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A B S T R A C T   

Current self-supervised methods for monocular depth estimation are largely based on deeply nested convolu
tional networks that leverage stereo image pairs or monocular sequences during the training phase. However, 
they often exhibit inaccurate results around occluded regions and depth boundaries. In this paper, we present a 
simple yet effective approach for monocular depth estimation using stereo image pairs. The study aims to 
propose a student–teacher strategy in which a shallow student network is trained with the auxiliary information 
obtained from a deeper and more accurate teacher network. Specifically, we first train the stereo teacher network 
by fully utilizing the binocular perception of 3-D geometry, and then use the depth predictions of the teacher 
network to train the student network for monocular depth inference. This enables us to exploit all available depth 
data from massive unlabeled stereo pairs. We propose a strategy that involves the use of a data ensemble to 
merge the multiple depth predictions of the teacher network to improve the training samples by collecting non- 
trivial knowledge beyond a single prediction. To refine the inaccurate depth estimation that is used when 
training the student network, we further propose stereo confidence guided regression loss that handles the un
reliable pseudo depth values in occlusion, texture-less region, and repetitive pattern. To complement the existing 
dataset comprising outdoor driving scenes, we built a novel large-scale dataset consisting of one million outdoor 
stereo images taken using hand-held stereo cameras. Finally, we demonstrate that the monocular depth esti
mation network provides feature representations that are suitable for high-level vision tasks. The experimental 
results for various outdoor scenarios demonstrate the effectiveness and flexibility of our approach, which out
performs state-of-the-art approaches.   

1. Introduction 

Obtaining the 3-D depth of a scene is essential to alleviate a number 
of challenges in robotics and computer vision tasks including 3-D 
reconstruction (Yang et al., 2018), autonomous driving (Cao et al., 
2015; Choi et al., 2018; Cho et al., 2018), intrinsic image decomposition 
(Kim et al., 2016), and scene understanding (Gupta et al., 2015). The 
human visual system (HVS) can understand the 3-D structure by 
perceiving the depth value of the scene using binocular fusion. Such a 
mechanism has been widely adopted in computational stereo ap
proaches that establish correspondence maps across two (or more) im
ages taken of the same scene (Scharstein and Szeliski, 2002). This 

approach has achieved outstanding performance in recent studies (Han 
et al., 2015; Zbontar and LeCun, 2015; Luo et al., 2016; Mayer et al., 
2016; Kendall et al., 2017; Chang and Chen, 2018). Furthermore, 
numerous monocular depth estimation approaches have been developed 
based on monocular cues, for example, the inclusion of the object con
tour (Lee et al., 2009), and segmentation (Hoiem et al., 2005). However, 
most methods rely heavily on handcrafted rules based on one or a few 
monocular cues, and thus they often fail to capture plausible depth from 
a single image and are effective only at very restricted environments. 

Recently, owing to advances in deep neural networks, depth pre
diction from a single image has advanced considerably with the aid of 
convolutional neural networks (CNNs) (Eigen et al., 2014; Silberman 
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et al., 2012; Liu et al., 2015; Godard et al., 2017; Kuznietsov et al., 2017; 
Luo et al., 2018; Godard et al., 2019). However, supervised learning 
approaches for monocular depth estimation necessarily have several 
limitations outdoors. Monocular depth estimation needs (semi-) dense 
depth maps as pixel-level supervision for training the deep network, and 
constructing such large-scale training data with depth maps is extremely 
challenging. An active depth sensor, LiDAR, is commonly used to ac
quire depth maps, however, it is usually of low resolution and very 
sparse, for example, less than 6% in the KITTI dataset (Geiger et al., 
2012). Owing to its sparsity, it cannot cover all salient objects in a scene. 
Additionally, the sensing device is very expensive and is often adversely 
affected by several internal degradations, such as imperfect sensor 
calibration and photometric distortions. Thus, most of the existing 
public datasets provide only a small number of depth maps for rather 
limited scenes. For example, they mostly consist of driving scenes ob
tained from the depth sensor mounted on a vehicle (Geiger et al., 2012; 
Cordts et al., 2016). 

To address the lack of ground truth depth maps, recent works 
introduce a self-supervised paradigm (Godard et al., 2017; Garg et al., 
2016; Godard et al., 2019) that uses stereo image pairs during the 

training phase. These methods impose the left–right photometric con
sistency via view synthesis. Since it simply measures on RGB color or 
hand-crafted feature (e.g., SSIM) spaces, they inherently suffer from the 
texture-less region, occlusion, and repeated pattern, resulting in blurry 
depth boundaries and fattening artifacts. The method (Kuznietsov et al., 
2017) uses both the supervised loss using ground truth depth maps and 
the self-supervised image reconstruction loss. However, it still faces 
performance degradation due to the supervised loss when the trained 
model feeds an image from a novel domain. Owing to the self-supervised 
loss, it yields blurry depth results similar to Godard et al. (2017), Garg 
et al. (2016), Godard et al. (2019), as shown in Fig. 1. Another proposed 
method (Luo et al., 2018) first synthesizes the right view using deep 
networks and then performs stereo matching to produce a final depth 
map inside the monocular depth network. However, this two-step 
method substantially increases the computational complexity. 

In this paper, we present a novel approach based on a stu
dent–teacher strategy. Our approach obviates the need to use massive 
ground truth depth maps. We propose the use of a massive number of 
stereo image pairs, which are relatively easy to obtain, and a small 
amount of training data with ground truth depth maps provided in 

Fig. 1. Sample images collected from various datasets and estimated depth maps: (a), (e), (i) input images, (b), (f), (j) depth maps predicted by deep stereo matching 
network (Pang et al., 2017), (c), (g), (k) depth maps obtained using state-of-the-art method (Kuznietsov et al., 2017), and (d), (h), (l) depth maps obtained using 
our method. 
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existing public datasets. First, the teacher network for stereo matching is 
trained using a small amount of training data with ground truth depth 
maps. Subsequently, multiple estimated depth maps are generated on 
various scales, and then these maps are fused. This ensemble approach 
improves the accuracy of the pseudo-ground-truth depth maps by col
lecting non-trivial knowledge beyond a single prediction. Given the 
fused depth maps, the associated stereo confidence maps are generated 
via a confidence measure network. The stereo confidence maps 
encourage the use of only the reliable depth values in the fused depth 
maps. With these maps, we propose a stereo confidence-guided regres
sion loss that employs a mask function. To use diverse stereo image pairs 
when training the monocular depth networks, we built a new large-scale 
dataset named the DIML/CVL dataset, by capturing stereo image pairs of 
various scenes, including parks, brooks, and apartments (Fig. 7). The 
experimental results demonstrate that our method outperforms the 
state-of-the-art method, and the DIML/CVL database is complementary 
to existing outdoor driving scenes (Geiger et al., 2012; Cordts et al., 
2016). We additionally demonstrate that our pre-trained model for 
monocular depth prediction can be used as a powerful proxy task for 
scene understanding tasks. 

Recent works (Guo et al., 2018; Tosi et al., 2019) are conceptually 
similar to the proposed method in that they also exploit stereo matching 
as a rich knowledge for monocular depth estimation. In contrast, our 
method is more effective than previous works by handling unreliable 
areas such as texture-less regions and occlusions in stereo matching 
using confidence guided loss. 

Our main contributions are as follows:  

• We propose a novel framework for monocular depth estimation 
based on a student–teacher strategy.  

