate with (M̂, ΘG)
Update {Θ}′E,U,D ,Θ∗

G from {Θ}E,U,D,G in (9)

Meta-testing:
M′ ← update(M,X t

mtr; copy(Θ′
E),Θ

′
U )

Sample batch X t
mte = {X b

mte}Bb=1 from Smte

Compute Lread with (X t
mte, M′, {Θ}′E,D )

Update {Θ}∗E,U,D from {Θ}′E,U,D in (11)
M∗ ← update(M,X t

mtr ; copy({Θ}∗E,U ))

{Θ}E,U,D,G ← {Θ}∗E,U,D,G

M←M∗

t← t+ 1

segment meta-test data Xmte, this novel step also allows
the memory updating network’s parameters ΘU to receive
the second-order gradient feedback on whether the updated
memoryM′ is applicable on different domains. By freezing
the encoder’s parameter Θ′

E , we can avoid unstable meta-
learning caused by the asynchronous gradient update be-
tween the encoder and the other networks [73]. Guided by
M′, the network parameters are updated with the reading
loss Lread for the image Xmte from meta-test domain Smte as
follows:

{Θ}∗E,U,D ←{Θ}E,U,D

− β∇ΘLread(M′,Xmte ; {Θ}′E,U,D),
(11)

where β is a learning rate of the meta-testing step. Note
that the second-order gradient is generated from the last
term of (11) by differentiating {Θ}′ obtained from (9) with
the original parameters {Θ}. Using the updated network
parameters, we initialize the memoryM∗ that will be used
in the next training iteration step:

M∗ = update(M,Xmtr ; copy({Θ}∗E,U )). (12)

The optimization in meta-testing step allows (1) writing the
domain-agnostic features to the current memoryM from the
meta-train image in (12) and (2) ensuring the generalization
capability of the memory-guided feature of meta-test image.

4. Experiments
4.1. Experimental Setup

Datasets. We conduct the experiments on six different
datasets to prove the generalization ability of our method.
• Real datasets: Cityscapes [15] includes 3,450 finely-

annotated images collected from 50 different cities, pri-
marily Germany. We use only a finely-annotated set for
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RobustNet† [14] 82.6 40.1 73.4 17.4 1.4 34.2 38.6 18.5 84.9 16.9 81.9 65.2 11.4 84.7 7.2 23.6 0.0 10.4 23.9 37.69 (2.2)
Baseline 49.1 28.0 69.8 21.1 12.2 21.5 39.3 13.0 81.8 33.7 68.7 66.0 18.2 38.1 20.7 15.6 3.6 16.4 18.4 33.42
MLDG‡ [36] 75.8 37.4 78.1 27.6 8.5 37.4 31.6 18.7 84.0 16.2 70.2 66.3 16.7 74.0 20.4 38.4 0.0 20.4 16.1 38.84 (5.4)
Ours 85.3 45.3 82.5 26.3 19.9 34.9 39.0 24.0 85.8 24.0 82.8 64.7 21.3 85.7 32.0 38.2 6.7 26.0 21.5 44.51 (11.1)
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Baseline† 44.6 26.1 34.7 1.8 6.9 29.5 39.1 20.5 64.9 10.8 51.6 50.6 10.2 63.9 1.1 4.8 0.0 5.5 10.1 25.09
IBN-Net† [47] 53.8 25.0 55.4 2.8 14.8 32.9 39.7 26.3 71.7 16.4 85.9 57.4 17.5 56.9 5.3 6.0 0.0 18.5 25.4 32.18 (7.1)
RobustNet† [14] 69.5 35.0 60.9 4.1 13.1 36.6 40.5 27.3 71.6 14.0 83.6 56.0 17.3 61.9 4.4 8.8 0.0 24.3 18.9 34.09 (9.0)
Baseline 54.5 26.0 44.0 3.4 20.9 30.1 37.4 15.9 65.7 22.7 42.3 50.9 14.7 58.0 17.5 14.1 0.0 25.0 9.4 29.07
MLDG‡ [36] 54.0 33.4 61.0 6.4 25.3 35.5 35.5 19.0 71.5 20.0 75.8 53.7 13.4 46.2 7.3 34.4 0.0 9.5 5.3 31.95 (2.9)
Ours 79.3 39.1 69.0 6.2 32.8 32.1 36.7 26.9 71.3 25.9 86.3 49.4 12.5 75.2 20.6 31.6 0.0 17.9 10.7 38.07 (9.0)
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ap
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Baseline† 62.0 36.3 32.5 9.5 7.7 29.9 40.5 22.5 78.6 40.9 61.0 59.4 6.4 78.3 5.1 5.1 0.1 9.0 21.8 31.94
IBN-Net† [47] 67.4 38.8 51.3 10.2 7.6 36.0 40.1 40.8 80.3 39.9 92.1 61.8 14.0 74.4 10.7 9.4 3.5 15.3 25.4 38.09 (6.2)
RobustNet† [14] 78.0 41.0 56.6 13.1 6.2 39.4 41.3 36.1 79.5 34.7 90.0 61.0 12.0 76.1 10.7 13.1 0.8 16.9 24.8 38.49 (6.6)
Baseline 53.4 25.9 44.7 11.1 19.0 28.4 36.2 15.8 71.3 27.1 66.1 58.6 11.7 64.2 20.1 1.1 11.4 23.1 22.3 32.19
MLDG‡ [36] 69.4 36.0 58.6 19.4 16.8 37.6 31.3 28.8 76.7 36.9 81.6 43.4 15.5 59.1 21.4 8.1 1.3 16.8 17.9 35.60 (3.7)
Ours 78.0 40.8 71.1 14.6 27.0 34.2 40.7 50.3 77.1 26.2 90.0 63.1 24.0 81.6 30.5 15.5 5.3 18.7 22.7 42.70 (10.5)

