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Single Image Deraining Using Time-Lapse Data
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Abstract— Leveraging on recent advances in deep convolu-
tional neural networks (CNNs), single image deraining has been
studied as a learning task, achieving an outstanding performance
over traditional hand-designed approaches. Current CNNs based
deraining approaches adopt the supervised learning framework
that uses a massive training data generated with synthetic rain
streaks, having a limited generalization ability on real rainy
images. To address this problem, we propose a novel learning
framework for single image deraining that leverages time-lapse
sequences instead of the synthetic image pairs. The deraining
networks are trained using the time-lapse sequences in which
both camera and scenes are static except for time-varying rain
streaks. Specifically, we formulate a background consistency loss
such that the deraining networks consistently generate the same
derained images from the time-lapse sequences. We additionally
introduce two loss functions, the structure similarity loss that
encourages the derained image to be similar with an input rainy
image and the directional gradient loss using the assumption
that the estimated rain streaks are likely to be sparse and
have dominant directions. To consider various rain conditions,
we leverage a dynamic fusion module that effectively fuses
multi-scale features. We also build a novel large-scale time-lapse
dataset providing real world rainy images containing various rain
conditions. Experiments demonstrate that the proposed method
outperforms state-of-the-art techniques on synthetic and real
rainy images both qualitatively and quantitatively. On the high-
level vision tasks under severe rainy conditions, it has been shown
that the proposed method can be utilized as a pre-preprocessing
step for subsequent tasks.

Index Terms— Single image deraining, convolutional neural
networks (CNNs), time-lapse dataset, dynamic fusion module.

I. INTRODUCTION

AN IMAGE captured in an outdoor environment frequently
suffers from visibility degradation due to various weather

conditions such as rain [1]–[7], haze [8], [9], or snow [2], [10].
Especially, on rainy days, outdoor images are degraded by rain
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Fig. 1. Illustration of our learning framework for single image deraining:
using samples from time-lapse sequences taken at a static scene, we generate
corresponding rain streaks and consistent background images for multiple
input images from the time-lapse sequences.

streaks that cause undesired artifacts such as intensity fluctua-
tion and occlusion [1]–[7], [11]. In this context, a single image
deraining technique serves as an essential pre-processing for
various image processing tasks [12]–[14].

Approaches for single image deraining have been tradi-
tionally formulated by modeling the physical characteristics
of a rain streak, but these hand-designed priors frequently
fail to model real rain streaks [6], [7], [15]–[19]. Recently,
deep convolutional neural networks (CNNs) based approaches
[3]–[5], [20]–[22], [24], [25] have improved the performance
of single image deraining substantially. They trained single
image deraining networks with a tremendous number of
ground truth paired training data in a supervised manner. As
constructing such massive training data with real images is
extremely difficult, they mostly rely on the synthetic data
generated by some rendering tools, such as Photoshop [27]
and photo realistic rendering techniques [28]. However, they
cannot reflect real environments well, which incurs the domain
adaptation issue [5], [22].

To overcome this limitation, we propose a novel learning
framework that leverages time-lapse sequences, without using
any ground truth paired data. Our approach builds upon the
insight that the time-lapse sequences taken under a static

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on May 18,2022 at 08:50:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4825-5240
https://orcid.org/0000-0002-3715-0331


CHO et al.: SINGLE IMAGE DERAINING USING TIME-LAPSE DATA 7275

background with time-varying rain streaks allow to leverage
a background consistency constraint, as illustrated in Fig. 1.
Concretely, we present a background consistency loss to
estimate the consistent backgrounds of input images sampled
from time-lapse data. We further propose two additional losses
including a structure similarity loss and a directional gradient
loss. The first loss encourages the estimated backgrounds to be
close to input images, and the latter one enforces the estimated
rain streaks to be sparse and have dominant orientations. Dur-
ing training, two images sampled from the time-lapse sequence
are fed into the deraining networks. To fully encode various
rain streaks, we extract features from multi-scale encoder
networks and fuse them using a dynamic fusion module that
learns an optimal fusion weight conditionally determined by
the input features.