• We introduce a data ensemble and stereo confidence-guided 
regression loss to improve the usage of the pseudo-ground-truth.  

• We introduce a new large-scale RGB-D dataset, named the DIML/ 
CVL dataset, which is complementary to the existing datasets of 
outdoor driving images. The dataset is publicly available at https:// 
dimlrgbd.github.io/.  

• We demonstrate that the feature representation of our monocular 
depth estimation provides rich knowledge for scene understanding 
tasks. 

2. Related work 

In this section, we briefly review and discuss three lines of work that 
are the most relevant to our study. 

2.1. Stereo matching 

The objective of stereo matching is to find a set of corresponding 
points between two (or more) images. The correspondence map is 
converted into a depth map using stereo calibration parameters. Early 
studies based on CNN attempted to measure the similarity between 
patches of two images. Han et al. (2015) proposed a Siamese network 
that extracts features from patches followed by a similarity measure. 
Zbontar and LeCun (2015) computed the matching cost using CNNs and 
applied it to classical stereo matching pipelines consisting of cost ag
gregation, depth optimization, and post-processing. Luo et al. (2016) 
proposed computing the matching cost by learning a probability dis
tribution over all depth values and then computing the inner product 
between two feature maps. Note that these approaches focused on 
computing the matching cost using CNNs and the remaining procedures 
for the stereo matching still rely on conventional handcrafted 
approaches. 

Recent approaches have attempted to predict a depth map in an end- 
to-end fashion, achieving a substantial performance gain. Mayer et al. 
(2016) proposed a new method, named DispNet, which uses a series of 
convolutional layers for cost aggregation and then employs regression to 

obtain the depth map. Pang et al. (2017) introduced a two-stage 
network, named cascade residual learning (CRL), which is an exten
sion of Mayer et al. (2016). The first and second stages are used to 
calculate the depth maps and their multi-scale residuals, and then the 
outputs of both stages are combined to form a final depth map. Kendall 
et al. (2017) introduced a new end-to-end approach that performs cost 
aggregation using a series of 3-D convolutions. Chang and Chen (2018) 
incorporated contextual information through 3-D convolutions using 
stacked multiple hourglass networks over cost volume. The above- 
mentioned stereo matching approaches can be utilized as the teacher 
network in our framework. 

2.2. Monocular depth estimation 

The performance of the monocular depth estimation has been 
advanced dramatically through the supervised learning approach that 
uses depth maps acquired from active sensors as ground truth for input 
images. Eigen et al. (2014) designed a multi-scale deep network that 
predicts a coarse depth map and then progressively refines the depth 
map. Liu et al. (2015) cast the monocular depth estimation into a 
continuous conditional random field (CRF) learning problem that jointly 
learns the unary and pairwise potentials of the CRF in a unified deep 
CNN framework. Fu et al. (2018) introduced a discrete paradigm that 
uses an ordinal regression loss to encourage the ordinal competition 
among depth values in an end-to-end manner. 

To address the lack of massive ground truth depth maps, several 
approaches have attempted to learn the monocular depth inference 
networks using image pairs only in a self-supervised manner. Using a 
left–right consistency constraint, Godard et al. (2017) proposed an 
improved architecture for training the monocular depth estimation 
using stereo image pairs. Zhou et al. (2017) designed a model to jointly 
estimate depth and camera pose in a self-supervised manner by 
leveraging temporally adjacent frames acquired by a single moving 
camera. Similarly, Godard et al. (2019) exploited consecutive frames to 
estimate both the depth and the camera pose. One drawback of these 
approaches is that reconstruction loss based on image matching is an ill- 
posed problem on its own. To address this problem, Kuznietsov et al. 
(2017) exploited both supervised and self-supervised losses with ground 
truth depth maps and stereo image pairs. This approach still suffers from 
performance degradation in novel environments, as presented in Fig. 1. 
Luo et al. (2018) formulated monocular depth estimation with two sub- 
networks: a view synthesis network and a stereo matching network. 
They first synthesize stereo pairs from an input image, and then apply 
the stereo matching network to produce the depth map. Zhao et al. 
(2019) designed a geometry-aware symmetric domain adaptation 
framework using the ground truth depth maps in synthetic data and 
epipolar geometry in the real data. 

Recent studies attempted to use pseudo ground truth depth maps 
obtained by exploiting stereo matching as a rich knowledge. Guo et al. 
(2018) trained the stereo matching network using a synthetic stereo 
dataset. Guo et al. (2018) trained the stereo matching network using a 
synthetic stereo dataset. The above-mentioned methods did not consider 
performance degradation incurred by unreliable pseudo depth values in 
occlusion, texture-less region, and repetitive pattern that can not be 
addressed using stereo matching methods. In contrast, our method is 
more effective than recent studies by handling unreliable values using 
confidence guided loss. 

2.3. Student–teacher strategy 

Models that are deep and wide are known to tend to be more accurate 
than shallow models and they provide a large capacity (Ba and Caruana, 
2014; Hinton et al., 2015). The student–teacher strategy concentrates on 
learning a much smaller model (student) from a large deep network 
(usually referred to as the teacher). With this method, the shallow 
network can be as accurate as the deep teacher network (Xu et al., 2018). 
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Ye et al. (2019) introduced a joint scene parsing and depth estimation 
network with a shallow model using heterogeneous-task deep teacher 
networks. Pilzer et al. (2019) designed a refinement process via cycle 
consistency and distillation strategies for monocular depth estimation. 
In our method, the pseudo ground truth depth maps computed from the 
existing stereo matching network, which acts as a deep teacher network, 
are used to train the student network for monocular depth inference. 

2.4. Feature learning via pretext task 

Several approaches have attempted to leverage a pretext task as an 
alternative form of supervision in some applications where it is difficult 
to construct massive ground truth data. Noroozi and Favaro (2016) 
proposed solving jigsaw puzzles for representing object parts and their 
spatial arrangements, and then applied it to object classification and 
detection tasks. Pathak et al. (2016) proposed an unsupervised image 
inpainting approach that generates the contents of an arbitrary image 
region conditioned on its surroundings. The learned encoder features are 
applied to object classification/detection and semantic segmentation 
tasks. Larsson et al. (2017) investigated image colorization as a proxy 
task in the replacement of Russakovsky et al. (2015). 

These studies have been successfully transferred to various high- 
level tasks. In our study, we demonstrate that the network pre-trained 
for monocular depth prediction is a powerful proxy task for learning 
feature representations in scene understanding tasks. 

3. Proposed method 

3.1. Motivation and overview 

Owing to the lack of scene diversity, deep networks for monocular 
depth estimation often undergo performance degradation in novel en
vironments. For instance, feeding a single (monocular) image from a 
source domain, in which the deep networks are trained, yields satis
factory results (Fig. 1(c)). However, when we test an image from a novel 
domain, the output depth map produces inaccurate results around 
occluded regions and depth boundaries. The monocular depth estima
tion network trained with the KITTI dataset (Geiger et al., 2012) does 
not work well on the Cityscapes dataset (Cordts et al., 2016) and our 
new dataset. In contrast, the stereo matching network using (Pang et al., 
2017) produces fine-grained depth maps on both the source and novel 
domains, as shown in Fig. 1(b), (f), and (j), even though it is trained with 
the KITTI dataset only. 