Table 1. Source (G+S)→Target (C, B, M): Mean IoU(%) and per-class IoU(%) comparison of other SOTA DG methods for semantic
segmentation. We report the mIoU improvement as red text. The networks are DeepLabV3+ with ResNet50 and results with † are from [14].

training and validation. BDD100K [63] contains 8K di-
verse urban driving scene images collected from various
locations in the US. Mapillary [45] is a real street-view
dataset including 25K images collected from all around the
world. IDD [56] contains 10,004 images captured from
Indian roads. The road scenes in the IDD, which contain
animals and muddy, are significantly different from the
existing datasets mainly collected in Europe or US.

• Synthetic datasets: GTAV [49] includes 24,966 driving-
scene images generated from a game engine. It has 19
object categories compatible with the real-world datasets.
Synthia [50] is another synthetic dataset simulating dif-
ferent seasons, weather, and illumination conditions from
multiple viewpoints. The Synthia dataset contains 9,400
photo-realistic synthetic images annotated into 16 cate-
gories compatible with the GTAV.

Metrics. Following the standard-setting [14, 23], we re-
port mean Intersection over Union (mIoU) averaged over all
classes to measure the segmentation performance.
Implementation details. We conducted experiments by
adopting DeepLabV3+ [11] and DeepLabV2 [10] with
ResNet50 and ResNet101 [24] as a semantic segmentation
architecture, respectively, where the output stride is 16 for
DeepLabV3+. All backbones were initialized with Ima-
geNet [51] pre-trained model. We set the maximum itera-
tions to 120K but early stop at 30K iterations, except for
ResNet-101 models trained for 70K. The hyper-parameters,
λ1 and λ2, were empirically set to 0.02 and 0.2. Further
details for optimization and training are explained in the
supplementary material. In all experiments, we denote the
networks trained with aggregated source domains as a base-
line. To conduct experiments, we re-implemented several

Methods Cityscapes BDD100K Mapillary Avg.
Baseline 52.51 47.47 54.70 51.56
IBN-Net‡ [47] 54.39 48.91 56.06 53.12
RobustNet‡ [14] 54.70 49.00 56.90 53.53
MLDG‡ [36] 54.76 48.52 55.94 53.07
TSMLDG‡ [65] 53.02 46.43 52.76 50.70
Ours 56.57 50.18 58.31 55.02

Table 2. Source (G+S+I)→Target (C, B, M): Mean IoU(%) com-
parison of other state-of-the-art DG methods, where all networks
are trained with two synthetic (GTAV, Synthia) and one real (IDD)
datasets. All methods adopt DeepLabV3+ with ResNet50.

DG methods and marked them with ‡.

4.2. Results
Comparison with state-of-the-art. Table 1 summarizes the
test results on the most popular real-world dataset bench-
marks, where the models were trained on multi-source do-
mains (GTAV and Synthia). We conduct comparisons with
the re-implemented vanilla meta-learning method without
the memory module (MLDG) and the normalization-based
methods (IBN-Net and RobustNet) based on the results re-
ported in the paper [14]. While the existing normalization-
based methods are slightly better than the baseline perfor-
mance, our approach consistently outperforms the state-of-
the-arts (SOTA) by a large margin on all real-world datasets.
It demonstrates that the generalization methods by erasing
the visual style of domains makes it hard to leverage multi-
source domain information well. Especially, our approach
shows significantly improved gain over baseline as 11.1%
on the Cityscapes, 9.0% on the BDD100K and 10.5% on the
Mapillary. Furthermore, compared to MLDG [36] that uses
meta-learning framework like ours, our method proves the
effectiveness of the categorical memory to improve the gen-
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours

Figure 4. Source (G+S)→Target (C): Qualitative comparison on the Cityscapes dataset. All methods adopt DeepLabV3+ with ResNet50.
(Best viewed in color.)
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Baseline† 29.0
DRPC [64] 37.4 IBN-Net† [47] 33.9
Baseline 21.4 RobustNet† [14] 36.6
CNSN [55] 36.5 Baseline 31.6
Baseline 23.3 MLDG [36] 36.7
ASG [13] 31.9 Ours 41.0

Table 3. Source (G)→Target (C): Mean IoU(%) comparison
of other SOTA methods with various segmentation models with
ResNet50. Results with † are from [14]. The results on other
datasets are reported in supplementary materials.

Methods w/Target Cityscapes BDD100K
Baseline ✗ 40.0 37.4
CyCADA [25]† ✓ 39.3 37.2
MDAN [70]† ✓ 36.0 29.4
MADAN [72]† ✓ 45.4 40.4
MADAN+ [71] ✓ 48.5 42.7
CLSS [23] ✓ 54.0 N/A
Ours ✗ 49.4 45.5

Table 4. Source (G+S)→Target (C, B): Mean IoU(%) comparison
of other multi-source UDA methods. The segmentation models are
all DeepLabV2 with ResNet101. Results with † are from [71].

eralization capability. Fig. 4 shows qualitative results and
more results are provided in supplementary materials. To
further verify the performance variation when more source
data is used, we add one more real dataset (IDD) to the
source domain following [65]. Since the IDD dataset signif-
icantly differs from the existing real datasets, this scenario
assumes a new generalization scenario where the available
real dataset looks very different from the target domain’s cul-
ture. In Table 2, we can see that our method also outperforms
all previous approaches in this setting.

Table 3 shows the results evaluated on the Cityscapes
dataset with various segmentation models regarding to single-
source domain generalization setting. Like [14], we generate
virtual domain shift by photometric transformations such
as Gaussian blur or color jitter in this setting. Even though
the networks are trained on the GTAV dataset only, our
method obtains the best generalization performance with
a relatively high-performance gain. It thus points out that
category-aware generalization, like our method, should be
encouraged importantly to further research in this area.
Comparison with UDA. We also compared our result with
state-of-the-art UDA methods [23, 70–72] trained on multi-

Lcoh Ldiv Cityscapes BDD100K Mapillary Avg.
✓ 43.85 38.01 41.66 41.17

✓ 42.08 36.80 40.83 39.90
✓ ✓ 44.51 38.07 42.70 41.76

Table 5. Ablation study on the variants of loss.

Memory Freeze Cityscapes BDD100K Mapillary Avg.
E U

M̂ - - 40.64 31.06 31.59 34.43
M′ ✗ ✗ 41.65 36.56 38.80 39.00
M′ ✓ ✗ 44.51 38.07 42.70 41.76
M′ ✓ ✓ 41.67 32.04 33.90 35.87

Table 6. Ablation study on the variants of the memory update
strategy in meta-testing step.

Training Memory M.L. Cityscapes BDD100K Mapillary Avg.
Agg. ✗ ✗ 33.42 29.07 31.90 31.46
Agg. ✓ ✗ 38.28 31.46 32.25 34.00

Episodic ✗ ✓ 38.84 31.95 35.60 35.46
Episodic ✓ ✗ 41.50 38.00 40.22 39.91
Episodic ✓ ✓ 44.51 38.07 42.70 41.76

Table 7. Ablation study on the variants of the memory learning
method. We denote the baseline as ‘Agg.’, episodic training as
‘Episodic’ and the second-order gradient as ‘M.L.’.

ple synthetic datasets. For a fair comparison, we reported
mIoU score over 16 object classes in Table 4. All other meth-
ods excluding baseline and ours used training images from
target domain to learn their models. It is interesting that even
though UDA is a much easier setting than domain general-
ization, our DG method achieved the highest performance
on the BDD100K. Except for CLSS [23], our method also
showed competitive results on the Cityscapes. We argue that
our method, guided by domain-agnostic categorical memory
learned from multi-source domains, is more effective to deal
with diverse real-world cases than UDA methods.