We further construct a novel time-lapse dataset for derain-
ing. Unlike the existing synthetic datasets [3], [5], [20], [22],
we collect time-lapse sequences in the real world that contain
various rain conditions. To the best of our knowledge, there
is no study that exploits the time-lapse sequences of real
rainy scenes to learn the single image deraining. Extensive
experiments demonstrate that our approach provides state-of-
the-art performances on synthetic dataset [3], [5], [22] and
even generalizes well on real rainy images [24].

Our main contributions are highlighted as follows.

• We propose to exploit the time-lapse sequences to train
the deraining networks, without using any ground-truth
paired data.

• To train the networks using the time-lapse sequences,
we introduce novel loss functions for enforcing back-
grounds to be consistent, and estimated rain streaks to
be sparse and have dominant orientations.

• We introduce a large-scale rainy time-lapse dataset.

The remainder of this paper is organized as follows.
Section II describes the related works. The proposed method
and our time-lapse dataset are presented in Section III. Exten-
sive performance validation is then provided in Section IV,
including ablation study and comparison to the state-of-the-
arts. Section V concludes this paper.

II. RELATED WORK

A. Single Image Deraining

Classical approaches for single image deraining have used
a prior knowledge for modeling a background image or
a rain streaks using, e.g., Gaussian mixture model (GMM
[18], [19], sparse coding [6], [16], and low-rank con-
straint [37], [38]. Such hand-crafted methods have shown sev-
eral limitations such as over-smoothed image details [38] and
imperfect separation of rain streaks [16], [34], and frequently
failed to model real rainy characteristics.

Recently, deep convolutional neural networks (CNNs) have
achieved great success in single image deraining. Fu et al. [3]
first proposed to solve the deraining task through CNNs.
They decomposed rain images into low- and high-frequency
parts, and then trained only the high-frequency parts using
shallow networks. Yang et al. [5] introduced a deep recurrent
network to jointly detect and remove rain streaks (JORDER)

by designing a multi-task learning architecture using back-
ground, rain streak, and binary map indicating a spatial posi-
tion of rain streaks. Zhang et al. [20] adopted the generative
adversarial network (GAN) with the perceptual loss to achieve
better visual quality of a derained image. Li et al. [19]
particularly concerned with various rain conditions including
sizes and directions of rain streaks. They proposed a multi-
stage CNN that consists of several parallel sub-networks to
aware different scales of rain streaks. Zhang and Patel [22] pro-
posed a density-aware single image deraining. They designed
a multi-stream dense network to characterize a non-uniform
rain density. Li et al. [39] proposed a recurrent squeeze-and-
excitation (SE) based context aggregation network (CAN).
The SE block assigned different alpha-values for various
rain streaks according to the intensity and transparency, and
CAN acquired large receptive field. Li et al. [21] proposed a
non-locally enhanced encoder-decoder network to efficiently
learn increasingly abstract feature representation for rain
streaks. Ren et al. [40] proposed a simple and progressive
recurrent deraining network (PReNet) by repeating a shallow
ResNet [41]. Wang et al. [24] proposed a spatial attentive
network (SPANet) to remove rain streaks in a local-to-global
manner. Wei et al. [25] proposed a semi-supervised learn-
ing approach for single image deraining. Yang et al. [42]
proposed an extended version of JORDER [5] by exploit-
ing a RNN and a contextualized dilated network for better
deraining performance. Yang et al. [43] proposed a scale-
free network investigating on the scale variety of rain streaks
by unrolling a wavelet transform using a recurrent neural
network. Fu et al. [44] proposed a light-weighted pyramid of
network (PyramidDerain) by introducing the mature Gaussian-
Laplacian image pyramid decomposition method. However, all
these approaches adopt a supervised learning framework using
large quantities of paired synthetic training data, which limits
their generality and practical use on real world rain images.