Stereo matching aims to find similar patches from a number of 
candidates extracted from two images. Thus, it is sufficient to train the 
network with similar patches (positive samples) and dissimilar patches 
(negative samples) (Zbontar and LeCun, 2015). The stereo matching 
network attempts to learn the local patch matching from the cost- 
volume (i.e., correlation layer, which explicitly encodes the geometric 
relationship Pang et al., 2017; Mayer et al., 2016). Some methods pro
pose training the stereo matching network using two images at once to 
additionally leverage a global context on stereo matching (Chang and 
Chen, 2018). However, the underlying principle is to locally explore the 
patch-level similarity for two-view matching. Contrarily, monocular 
depth estimation, which infers a depth value from a single image by 
making use of monocular cues, is highly ill-posed and more challenging 
than stereo matching. Thus, the global context is crucial for predicting 
the overall 3-D structure of scenes. In this regard, the monocular depth 
estimation network is trained using the image and depth map, rather 
than a pair of patches extracted from them, to consider the global 
context. This increases the sensitivity of the monocular depth estimation 
network to the domain difference problem compared with the stereo 
matching network. Thus, a great variety of scenes is needed to train the 
monocular depth estimation network, whereas the stereo matching 
network is relatively free from such constraints (Guo et al., 2018; Tosi 
et al., 2019). 

Our overall framework is illustrated in Fig. 2. We propose a simple 
yet effective approach for monocular depth estimation by leveraging the 
student–teacher strategy. The shallow student network learns from the 
more informative deep teacher network. Our method involves the 
following steps. Given a number of stereo images, we generate depth 
maps using the deep stereo matching network trained with ground truth 
data. When generating depth maps, we fuse depth maps that were 
estimated on multiple scales to provide non-trivial knowledge from 
multiple predictions. A stereo confidence map is then estimated as 
auxiliary data to avoid inaccurate stereo depth values being utilized 
when training the monocular depth estimation network. The pseudo- 
ground-truth depth maps are used to supervise the monocular student 
network via stereo confidence guided regression loss. The experimental 
results show that our framework is easily extendable to various domains 
by leveraging only stereo image pairs. Furthermore, the monocular 
depth estimation induces feature representation that improves scene- 
understanding tasks such as semantic segmentation and road detection. 

Differently from other frameworks following a similar work (Guo 
et al., 2018; Tosi et al., 2019) that uses existing stereo matching to 
generate pseudo-ground-truth depth maps and then use these maps for 
training monocular depth network, we can handle unreliable areas such 
as texture-less regions and occlusions in stereo matching using confi
dence guided loss yielding a notable accuracy improvement compared to 
the existing solutions. 

3.2. Pseudo-ground-truth generation 

The stereo matching network takes stereo images (Il, Ir) as input and 
outputs a depth map D aligned with the left image Il. We adopted 
cascade residual learning (CRL) (Pang et al., 2017) as the stereo teacher 
network. To further improve the depth map of the teacher network, we 
adopt an ensemble prediction method that merges output depth maps on 
various scales, as shown in Fig. 3. It has been shown that the generated 
data can be improved by applying the same model to multiple trans
formations (e.g., scale, rotation, and flipping) of the input and then 
aggregating the results (He et al., 2016; Long et al., 2015). We generate 
depth maps on three different scales and average them on the smallest 
scale. The data ensemble can provide auxiliary information from mul
tiple predictions beyond a single prediction. 

The pseudo-ground-truth depth maps inevitably contain erroneous 
estimates. To prevent such inaccurate depth values from being used 
when training the monocular depth estimation network, it is necessary 
to identify them in the pseudo-ground-truth depth maps. To this end, we 
additionally estimate the stereo confidence map (Poggi and Mattoccia, 
2016). The confidence measure network extracts a square patch from 
the depth map and forwards it to a CNN to infer a normalized confidence 
value C(p) ∈ [0, 1]. We denote the confidence threshold as the hyper- 
parameter τ. The depth value of each pixel is set to be reliable when 
C(p)⩾τ, and vice versa. By adjusting τ, we can control the sparseness and 
reliability of the depth map. As τ increases, unreliable areas such as 
texture-less regions and occlusions are removed effectively, however, 
the depth map becomes sparse. Sample images of depth maps and a 
stereo confidence map are shown in Fig. 4. Because the confidence 
measure network uses a square patch extracted from a depth map 
without using padding or stride, it assigns zero to the boundary of the 
confidence map. Note that a rich line of research that successfully im
proves the performance when imperfect training data are used has been 
published (Ding et al., 2018; Li et al., 2019; Guo et al., 2018; Tosi et al., 
2019). They showed that the use of massive pseudo ground truth data 
achieved outstanding results. Although the use of massive training data 
does not deliver perfect results, the performance can be significantly 
boosted by identifying erroneous data well. Our method is conceptually 
similar to these approaches. 
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3.3. Network architecture 

We designed monocular depth estimation networks based on a 
variant of the U-Net architecture (Ronneberger et al., 2015). As shown in 
Fig. 5, the encoder network consists of the first 13 convolutional layers 
in the VGG (Simonyan and Zisserman, 2014) network, similar to 
Badrinarayanan et al. (2017). We discarded the fully connected layers in 
favor of maintaining spatial information. The convolutional layers 
consist of 3× 3 convolutions with batch normalization (Ioffe and 
Szegedy, 2015) and a rectified linear unit (ReLU). Max-pooling with a 
2× 2 window and a stride of 2 is performed at the encoder. The indices 
of the max locations are computed and stored during pooling. Each 
convolutional layer at the encoder has a corresponding convolutional 
layer at the decoder; thus, the decoder network has 13 layers. The 
decoder upsamples the feature maps through unpooling with the 
memorized max-pooling indices (Badrinarayanan et al., 2017) from the 
corresponding encoder feature map. The sparse feature map is densified 
by convolving it with a trainable decoder filter bank. Using such pooling 
indices boosts the performance and enables more efficient training. The 
final decoder output is fed to a regression loss. 

3.4. Training loss 

Given a monocular input image and pseudo-ground-truth depth map 
D̃(p), we propose to use the stereo confidence guided regression loss L c: 

L c =
1

∑

p
Mp

∑

p
Mp⋅

⃒
⃒
⃒D̂

(
p
)
− D̃

(
p
)⃒
⃒
⃒

1
, (1)  

Mp =

{
1, if C(p)⩾τ
0, if C(p) < τ , (2)  

where D̂(p) denotes the depth map predicted by the monocular depth 
estimation network. In Section 4.4, we validate the effect of the stereo 
confidence measure by adjusting the hyper-parameter τ. The stereo 
confidence guided regression loss in Eq. 1 not only ensures the use of 
reliable depth values when training the monocular depth estimation 
network but also propagates reliable depth predictions from highly 
confident pixels into low-confidence pixels. This loss could handle the 
challenging elements of stereo matching such as occlusion, texture-less 
areas, and depth edges and effectively identifies reliable depth values. 
In Fig. 6, although there is no valid depth value around depth bound
aries in terms of stereo confidence map, our results equipped with the 
stereo confidence guided loss shows an excellent boundary preserving 
capability. 