4.3. Ablation Study and Discussion
All experiments in this subsection uses the model trained

on GTAV and Synthia datasets adopting DeepLabV3+ [11]
with ResNet50 [24].
Loss. To verify the effectiveness of the proposed losses, we
study different loss combinations of Lcoh and Ldiv. From
Table 5, we observe that both loss terms make substantial
contributions to the performance gain for all datasets by
operating complementary each other.
Memory update strategy. In (10) of the meta-testing step,
we freeze the encoder parameters and re-update the memory.
To show the effectiveness of this update scheme, we con-
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Methods # of Params GFLOPs Time (ms)
Baseline 45.08M 277.16 13.51
IBN-Net‡ [47] 45.08M 277.24 14.31
RobustNet‡ [14] 45.08M 277.20 14.53
MLDG‡ [36] 45.08M 277.16 13.85
Ours 45.22M 277.69 13.56

Table 8. Comparison of computational cost. Tested with the image
size of 2048×1024 on NVIDIA TITAN RTX GPU. We averaged
the inference time over 500 trials.
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Figure 5. Source (G+S)→Target (C, B): t-SNE visualization of
extracted features. Colors indicate different categories in the first
column and different domains in the second column. Memory is
pointed as triangle. The mIoU scores are the average scores of the
target domains.

duct an ablation study with the combination for the encoder
E and memory updating network U in Table 6. Without
re-updating the memory in the meta-testing step, a severe
generalization performance drop occurs since the updating
network is not updated. Additionally, a similar degradation
occurs when both encoder and the updating networks are
frozen, because the generalization objective for memory up-
dating is not evenly set. This means that our novel step is
operated for memorizing domain-agnostic features while
stabilizing meta-optimization.
Memory learning framework. We analyze our method
by dividing it into three key contributing factors: memory,
second-order gradient (‘M.L.’ [18] in Table 7) and episodic
learning without ‘M.L.’ that creates an artificial domain shift
environment. In Table 7, for the memory with episodic learn-
ing, we perform memory update on Smtr and memory reading
on Smte. In this process, we do not calculate the second-order
gradient as no meta-testing step. To sum up, our method
enhances the generalization capability most effectively with

(a) Input (b) Ground Truth (c) Car

(d) Vegetation (e) Road (f) Building

Figure 6. Source (G+S)→Target (B): Visualization of the chan-
nels of memory weight matrix from (4) with the BDD100K dataset.

the combination of all these variants.
Visualization of t-SNE. In Fig. 5, we visualize the pixel
representations with the models learned with our method and
normalization based DG method [14]. In the second column,
we can see that the unseen domain features of RobustNet
tend to agglomerate with each other. In contrast, our method
significantly reduces the tendency that features belonging to
the same domain but of different classes aggregate with each
other, especially in pole class. At the same time, our method
shows superior generalization performance than RobustNet.
It demonstrates that our method effectively integrates source
domain information by generalized categorical knowledge.
Running time and complexity. In Table 8 we compare
with exisiting DG methods in respect of the computational
cost. Since our method requires memory, the few amount of
parameters increases. However, the inference time is com-
petitive to other methods. Therefore, it can be said that our
memory module is cost-effective with a high generalization
score gain compared to the cost it occupies.
Visualization of memory activation. As illustrated in Fig.
6, we visualize the memory weight for the input image from
the unseen domain. We can see that regions are activated by
a memory slot corresponding to each class.

5. Conclusion and Future Work
We have presented the memory-guided meta-learning

framework for robust semantic segmentation regardless of
domain shift, with the novel memory divergence and feature
cohesion losses. The ablation studies clearly demonstrate
the effectiveness of each component and loss in our method.
Finally, we have demonstrate that our method significantly
outperforms other methods in domain generalization settings
and also show competitive performance with domain adap-
tation methods. However, current DG methods (including
this work) for semantic segmentation have limited to the
assign the pixel corresponding to the underlying closed-set
classes. To expand this work to a more practical scenario,
we should consider the open-set segmentation which can be
an appealing topic for DG in semantic segmentation. We
remain a plethora of avenues for this as future work.
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Appendix
In this document, we describe second-order gradient flow

of our method and details of experiments, and provide addi-
tional ablation study for analysis of memory update. More-
over, we complement qualitative and quantitative compar-
isons to state-of-the-art methods.

A. Second-Order Gradient Flow
In Fig. 7, we depict the gradient flow of the optimiza-

tion in the meta-testing step. In this process, we compute
the gradient of the original parameters {Θ}E,U,D for the
meta-testing loss and generate the second-order gradients by
differentiating the parameters {Θ}′E,U,D used in the meta-
testing step with the original parameters. These second-order
gradients make the original parameters learn to (1) write the
domain-independent features to the current memoryM from
the meta-train image and (2) ensure the generalization ability
of the memory-guided feature for the meta-test image.

B. Implementation Details
B.1. Data Split and Augmentation

The batch size per domain was 4 for multi-source domain
training and 8 for single-source domain training. Following
the setting from RobustNet [14], standard augmentations
such as color jittering (brightness of 0.4, contrast of 0.4,
saturation of 0.4, and hue of 0.1), Gaussian blur, random
cropping, random horizontal flipping, and random scaling
with the range of [0.5, 2.0] were conducted to prevent the
model from overfitting. To create an artificial domain shift
even in a single source domain generalization setting, we
applied higher intensity random color jittering (brightness
of 0.8, contrast of 0.8, saturation of 0.8, and hue of 0.3) and
Gaussian blur only to the images used in the meta-testing
step.