3.5. Large-scale outdoor stereo dataset 

Our new outdoor stereo dataset, the DIML/CVL RGB-D dataset, is 
complementary to existing RGB-D datasets such as the KITTI and City
scapes datasets. To ensure the diversity of training data, we attempted to 
obtain non-driving scenes (e.g., parks, buildings, apartments, trails, and 

Fig. 2. Proposed framework for monocular 
depth estimation. We first generate depth 
maps from stereo image pairs using a deep 
teacher network (Pang et al., 2017). Here, 
we adopt the data ensemble (Radosavovic 
et al., 2018) to fuse depth maps estimated on 
multiple scales. A stereo confidence map 
(Poggi and Mattoccia, 2016) is generated to 
identify inaccurate estimated stereo depth 
values. Subsequently, the monocular student 
network is trained with the pseudo-ground- 
truth depth maps via stereo confidence 
guided regression loss.   

Fig. 3. Data ensemble approach. We generate depth maps of stereo images at 
different scales via the deep teacher network, and then ensemble them on the 
smallest scale. 

Fig. 4. Pseudo-ground-truth data samples. (a) Input image, (c) estimated depth 
map with data ensemble, and (e) predicted stereo confidence map. (b), (d), and 
(f): pseudo-ground-truth depth maps thresholded by the stereo confidence map 
(e) with = 0.3, 0.55, and 0.75, respectively. Black pixels indicate unreliable 
pixels detected by the stereo confidence map. 
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streets) using hand-held stereo cameras, unlike the existing dataset, 
which consists mostly of driving scenes (e.g., road and traffic scenes). 
Fig. 7 shows sample RGB-D pairs of our dataset. The total number of 
distinct scenes is 1053. Each scene contains a different number of im
ages, ranging from 13,971 to 55,577. The images in this dataset were 
taken from fall 2015 to summer 2017 in four different cities (Seoul, 
Daejeon, Cheonan, and Sejong) in South Korea. 

Two types of stereo cameras, a ZED stereo camera 1 and a custom- 
built stereo camera, were used with different camera configurations 
for the baseline and focal length. The commercial ZED camera has a 
small baseline (12 cm), thus its sensing range is rather limited (up to 20 
m). We designed a custom-built stereo system with mvBlueFox3 sensors 
2 with a baseline of 40 cm to increase the maximum sensing range to 80 
m. The stereo image was captured with a resolution of either 1920×

1080 or 1280× 720. Additional details of our dataset can be found in 
our technical report 3. All scenes were captured steadily with a tripod 
and slider in a hand-held fashion. 

The DIML/CVL RGB-D dataset comprises 1 million stereo images, 
depth maps computed using a stereo matching algorithm (Zbontar and 
LeCun, 2015), and a stereo confidence map (Kim et al., 2017; Park and 
Yoon, 2015). The depth maps in the DIML/CVL RGB-D dataset were 
generated by MC–CNN (Zbontar and LeCun, 2015), which was a state-of- 
the-art stereo matching algorithm at the time of stereo image acquisition 
(from fall 2015 to summer 2017). Note that any type of stereo matching 
network can be adopted to obtain depth maps. The experiment we 
conducted using a more advanced stereo matching network is described 
in Section 4.3.3. 

Our dataset differs from existing datasets in the following respects:  

1. It is comprised of 1 million RGB-D data for outdoor scenes.  
2. Unlike existing outdoor datasets for driving scenes, ours was taken 

using hand-held stereo cameras for non-driving scenes. 
3. Stereo confidence maps are provided together to quantify the accu

racy of depth maps. 

3.6. Transfer of feature representation 

In addition, we studied the effectiveness of our pre-trained monoc
ular depth estimation network by transferring its feature representations 
as a pretext task for training other similar tasks such as road detection 
and semantic segmentation. The experimental results demonstrate that 
our pre-trained model is comparable to the ImageNet pre-trained model, 
which often serves as the pretext task for various vision applications 
(Kuznietsov et al., 2017; Badrinarayanan et al., 2017; Teichmann et al., 
2018). 

We fine-tuned our pre-trained model using the KITTI road bench
mark (Geiger et al., 2012) for road detection and Cityscapes (Cordts 
et al., 2016) for semantic segmentation, respectively. Both datasets 
include a small amount of manually annotated training data. We transfer 
both encoder and decoder weights of the pre-trained model into road 
detection and semantic segmentation. The softmax loss is used to fine- 
tune the network. 

3.7. Implementation details 

We adopted the stereo matching network (CRL) (Pang et al., 2017) 
using the pre-trained model provided by the author and implemented 
the confidence measure network (Poggi and Mattoccia, 2016). We 
implemented the monocular depth estimation network using the VLFeat 
MatConvNet library (Vedaldi and Lenc, 2015). 

3.7.1. Confidence measure network 
The network was trained using 50 image pairs consisting of the 

ground truth depth maps and stereo image pairs provided in the KITTI 
2012 dataset. Following recent work on stereo confidence estimation 
(Poggi and Mattoccia, 2016), we trained the stereo confidence network 
with a relatively small number of image pairs. This is possible because 
the confidence estimation can be seen as a local inference procedure. It 
determines whether an estimated depth value at a reference pixel is 
reliable when a small patch centered at the reference pixel is given. 
Specifically, the confidence measure network is trained with a set of 
small patches (i.e., 9 × 9) that are paired with the pseudo-ground-truth 
depth map and ground truth confidence value (Poggi and Mattoccia, 
2016). The ground truth stereo confidence map is obtained by 
comparing the absolute difference between the predicted depth map and 

Fig. 5. Monocular depth estimation network. We designed a variant of the U-Net architecture (Ronneberger et al., 2015) as a baseline network.  

Fig. 6. Visual results on the Eigen split (Eigen et al., 2014) of the KITTI dataset. (a) Monocular left image, (b) pseudo-ground-truth depth maps, (c) estimated stereo 
confidence maps, (d) results of depth maps trained without confidence guided loss, and (e) results of depth maps trained with confidence guided loss. 

1 https://www.stereolabs.com/  
2 https://www.matrix-vision.com/USB3-vision-camera-mvbluefox3.html  
3 https://dimlrgbd.github.io/downloads/technical_report.pdf 
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the ground truth depth map (KITTI LiDAR points). Following the liter
ature (Geiger et al., 2012), we set the confidence value to 1 when the 
absolute difference is smaller than 3 pixels, and 0 otherwise. 

During the training phase, we use a binary cross-entropy loss after 
applying a sigmoid function to the output of the network. We carried out 
100 training epochs with an initial learning rate of 0.001, decreased by a 
factor of 10 every 10 epochs, and a momentum of 0.9. 

3.7.2. Monocular depth network 
To train the monocular depth estimation network, we collected ste

reo images from the KITTI, Cityscapes, and DIML/ CVL datasets, 
respectively. The pseudo-ground-truth training data were generated 
using the stereo matching network and stereo confidence map. The 
monocular student network was trained for 50 epochs with a batch size 
of 4. The Adam solver (Kingma and Ba, 2014) was adopted for efficient 
stochastic optimization with a fixed learning rate of 0.001 and a mo
mentum of 0.9. 