B.2. Training and Optimization

We implemented our approach with PyTorch and con-
ducted experiments by adopting DeepLabV3+ [11] with
ResNet-50 [24] backbone network. The output stride of
DeepLabV3+ was set to 16 and adopted the auxiliary per-
pixel cross-entropy loss proposed in PSPNet [69] with a
coefficient of 0.4 to make a fair comparison with the nor-
malization based DG method [14]. We performed memory
operation using the feature map of 256 channel dimensions
after the ASPP [11] module to leverage the multiple recep-
tive fields and reduce GPU memory usage. We also adopted
DeepLabV2 [10] with ResNet-101 for a fair comparison
with multi-source unsupervised domain adaptation methods.
For all the experiment, we initialized backbones with Ima-
geNet [51] pre-trained model. The optimizer was SGD with
momentum of 0.9. The learning rate of the meta-testing step
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Figure 7. Illustration of the gradient flow (red dotted lines) in the
optimization of meta-testing step.

β was 1e-2 initially and decreased with exponential learning
rate policy with the gamma of 9. The learning rate of the
meta-training step α was set to 1/4 of the outer learning rate
β to stabilize the gradient-based meta optimization [2, 18].
We set the maximum iterations to 120K but early stop at 30K
iterations, except for ResNet-101 models trained for 70K.
The coefficients of memory divergence loss and feature co-
hesion loss, λ1 and λ2, was set to 0.02 and 0.2, respectively.

B.3. Re-implemented Methods

While IBN-Net [47] improved generalization ability by
mixing instance normalization and batch normalization
in the backbone, RobustNet [14] previously have shown
SOTA performance by selectively removing the channel co-
variance of the backbone. We re-implemented these two
methods by setting the hyper-parameters according to the
public code by RobustNet [14]3. To verify the effective-
ness of our memory-guided meta-learning method, we re-
implemented the MLDG [36] which is meta-learning based
DG method. The augmentations and learning rates of MLDG
were same with our method. Recently, TSMLDG [65]
purely uses meta-learning for DG and proposes a method
for target-domain batch normalization on test-time. We re-
implemented TSMLDG by setting the test-batch size to 4
and updating batch statistics of the MLDG model in testing
time on the unseen target domain according to the code of
TSMLDG4.

C. Additional Results

C.1. Ablation Study

Analysis of memory updating network. To verify the ef-
fectiveness of the memory updating network, we conduct an
ablation study about memory updating network. In Table
9, we can observe that the memory updating network has
notable contribution to the performance gain for all datasets
by storing generalizable features into the memory.

More visualization of memory activation. To complement
the Fig. 6 of the main paper, we additionally visualize the
memory weight for the input image from all the unseen

3https://github.com/shachoi/RobustNet
4https://github.com/koncle/TSMLDG
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Figure 8. Source (G+S)→Target (C, B, M): Visualization of the memory weights for each class on the Cityscapes, BDD100K and
Mapillary dataset. We adopt DeepLabV3+ with ResNet50.

Memory Update Net. Cityscapes BDD100K Mapillary Avg.
✗ 41.28 37.25 40.64 39.72
✓ 44.51 38.07 42.70 41.76

Table 9. Source (G+S)→Target (C, B, M): Performance with or
without memory updating network.

Methods Lseg Lcoh Ldiv Cityscapes BDD100K Mapillary Avg.
IBN-Net [47] ✓ ✗ ✗ 35.55 32.18 38.09 35.27
MLDG [36] ✓ ✗ ✗ 38.84 31.95 35.60 35.46

Ours ✓ ✗ ✗ 38.22 33.12 37.10 36.15
✓ ✓ ✓ 44.51 38.07 42.70 41.76

Table 10. Source (G+S)→Target (C, B, M): Mean IoU(%) com-
parison between the DG methods with only standard segmentation
loss, Lseg. All networks are DeepLabV3+ with ResNet50.

datasets in Fig. 8. Regardless of the environment, the mem-
ory corresponding to each object category is well activated,
so that the feature of the pixel can receive a guide of the
appropriate memory feature. In addition, the results demon-
strate that our memory item contains the generic features of
the categories, even though the memory has been trained on
synthetic datasets.

Loss comparison with previous works. To convincingly
compare our proposed losses with previous works, we re-
implemented our model using only standard loss (cross en-
tropy) in Table 10. Without the proposed losses, our method
still shows competitive performance against IBN-Net [47]
and MLDG [36] due to the help of memory items. More-

Figure 9. The correlation between the number of pixels per class in
source datasets (G, S) and performance gain on BDD100K dataset.

over, Lcoh and Ldiv lead to substantial performance gain by
facilitating the effective memory read/update procedures in
training.

Correlation between performance gain and class distri-
bution. The generalization capability usually benefits from
the diversity and amount of the training samples. However,
the data imbalance between classes in current benchmarks
is significant since the different occurrence frequency and
variants of shape among classes. In Fig. 9, we analyze the
correlation between the performance gain over the baseline
in Table 1 of the main paper and the number of training
samples. While the high mIoU gain is attained for the class
(e.g. road, building, sky) with sufficient training samples, it
becomes lower for some minor classes. We remain this prob-
lem due to the limitation of current benchmarks as future
work.
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Methods BDD100K Mapillary Avg.
MCIBI [33] 41.65 50.18 45.92

Ours 46.78 55.10 50.94

Table 11. Source (C)→Target (B, M): Mean IoU(%) comparison
with MCIBI [33]. All networks are DeepLabV3 with ResNet50.

Backbone Methods Seg. model Cityscapes BDD100K Mapillary

Resnet50

Baseline FCN-8s 32.50 26.70 25.70
DRPC [64] 37.40 32.10 34.10
Baseline† 29.00 25.10 28.20
IBN-Net† [47] 33.90 32.30 37.80
RobustNet† [14] 36.60 35.20 40.30
Baseline 31.60 26.70 29.00
MLDG‡ [36] 36.70 32.10 32.20
Ours

DeepLabV3+

41.00 34.60 37.40

Resnet101 FSDR [28] 44.75 39.66 40.87
Ours DeepLabV2 44.90 39.71 41.31

Table 12. Source (G)→Target (C, B, M): Mean IoU(%) compar-
ison of other SOTA methods using various segmentation models
and backbones. MLDG [36] is re-implemented. Results with † are
from [14].

Comparison with MCIBI. We conduct comparison with
MCIBI [33] which is a memory network designed for con-
ducting semantic segmentation on seen domain dataset. To
compare generalization performance, we used the author-
provided MCIBI model pre-trained on Cityscapes and evalu-
ated on the other real datasets regarding single-source setting.
In Table 11, we can see that our memory module outperforms
MCIBI on unseen domain datasets. It thus points out that
using our non-parametric memory loss and leveraging meta-
learning to store shared information among the same class
play important roles in improving generalization capability
of the segmentation network.

C.2. Full Comparison with State-Of-The-Art.

Quantitative results. Table 12 shows the results evaluated
on the real datasets with various segmentation models re-
garding to single-source domain generalization setting. Even
though the networks were trained on the GTAV dataset only,
our method obtained the best generalization performance
on the Cityscapes dataset. Our method also achieved a rela-
tively high-performance gain over our baseline results on the
BDD100K and Mapillary datasets. We also compare with
the performance of FSDR [28] where we used the author-
provided model parameters of FSDR pre-trained on GTAV.
Our model performs better than FSDR on all the target do-
main datasets.

Furthermore, we report the per-class IoU scores for Table
2 and Table 4 of the main paper in Table 13 and Table 14,
respectively. Table 13 shows the performance of Cityscapes,
BDD100K, and Mapillary with DG models trained on GTA5,
Synthia, and IDD datasets. The results show that our method
increased the average performance of each class without
overfitting a specific category in the unseen domain. In
Table 14, we compare the performance on the real-world

datasets with state-of-the-art multi-source UDA methods that
leverage target domain images on training time. Although
UDA is a much easier setting than domain generalization,
our DG method achieved the highest performance on the
BDD100K and competitive results on the Cityscapes.

Qualitative results. To qualitatively describe the superi-
ority of our method, we compare the segmentation results
with other state-of-the-art DG methods. We trained all DG
methods on multi-source synthetic datasets (i.e. GTAV [49]
and Synthia [50]), and tested on the unseen real-world
datasets [15, 45, 63].

In Fig. 10, we firstly conduct an additional comparison of
the segmentation results on the Cityscapes [15] dataset. The
baseline model showed weakness to changes in brightness
due to shadows or changes in places such as side streets and
parking lots in the real world. In addition, results from all
the other methods were damaged to predict objects such as
trains or trucks in the real world. In contrast, our method
predicted road, train, truck, and vegetation relatively well,
showing robustness to domain change.