4. Experimental results 

We conducted to validate the effectiveness of our semi-supervised 
monocular depth estimation via quantitative and qualitative compari
sons with state-of-the-art methods in outdoor scenes. For quantitative 
comparisons, we employ several metrics that have been used previously 
(Eigen et al., 2014; Godard et al., 2017; Kuznietsov et al., 2017; Godard 
et al., 2019):  

• Threshold: % s.t. max
(

di
ui
, ui

di

)

= δ < thr  

• Abs rel: 1
N
∑

i|di − ui|/di  

• Sqr rel: 1
N
∑

i‖di − ui‖
2
/di  

• RMSE(lin): 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

i‖di − ui‖
2

√

• RMSE(log): 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

i‖logdi − logui‖
2

√

where ui denotes the predicted depth at pixel i, and N is the total number 
of pixels. The monocular depth network was trained by selecting out
door scenes similar to recently reported state-of-the-art methods (God
ard et al., 2017; Kuznietsov et al., 2017; Luo et al., 2018; Godard et al., 
2019). Indoor datasets were not used in our experiments, however, 
training with indoor data can be accomplished in the same manner. In 
our method, the stereo matching (teacher) networks are trained with a 
small amount of labeled training data. Then, the massive unlabeled 
training data, i.e., stereo image pairs, are used for training the monoc
ular depth estimation (student) network. Therefore, the proposed 
method can be categorized as a semi-supervised learning approach. 

4.1. Dataset 

We generated pseudo-ground-truth depth maps using stereo images 
provided in the KITTI (Geiger et al., 2012), Cityscapes (Cordts et al., 
2016), and DIML/CVL datasets. All images were resized to 620× 188 for 
training and testing. 

4.1.1. KITTI (K) 
This dataset consists of outdoor driving scenes with sparse depth 

maps captured by the Velodyne LiDAR. The depth map is very sparse 
(density of less than 6%), and depth values are available only at the 
bottom parts of a color image. The dataset contains 42,382 rectified 
stereo pairs from 61 scenes, with a typical image sized 1242× 375 
pixels. Following the Eigen split (Eigen et al., 2014), we split the stereo 
image pairs into 22,600 images for training, 888 images for validation, 
and 697 images for testing. 

4.1.2. Cityscapes (CS) 
This dataset was originally constructed for semantic segmentation 

and provides manually annotated segmentation maps for 19 semantic 
classes, consisting of 2,975 images for training, 500 images for valida
tion, and 1,525 images for testing. Additionally, they provide 22,973 
stereo image pairs with spatial dimensions of 2048× 1024. We split the 
stereo image pairs into 21,283 for training, 500 for validation, and 3,215 
for testing. Following the literature (Godard et al., 2017), we cropped 
the stereo images by discarding the bottom 20% (the car hood) and then 
resized them. 

4.1.3. DIML/CVL (DC) 
Our outdoor dataset consists of 1 million stereo image pairs, depth 

maps, and stereo confidence maps. The original spatial resolution of this 
dataset is 1920× 1080 or 1280× 720. Following previous practices 
(Cordts et al., 2016; Geiger et al., 2012), of 1 million image pairs, we 
selected 23,500 image pairs. We split them into 22,000 images for 
training, 800 images for validation, and 700 images for testing. Input 
images were cropped and resized by discarding the bottom parts con
taining mostly ground. 

4.2. Comparison with state-of-the-art methods 

We compared existing monocular depth estimation approaches 
including supervised (Eigen et al., 2014; Kuznietsov et al., 2017), self- 
supervised (Godard et al., 2017; Godard et al., 2019), and semi- 
supervised methods (Kuznietsov et al., 2017; Luo et al., 2018) with 
the proposed approach. Of the 1 million stereo image pairs, we selected 
22,000 stereo images from various scenes as training data, similar to the 
Eigen split (Eigen et al., 2014). The results in Table 1 indicate that our 
method consistently outperforms recent approaches, except for 
δ < 1.253. Following the literature (Godard et al., 2017; Kuznietsov 
et al., 2017; Luo et al., 2018; Godard et al., 2019), the depth value was 
truncated at 80 m or 50 m. The proposed method was trained using 
various combinations of KITTI, Cityscapes, and our dataset. Eigen et al. 
(2014) was trained using ground-truth depth maps augmented from the 
KITTI 2015 dataset. Godard et al. (2017) and monodepth2 (Godard 
et al., 2019) proposed a self-supervised approach in which stereo images 
of the KITTI and/or Cityscapes dataset were used. Although this method 
requires no ground truth depth maps during training, it is difficult to 
handle occlusions effectively and does not obtain a sharp depth 
boundary owing to the limitation of the image reconstruction loss. 
Kuznietsov et al. (2017) employed both supervised regression loss and 
unsupervised reconstruction loss (Godard et al., 2017) to achieve a 
performance gain over existing supervised and self-supervised ap
proaches (Eigen et al., 2014; Godard et al., 2017). However, their 
method still requires ground truth depth maps as supervision. Luo et al. 
(2018) proposed the use of a view synthesis network and stereo 
matching network in a unified framework. However, their model was 
mainly trained with synthetic FlyingThings3D data (Mayer et al., 2016), 
and thus incurs domain gaps between synthetic and realistic images and 
cannot generalize well on real data. Such a two-step method substan
tially increases the computational complexity (0.53 s for an inference). 
Guo et al. (2018) trained the stereo matching network (teacher) using a 
synthetic stereo dataset. The pseudo labels for monocular depth esti
mation may thus incur undesired artifacts due to a large domain gap 
between synthetic and real datasets when training the monocular depth 
estimation network. To alleviate this domain gap, they performed un
supervised fine-tuning. However, they do not fully consider the inherent 
errors such as occlusion, texture-less region, and repetitive patterns that 
occur in the stereo matching. Therefore, the performance of the gener
ated pseudo label is limited. The method in Tosi et al. (2019) is some
what similar to the proposed method in that pseudo labels are refined by 
removing matching outliers through a left–right consistency check. 
However, the simple consistency check often fails to exclude the 
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matching outliers of the pseudo depth labels which are constructed by a 
handcrafted stereo matching algorithm. In contrast, our method at
tempts to leverage such stereo knowledge more effectively with the 
proposed confidence guided loss and data ensemble strategy. The con
fidence guided loss can resolve the performance degeneration incurred 
by unreliable pseudo depth values in occlusion, texture-less region, and 
repetitive pattern that cannot be addressed using stereo matching 
methods only. The data ensemble method also helps improve the quality 

of the pseudo labels by combining multiple depth predictions beyond a 
single scale prediction. Furthermore, Tosi et al. (2019) leverages a 
correlation layer to generate 3D cost volume from the input left image 
and synthesized right image during an inference, which demands a high 
computational complexity (0.48 s for an inference). In contrast, our 
model can retain a relatively low complexity (0.21 s) as the stereo 
knowledge is imposed only on the label (depth) space by training the 
student network with pseudo depth maps already computed from the 

Table 1 
Quantitative evaluation of monocular depth estimation on the Eigen split (Eigen et al., 2014) of KITTI (Geiger et al., 2012) dataset. For dataset, K = KITTI, CS =
Cityscapes, FT = FlyingThings, and DC = DIML/CVL.  