Fig. 11 and Fig. 12 show the predicted segmentation re-
sults on the BDD100K dataset. Compared to the Cityscapes
dataset that only contains images acquired primarily in day-
time and relatively simple weather conditions (i.e. overcast or
sunny), the BDD100K includes images acquired in various
weather conditions, time zones, and locations. To compare
the performance with regard to the variants of weather con-
ditions, in Fig. 11, we selected the images taken in snowy
or rainy weather conditions, and the baseline showed the
vulnerable performance to this change. The normalization-
based and vanilla meta-learning-based methods were also
sensitive to visual changes in the road or sky caused by snow
and rain. In contrast, our method predicted less damaged
maps and showed reasonably estimation results on roads,
sky, and vegetation regions. Fig. 12 shows the segmentation
results under illumination and time changes. In addition, Fig.
12 shows the prediction maps under object visual changes
due to the reflection of car glass, road slope, or unseen struc-
tures. To sum up, our method showed more robust results
with respect to various visual changes existing in the real
world than other DG methods.

Finally, Fig. 13 and Fig. 14 show the segmentation
results on the Mapillary dataset. The Mapillary dataset con-
tains images acquired from various environments in Europe
and Asia. Our method showed more reasonable results than
other methods even when the viewpoint or scene structure
changes in places such as sidewalks, countryside, residential
areas, and shoulder roads. Moreover, our method success-
fully predicted a partially snowy or wet road and cloudy sky.
Therefore, we can describe that our memory-guided meta-
learning method effectively enhances the encoder features
on various distribution shifts.
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Baseline 88.6 45.9 85.5 38.2 29.7 46.0 45.0 41.6 88.6 43.3 93.2 73.5 44.0 81.4 46.3 29.3 0.3 30.0 47.3 52.5
IBN-Net‡ [47] 90.2 52.0 86.9 38.4 31.8 47.8 43.6 43.8 89.3 42.3 91.9 72.8 42.8 82.3 50.5 48.6 0.2 28.8 49.3 54.4
RobustNet‡ [14] 90.4 48.1 86.8 36.1 34.6 47.3 39.3 43.9 89.2 40.7 92.1 73.2 44.6 87.8 51.7 50.8 0.0 32.2 50.6 54.7
MLDG‡ [36] 91.2 50.8 87.4 39.5 30.4 49.0 39.4 42.5 89.1 39.2 93.0 74.1 46.0 86.4 50.3 49.6 0.6 31.4 50.5 54.8
TSMLDG‡ [65] 92.1 52.7 87.4 37.1 31.3 48.5 40.5 42.7 89.1 39.2 92.6 72.1 41.8 89.0 49.3 47.2 0.6 18.5 35.8 53.0
Ours 91.0 51.6 87.9 43.1 36.6 47.6 38.7 43.1 89.3 41.8 93.0 73.9 41.9 89.1 58.9 55.8 2.0 37.2 52.5 56.6

B
D

D
10

0k

Baseline 89.8 42.7 76.8 14.1 41.9 43.6 34.7 31.7 81.0 40.6 90.3 62.2 26.4 82.2 26.7 40.2 0.0 38.1 38.8 47.5
IBN-Net‡ [47] 88.5 46.7 78.7 20.6 40.8 45.4 39.4 32.8 82.8 42.1 91.6 61.3 21.7 80.7 33.7 59.8 0.0 23.4 39.4 48.9
RobustNet‡ [14] 90.3 42.6 77.7 20.4 39.9 44.6 36.6 33.3 82.8 43.8 90.8 61.6 21.7 84.2 32.3 57.7 0.0 24.8 46.2 49.0
MLDG‡ [36] 90.0 45.7 75.8 15.1 43.6 43.1 36.4 32.0 82.3 41.2 89.8 61.1 19.5 80.9 33.4 52.1 0.0 39.5 40.4 48.5
TSMLDG‡ [65] 90.8 45.4 78.0 16.4 34.9 44.5 38.2 34.7 81.7 37.3 91.4 57.6 12.9 84.1 34.3 53.8 0.0 9.0 36.9 46.4
Ours 90.4 52.5 75.2 18.2 41.8 43.9 38.6 34.4 82.5 40.0 89.7 62.5 26.5 83.3 31.0 56.2 0.0 46.2 40.5 50.2
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Baseline 87.8 40.3 81.2 29.2 37.9 51.5 42.6 63.7 87.2 48.4 97.2 71.4 44.9 85.9 50.7 30.9 0.5 47.5 40.5 54.7
IBN-Net‡ [47] 88.5 44.9 83.6 35.3 38.3 53.1 43.7 63.4 87.5 47.8 97.4 71.6 48.3 86.1 47.8 41.0 3.9 45.8 37.1 56.1
RobustNet‡ [14] 88.2 43.5 83.1 34.2 39.4 52.5 40.2 62.6 87.3 48.4 97.3 72.3 51.8 87.7 48.7 51.7 7.3 45.4 39.8 56.9
MLDG‡ [36] 88.0 39.0 82.9 36.6 40.3 51.6 41.7 64.4 87.6 45.7 96.9 73.0 51.6 87.3 39.0 44.3 3.5 48.5 41.0 55.9
TSMLDG‡ [65] 86.1 45.7 79.2 31.4 39.9 52.2 44.4 61.8 84.2 38.5 88.1 68.8 49.2 86.6 31.0 31.8 5.3 42.7 35.3 52.7
Ours 89.2 48.1 83.2 36.9 40.6 52.4 42.3 64.8 87.7 49.6 97.3 72.2 47.3 89.2 53.6 55.9 3.9 49.4 44.2 58.3

Table 13. Source (G+S+I)→Target (C, B, M): Mean IoU(%) and per-class IoU(%) comparison of other state-of-the-art DG methods for
semantic segmentation. We re-implemented all methods using DeepLabV3+ with ResNet50 backbone. We re-implement other methods and
mark them with ‡.
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Baseline ✗ 77.1 32.4 75.3 13.8 11.5 29.0 13.7 10.3 81.5 79.1 53.1 10.2 80.2 39.0 21.9 11.5 40.0
CyCADA† [25] ✓ 86.8 41.4 74.7 15.5 3.4 27.3 3.8 0.2 73.2 72.4 51.9 12.7 82.7 41.8 18.5 23.3 39.3
MDAN† [70] ✓ 80.6 34.4 73.9 15.9 1.9 22.9 0.1 0.0 73.6 58.9 48.4 12.2 78.8 36.8 14.2 23.7 36.0
MADAN† [72] ✓ 88.1 46.1 79.9 26.4 7.4 30.6 19.0 19.9 80.4 75.9 55.6 15.6 84.1 47.0 23.3 26.3 45.4
MADAN+† [71] ✓ 90.9 49.7 64.9 24.6 13.0 39.2 40.0 21.4 80.2 86.1 57.3 25.0 84.7 35.7 25.2 38.2 48.5
CLSS [23] ✓ - - - - - - - - - - - - - - - - 54.0
Ours ✗ 87.4 42.7 82.6 29.9 21.5 39.2 48.5 34.2 85.2 71.8 66.6 17.6 88.8 21.5 26.0 26.5 49.4
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Baseline ✗ 55.3 20.9 73.9 15.9 18.9 29.9 11.3 11.9 79.7 76.2 54.7 10.3 79.7 29.3 17.2 14.1 37.4
CyCADA† [25] ✓ 64.9 33.6 73.3 15.8 15.3 29.2 15.9 21.4 79.3 79.0 52.0 12.7 49.7 14.0 17.5 22.5 37.2
MDAN† [70] ✓ 57.6 31.2 53.5 6.5 0.6 20.3 0.0 0.0 73.0 61.7 40.9 9.8 60.4 29.2 10.3 15.6 29.4
MADAN† [72] ✓ 74.5 32.4 71.3 16.5 16.3 30.6 15.1 25.1 80.6 78.7 52.2 12.4 70.5 34.0 18.4 19.4 40.4
MADAN+† [71] ✓ 87.8 44.2 78.6 22.4 6.8 29.1 11.5 5.3 79.6 74.6 53.6 14.6 83.0 43.4 19.1 30.2 42.7
Ours ✗ 84.5 39.8 69.7 9.0 26.3 36.1 43.3 31.3 73.5 87.1 59.2 25.5 81.9 6.6 38.3 15.2 45.5

Table 14. Source (G+S)→Target (C, B): Mean IoU(%) and per-class IoU(%) comparison of other multi-source UDA methods. The
segmentation models are all DeepLabV2 with ResNet101. Results with † are from [71].
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours
Figure 10. Source (G+S)→Target (C): Qualitative comparison on the Cityscapes dataset. All methods adopt DeepLabV3+ with ResNet50.
(Best viewed in color.)
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours

Figure 11. Source (G+S)→Target (B): [1/2] Qualitative comparison on the BDD100K dataset. All methods adopt DeepLabV3+ with
ResNet50. (Best viewed in color.)
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours

Figure 12. Source (G+S)→Target (B): [2/2] Qualitative comparison on the BDD100K dataset. All methods adopt DeepLabV3+ with
ResNet50. (Best viewed in color.)
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours
Figure 13. Source (G+S)→Target (M): [1/2] Qualitative comparison on the Mapillary dataset. All methods adopt DeepLabV3+ with
ResNet50. (Best viewed in color.)
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(a) Images (b) Ground Truth (c) Baseline (d) IBN-Net [47] (e) RobustNet [14] (f) MLDG [36] (g) Ours
Figure 14. Source (G+S)→Target (M): [2/2] Qualitative comparison on the Mapillary dataset. All methods adopt DeepLabV3+ with
ResNet50. (Best viewed in color.)
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