Method Training data Approach Dataset RMSE 
(lin) 

RMSE 
(log) 

Abs rel Sqr rel δ < 1.25  δ < 1.252  δ < 1.253      

Lower is better Higher is better     
Cap 80 m       

Eigen et al. (2014) Left + LiDAR Sup. K 7.156  0.270  0.215  1.515  0.692  0.899  0.967  
Godard et al. (2017) Stereo Self-sup. K 5.927  0.247  0.148  1.344  0.803  0.922  0.964  
Godard et al. (2017) Stereo Self-sup. K + CS 5.311  0.219  0.124  1.076  0.847  0.942  0.973  
Kuznietsov et al. (2017) Left + LiDAR Sup. K 4.815  0.194  0.122  0.763  0.845  0.957  0.987 
Kuznietsov et al. (2017) Stereo + LiDAR Semi-sup K 4.621  0.189  0.113  0.741  0.862  0.960  0.986  
Luo et al. (2018) (Synthetic) Stereo +

GT 
Semi-sup. K + FT 4.681 0.200 0.102 0.700 0.872 0.954 0.978 

Monodepth2 (Godard et al., 
2019) 

Stereo Self-sup. K 4.750 0.196 0.109 0.873 0.874 0.957 0.979 

Guo et al. (2018) Left + Pseudo GT Semi-sup. K 4.634 0.189 0.105 0.811 0.874 0.959 0.982 
Tosi et al. (2019) Left + Pseudo GT Semi-sup. K 4.714 0.199 0.111 0.867 0.864 0.954 0.979 
Tosi et al. (2019) Left + Pseudo GT Semi-sup. K + CS 4.351 0.184 0.096 0.673 0.890 0.961 0.981 
Our Method Left + Pseudo GT Semi-sup K 4.599 0.183 0.099 0.748 0.880 0.959 0.983 
Our Method Left + Pseudo GT Semi-sup K + DC 4.333 0.181 0.098 0.644 0.881 0.963 0.984 
Our Method Left + Pseudo GT Semi-sup K + CS 4.286 0.177 0.097 0.641 0.882 0.963 0.984 
Our Method Left + Pseudo GT Semi-sup K + CS + DC 4.129 0.175 0.095 0.613 0.884 0.964 0.986 
Upper Bound   K 3.475 0.158 0.055 0.418 0.941 0.969 0.982     

Cap 50 m       
Garg et al. (2016) Stereo Self-sup. K 5.104  0.273  0.169  1.080  0.740  0.904  0.962  
Godard et al. (2017) Stereo Self-sup. K 4.471  0.232  0.140  0.976  0.818  0.931  0.969  
Godard et al. (2017) Stereo Self-sup. K + CS 3.972  0.206  0.117  0.762  0.860  0.948  0.976  
Kuznietsov et al. (2017) Stereo + LiDAR Semi-sup. K 3.518  0.179  0.108  0.595  0.875  0.964  0.988 
Luo et al. (2018) (Sythetic) Stereo + GT Semi-sup K + FT 3.503 0.187 0.097 0.539 0.885 0.960 0.981 
Monodepth2 (Godard et al., 

2019) 
Stereo Self-sup. K 3.868 0.127 0.092 0.537 0.892 0.962 0.986 

Our Method Left + Pseudo GT Semi-sup K + CS + DC 3.162 0.162 0.091 0.505 0.901 0.969 0.986  

Fig. 7. Samples of RGB-D pairs with stereo confidence map from the DIML/CVL dataset. (a) Left image, (b) right image, (c) depth map obtained using an existing 
method (Zbontar and LeCun, 2015), and (d) stereo confidence map obtained using an existing method (Park and Yoon, 2015). 
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teacher network. 
Furthermore, qualitative results are provided in Fig. 7,8. Our 

monocular depth network achieves more accurate and edge-preserved 
depth maps than state-of-the-art methods (Godard et al., 2017; Kuz
nietsov et al., 2017; Luo et al., 2018; Godard et al., 2019). 

4.3. Discussion 

4.3.1. Impact of scene diversity of DIML/CVL dataset 
We conducted an ablation study to demonstrate that the DIML/CVL 

dataset is able to effectively train the algorithm in our semi-supervised 
approach. Fig. 9 shows the qualitative results obtained by the pro
posed method for two different combinations (6th to 8th rows) of 
pseudo-ground-truth training data. Similar results were obtained in both 
the source domain and a novel domain when using the DIML/CVL 
dataset for training. This indicates that the proposed method addresses 
the generalization issue well when used in a novel domain. Specifically, 
using the DIML/CVL dataset for training leads to a performance gain in 
the novel domain, for example, when comparing the results of the pro
posed method trained with KITTI (6th row) and KITTI + DIML/CVL (7th 
row). The proposed method consistently generates smooth depth maps 
with sharp edges and recovers the overall scene layout well. In addition, 
we included the results (2nd to 5v rows) of state-of-the-art approaches 
(Luo et al., 2018; Godard et al., 2017; Kuznietsov et al., 2017; Godard 
et al., 2019) for a qualitative comparison. When inferring with the 
Cityscapes and DIML/CVL datasets (novel domain), they exhibited sig
nificant decreases in the performance. It was possible to train two of the 
methods (Godard et al., 2017; Godard et al., 2019) with the Cityscapes 
and DIML/CVL dataset providing stereo image pairs, as these methods 
do not require ground truth depth maps for training. In contrast, the 
other two methods we included in our evaluation (Luo et al., 2018; 
Kuznietsov et al., 2017) could not be trained with these datasets. The 
self-supervised approaches (Godard et al., 2017; Godard et al., 2019) 
can be learned using training data from both the source and novel do
mains, but their self-supervised loss incurs blurry depth boundaries and 
inaccurate estimates in the occlusion, as revealed in the 2nd row and 5th 
row in Fig. 9. 

Table 2 reports the depth accuracy using the Eigen split in the KITTI 
dataset. We conducted an experiment to verify the effectiveness of the 
DIML/CVL dataset according to the amount of training data. Because 
ground truth depth maps are provided in the KITTI dataset, the objective 
evaluation was conducted using this dataset. First, we trained our 
monocular depth network with the Cityscape and DIML/CVL datasets. 

With the same amount of data, the model trained with the Cityscape 
dataset is more effective than that trained with the DIML/CVL dataset. 
This is because the Cityscape dataset mostly contains driving scenes that 
are relatively similar to those in KITTI, whereas the DIML/CVL dataset 
includes both driving and non-driving scenes. Interestingly, when we 
increase the amount of DIML/CVL training data, the depth accuracy 
gradually improves even though the majority of images in the DIML/ 
CVL dataset consist of non-driving scenes. This demonstrates the 
complementarity of the DIML/CVL data. Although we trained the 
monocular depth network using up to 200,000 images for training, the 
use of a larger amount of training data would also be possible. 

4.3.2. Generalization to other datasets 
Following the existing literature (Godard et al., 2019; Godard et al., 

2017; Zhao et al., 2019), we used two datasets to validate the general
ization ability of our method to other datasets, Make3D (Saxena et al., 
2008) and CamVid. 

Similar to previous work (Godard et al., 2017), we cropped the top 
and bottom of the input images in Make3D dataset for testing. As for the 
ground truth depth maps, we reshaped and cropped the top and bottom 
to match our predictions. Owing to the limitation of the depth-sensing 
device that was used for capturing depth data, we removed depth 
values larger than 70 m. Table 3 lists the numerical results, including 
comparisons to several methods trained on non-Make3D training data. 
Our approach achieves the best performance among all non-Make3D- 
trained models. It should be noted that our results are more accurate 
than or comparable to those of the state-of-the-art methods even when 
trained with the KITTI dataset only. This indicates the effectiveness of 
using pseudo-ground-truth depth maps and a stereo confidence map for 
training the monocular depth network. Using DIML/CVL leads to a 
meaningful performance gain, showing the importance of our training 
data. Fig. 10 visualizes the results of the depth predictions. Our results 
preserve the overall structure and boundary of objects more accurately 
than other depth maps, and the resulting images we obtain with our 
method are the most similar to the ground truth depth maps. 

Because the CamVid driving dataset (Brostow et al., 2009) only 
provides ground truth maps for semantic segmentation, we validate the 
effectiveness of our method by carrying out qualitative comparisons 
with state-of-the-art methods. In Fig. 11, despite the domain gap be
tween the training and test images in terms of location, image charac
teristics, and camera parameters, our model still produces visually 
plausible depths in a novel domain. 

Fig. 8. Qualitative results on the Eigen split (Eigen et al., 2014) of the KITTI dataset (Geiger et al., 2012) (from top to bottom): input image, Godard et al. (2017), 
Kuznietsov et al. (2017), Luo et al. (2018), monodepth2 (Godard et al., 2019), and the proposed method. 
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4.3.3. Impact of the stereo matching network 
Any stereo matching methods can be utilized as the teacher network 

in our framework. For more solid analysis, we conducted the impact of 
the stereo matching network using various stereo matching algorithms. 
Table 4 shows the quantitative performance of depth accuracy and 
runtime of the stereo matching network. The accuracy of pseudo ground 
truth depth results from MC–CNN and CRL show a large performance 
gap. This performance gap also brings a large gap in monocular depth 
accuracy (MC–CNN (RMSE (lin)): 5.294/ CRL (RMSE (lin)): 4.995). 
Although the pseudo depth maps of GA-Net have higher accuracy than 
those of CRL, the performance gain in terms of the monocular depth 
accuracy was relatively marginal (GA-Net (RMSE (lin)): 4.946). This is 
because the confidence map excludes unreliable pseudo depth values 
effectively. Additionally, the fast inference time of CRL enables us to 
construct the pseudo RGB + D dataset efficiently. Thus, we adopted CRL 
as a teacher network in our framework. 

4.4. Ablation study 

4.4.1. Impact of label quality 
We first investigated the performance gain of the data ensemble and 

the tradeoff between accuracy and density that determines the perfor
mance of the pseudo-ground-truth depth maps. The KITTI dataset using 
the Eigen split (Eigen et al., 2014) was used for an objective evaluation. 
The density and accuracy of the pseudo-ground-truth depth maps are 
controlled by the confidence threshold. However, the confidence map of 
the pseudo-ground-truth depth maps is not perfect. Nevertheless, 
excluding the depth outliers with the confidence map greatly improves 
the performance of the monocular depth estimation. This can be 
explained by two factors: 1) the quality of the pseudo-ground-truth 
depth maps in Fig. 12 and 2) the accuracy of the monocular depth 
estimation in Fig. 13. 

Fig. 9. Qualitative comparison for the impact of scene diversity (from top to bottom): input image, Godard et al. (2017), Kuznietsov et al. (2017), Luo et al. (2018), 
monodepth2 (Godard et al., 2019), and the proposed method trained with K, K + DC, KITTI + CS + DC, respectively. 

Table 2 
Quantitative evaluation of monocular depth estimation trained with the amount 
of data differently. The number in the bracket indicates the amount of training 
data.  

Method Training data RMSE(lin) RMSE(log) Abs rel 

Our Method CS (20 k) 6.328 0.284 0.206 
Our Method DC (20 k) 7.944 0.339 0.361 
Our Method DC (100 k) 5.647 0.236 0.161 
Our Method DC (200 k) 5.250 0.217 0.143 
Our Method K + DC (200 k) 4.194 0.176 0.096  

Table 3 
Quantitative evaluation of monocular depth estimation on the Make3D test set 
for various approaches.  

Method Dataset RMSE 
(lin) 

RMSE 
(log) 

Absrel 

Godard et al. (2017) K 11.762 0.193 0.544 
Godard et al. (2017) K + CS 10.369 0.188 0.536 
Kuznietsov et al. (2017) K 8.237 0.191 0.421 
Luo et al. (2018) K + FT 8.184 0.185 0.428 
monodepth2 (Godard et al., 

2019) 
K 8.238 0.201 0.374 

Our Method K 7.992 0.181 0.423 
Our Method DC 5.512 0.118 0.297 
Our Method K + DC 5.347 0.113 0.278 
Our Method K + CS +

DC 
5.136 0.107 0.265  
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In Fig. 12, we present the tradeoff between the accuracy and density 
of the pseudo-ground-truth depth maps. The black horizontal line shows 
the density of the KITTI ground truth depth maps. When the estimated 
confidence value C(p) ∈ [0, 1] at pixel p, we denote a set of pixels esti
mated to be correct (C(p) ⩾τ) in the pseudo-ground-truth depth map as 
P. Note that the ground truth depth map is sparse, and thus, this is 
computed only at a set of valid depth pixels G in the ground truth depth 
map. Subsequently, the density of the pseudo-ground-truth depth map is 
computed using |P|/|G|. The accuracy is computed using |A|/|P|, where A 
indicates a set of correct pixels among P. The larger the value of τ, the 
higher the accuracy of the pseudo-ground-truth depth maps becomes. 
However, this reduces the density of the depth maps. For instance, when 
τ = 0.75, only half of the depth pixels are chosen as reliable. 

Fig. 10. Qualitative results on the Make3D dataset (Saxena et al., 2008): (a) input image, (b) ground truth depth maps, (c) Godard et al. (2017), (d) Kuznietsov et al. 
(2017), (e) Luo et al. (2018), (f) monodepth2 (Godard et al., 2019), and (g) the proposed method. None of the models were trained on Make3D. 

Fig. 11. Qualitative results on the CamVid dataset (Brostow et al., 2009): (a) input image, (b) Godard et al. (2017), (c) Kuznietsov et al. (2017), (d) Luo et al. (2018), 
(e) monodepth2 (Godard et al., 2019), and (f) the proposed method. None of the models were trained on CamVid. 

Table 4 
Quantitative evaluation of the impact of the stereo matching network.  

Method RMSE(lin) Absrel Time(s) 

MC–CNN (Zbontar and LeCun, 2015) 4.236 0.074 67 
CRL (Pang et al., 2017) 3.578 0.055 0.47 
GA-NET (Zhang et al., 2019) 3.457 0.050 1.5  

Fig. 12. Quality analysis of pseudo-ground-truth depth maps controlled by the 
confidence threshold τ. 
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Fig. 13 shows the accuracy measurements of the monocular depth 
network according to the confidence threshold τ. Fig. 13 shows the 
RMSE(lin) and Abs rel of pseudo ground truth depth maps and monoc
ular depth maps. We use a stereo confidence map to identify inaccurate 
depth values (Fig. 8) and avoid these values when training the monoc
ular depth estimation network. Here, we investigate the inference ac
curacy of the monocular depth estimation according to the density of the 
pseudo-ground-truth depth maps. Training with more accurate pseudo- 
ground-truth depth maps (yet with a lower density) does not necessarily 
increase the accuracy of the monocular depth estimation. We achieved 
the best monocular depth accuracy when the density of the pseudo- 
ground-truth depth maps was approximately 80% with the confidence 
threshold τ = 0.3. The monocular depth accuracy deteriorates when the 
density becomes 100%, that is, confidence is not used in (1) with the 
setting τ = 0. Refer to Fig. 12 for the relationship between the density 
and the stereo confidence threshold τ. As shown in Fig. 12, a pseudo- 
ground-truth depth map with a lower density tends to be more accu
rate. However, using more accurate pseudo-ground-truth depth maps 
does not necessarily increase the accuracy of a monocular depth 
network. This is because semi-dense pseudo-ground-truth depth maps 
often have no valid depth values around object boundaries or thin ob
jects, in which case the monocular depth networks trained with these 
semi-dense depth maps may fail to recover reliable depth values around 
these regions. 

The monocular depth accuracy at 80% is higher than that at 100%. 
However, when the density of the pseudo-ground-truth depth maps is 
approximately 72%, the monocular depth accuracy deteriorates even 
though the pseudo-ground-truth depth maps are more accurate. This 
indicates that a tradeoff exists between the density and accuracy of the 
pseudo-ground-truth depth maps. In our experiment, the monocular 
depth network achieved the best accuracy when the density was 
approximately 80% (τ = 0.3). We generated pseudo-ground-truth 
training data using τ = 0.3 for all datasets. 

4.4.2. Impact of data ensemble 
Furthermore, we studied the effectiveness of the data ensemble when 

generating pseudo-ground-truth depth maps. The monocular depth ac
curacy was measured with the RMSE (lin) and the Abs rel. Without the 
data ensemble when setting τ = 0, the RMSE(lin) and absolute relative 
error (Abs rel) are 4.995 and 0.109, respectively. When we used three 
scales for the data ensemble, the RMSE(lin) and the absolute relative 
error (Abs rel) were 4.877 and 0.104, respectively. The data ensemble 
achieves a meaningful gain in both metrics. In addition, we used the data 
ensemble for four scales but observed no marginal improvement, 
attaining an RMSE (lin) and absolute relative error (Abs rel) of 4.879 and 

0.104, respectively. Therefore, we used three scales in the data ensemble 
for training. 

4.5. Transfer to high-level tasks 

To investigate the applicability of our model trained for monocular 
depth prediction, we transferred the network parameters to scene un
derstanding tasks such as semantic segmentation and road detection. 
This is in line with that the depth information can play an important role 
in guiding the semantic segmentation task as reported in the literature of 
multi-task learning (Jiang et al., 2018). 

4.5.1. Semantic segmentation 
We adopted the Cityscapes (Cordts et al., 2016) dataset for training 

and evaluation. The methods were validated with the mean intersection 
over-union (IoU), which computes the mean value over all the classes 
including the background. Experiments were conducted with half- 
resolution images for fast computation. Following the approach in the 
literature (Russakovsky et al., 2015; Long et al., 2015), we augmented 
the training data with images subjected to random scaling, random 
cropping, and horizontal flipping. The network was trained for 300 
epochs with a batch size of 4. We used the Adam solver (Kingma and Ba, 
2014) for training with a weight decay of 0.0005 and an initial learning 
rate of 0.0001, which decreases by a factor of 10 every 10 epochs. 

Table 5 and Fig. 14 report the quantitative and qualitative evaluation 
results obtained with three methods: a model learned from scratch, a 
model pre-trained with ImageNet (Simonyan and Zisserman, 2014), and 
ours. All results were obtained with the same encoder-decoder archi
tecture that was used for the monocular depth estimation. Our pre- 
trained model significantly outperformed the model learned from 
scratch, with performance comparable to that of the model that was pre- 
trained with ImageNet, which is a massive manually labeled dataset. In 
addition, the results in Table 5 indicate that the more accurate the 
monocular depth network, the higher the IoU in the semantic segmen
tation. Note that the experiments show that our monocular depth 
network based on the simple encoder–decoder architecture is a powerful 
proxy task for semantic segmentation. 

4.5.2. Road detection 
We investigated the effectiveness of our pre-trained model for road 

detection against the KITTI road benchmark (Geiger et al., 2012), which 
provides 289 training images with annotated ground truth data and 290 
test images. The benchmark is divided into three categories: a single- 
lane road with markings (UM), single-lanes road without markings 
(UU), and multi-lane roads with markings (UMM). Following the liter
ature (Oliveira et al., 2016), the training data were augmented by sub
jecting them to various transformations. More specifically, we randomly 
scaled each image by a factor between 0.7 and 1.4, and performed color 
augmentation by adding values of − 0.1 and 0.1 to the hue channel of the 
HSV space. For efficient stochastic optimization, we used the Adam 
optimizer (Kingma and Ba, 2014), a fixed learning rate of 0.0001, and a 
weight decay of 0.0005. The road detection network was trained for 40 

Fig. 13. Analysis of the trade-off between the accuracy and density of pseudo- 
ground-truth depth maps. 

Table 5 
Quantitative comparison of the pre-trained model using the same network ar
chitecture for the Cityscapes benchmark.  

Semantic Segmentation 

Initialization Pretext Mean 
IoU 

Learned from scratch – 52.27 
Pre-trained on ImageNet (Simonyan and Zisserman, 

2014) 
Classification 66.27 

K Depth 62.82 
K + DC Depth 64.54 
K + CS Depth 65.02 
K + CS + DC Depth 65.47  
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epochs with a batch size of 4. 
For the quantitative comparison, we measured both the maximum 

F1-measurement (Fmax) and average precision (AP). Table 6 indicates 
that our pre-trained model consistently outperforms both the model 
learned from scratch and the model pre-trained using ImageNet 
(Simonyan and Zisserman, 2014). Similar to semantic segmentation, the 
accuracy of road detection is correlated with that of the monocular 
depth estimation network used as the pretext. Fig. 15 shows the 

excellent ability of our method to distinguish between roads and 
sidewalks. 

5. Conclusion 

In this study, we propose a novel and effective approach to achieve 
monocular depth estimation. We adopt the student–teacher strategy, in 
which a shallow student network is trained by leveraging a deep and 
accurate teacher network. From massive stereo image pairs consisting of 
diverse outdoor scenes provided in the DIML/CVL dataset, we generated 
pseudo ground truth depth maps using the deep stereo matching 
network that serves as a teacher network. To improve the depth map of 
the teacher network, we applied the data ensemble and generated a 
stereo confidence map. The monocular depth network, which served as 
the student network, was trained with the pseudo-ground-truth depth 
maps and stereo confidence-guided regression loss. We demonstrate that 
the proposed method is capable of leveraging stereo pairs on various 
domains, achieving state-of-the-art performance. Additionally, we show 
that training our model for monocular depth estimation provides 
semantically meaningful feature representations for high-level vision 
tasks. We expect that the proposed method serves as a key component in 
addressing the domain difference issue in various vision tasks. 

Fig. 14. Semantic segmentation results on the Cityscapes dataset: (a) input images, (b) ∼ (d) results of fine-tuning with different initialization methods. (b) scratch, 
(c) ImageNet pre-trained model (Simonyan and Zisserman, 2014), (d) our pre-trained model, and (e) ground truth image. The results indicate the benefit of using our 
pre-trained model. 

Table 6 
Quantitative comparison of the pre-trained model using the same network ar
chitecture for the KITTI road benchmark.  

Road Detection 

Initialization Pretext Fmax AP 

Learned from scratch - 93.82 90.87 
Pre-trained on ImageNet (Simonyan and 

Zisserman, 2014) 
Classification 94.28 92.25 

K Depth 94.41 92.04 
K + DC Depth 94.92 92.28 
K + CS Depth 95.12 93.09 
K + CS + DC Depth 95.65 94.46  

Fig. 15. Road detection results on the KITTI dataset for different scene categories: (from top to bottom) model learned from scratch, model pre-trained on ImageNet 
(Simonyan and Zisserman, 2014), and our pre-trained model. Corresponding enlarged parts of the boxes are shown together. 
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