B. Video Deraining

Multiple image deraining has also been widely explored.
Garg and Nayar [28], [45]–[47] first attempted for rain removal
from multiple images. They proposed an appearance model
to describe rain streaks, and exploited it to detect rain pix-
els in videos. Zhang et al. [48] focused on investigating
the brightness property of rain streaks in videos. Barnum
et al. [49] proposed a spatio-temporal frequency based method
for globally detecting rain streaks using a physical and statis-
tical model. Kim et al. [2] proposed to remove rain streaks
using temporal correlation with low-rank matrix completion.
They subtracted temporally warped frames from the current
frame to obtain an initial rain map, and decomposed it into
two types of basis vectors using a support vector machine
(SVM). Recently, deep neural networks based methods have
also been investigated. Chen et al. [11] proposed CNNs based
framework for video deraining using superpixel segmentation.
They aligned the scene contents at the superpixel-level, which
improves robustness to rain occlusion and fast camera motion.
By exploring the temporal redundancy in multiple images,
Liu et al. [50] proposed a hybrid rain model to cover both
rain streaks and occlusions. These methods make full use
of the rich information in multiple images and the temporal
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Fig. 2. The overview of the proposed learning framework. The proposed networks consist of two components: deraining networks and directional gradient
networks. The deraining networks are trained to predict rain streaks and background images. The directional gradient networks are trained to determine a few
dominant orientation of rain streaks. At inference time, only a single image is required.

redundancy in adjacent frames. While all the aforementioned
methods require multiple images as inputs during both training
and testing, our method only requires the time-lapse sequences
which have spatially invariant background to train networks,
and a single image at the testing phase.

C. Deraining Datasets

Existing rain datasets generated synthetically by commercial
software such as Adobe After Effects [3], [5], [20], [22] have
a limited realism. They cannot effectively reflect various real
rain conditions such as rain shape, direction, and intensity. To
alleviate this problem, Wang et al. [24] constructed a large-
scale dataset of rain and clean image pairs that consists of
natural rain scenes by leveraging temporal priors and human
supervision. Our dataset is related to [24], but there are several
key differences that put a significant gap between the two
approaches. While [24] explicitly generated training data, i.e.,
paired training data using percentile filtering and attention map
through explicit supervision, our method builds the time-lapse
sequences from natural rain scenes without clean images.

D. Using Multiple Images

To overcome the lack of training data in various computer
vision and image processing tasks, numerous approaches [31],
[32], [51]–[55] leveraged large amounts of multiple images or
image sequences. For instance, Godard et al. [52] proposed
a self-supervised learning approach for monocular depth esti-
mation using stereo image pairs. Ma et al. [32] proposed a
CNN-based intrinsic image decomposition using time-lapse
datasets, where a deep network is trained with only multiple
images containing same albedo but different shading. Vondrick
et al. [54] proposed a video colorization for visual tracking
by using large amounts of unlabeled video. Nam et al. [31]
proposed a multi frame joint conditional generation framework
for synthesizing a time-lapse video and photo-realistic illumi-
nation changes from a single outdoor image. A large-amounts

of multiple images or image sequences typically contain a rich
information between the coherent frames. Inspired by these
approaches, we attempt to address the lack of real training data
in the single image deraining task by leveraging the time-lapse
sequences.

III. PROPOSED METHOD

A. Motivation and Overview
Let us denote an image degraded by rainy artifacts as I .

It can be generally modeled as a summation of a rain streak
S and a background B [6], [7], [15]–[19] such that

I = S + B. (1)

The objective of single image deraining is to decompose I
into the rain streak S and the background B [6], [18],
[24], [39].

To this end, most CNN-based methods [3], [5], [20]–[22],
[24], [40], [58] learn a mapping function between the rainy
image I and the background B (or the rain streak S) with a
large-scale training data consisting of rainy images and ground
truth background (or rain streak images) in a supervised
manner. Obtaining such data in real environments is, however,
practically impossible, and thus they usually leverage the
synthetic data generated by Photoshop [27] or photo realistic
rendering technique [28]. They have shown excellent results
over existing handcrafted approaches, but they suffer from the
domain adaptation issue [5], [22] when applied to real rainy
images.

To solve this limitation, we present a novel learning frame-
work for single image deraining that leverages the time-lapse
data. We present a background consistency loss that enables
our deraining networks to consistently generate the same
derained images from the time-lapse sequences, as shown
in Fig. 2. We train the deraining networks using a set
of time-lapse sequences T = {Tc}c=1,...,C , where Tc =
{I c,1, . . . , I c,N }. N is the number of frames and c denotes
the index of scenes, and C is the total number of scene.
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Fig. 3. Comparison of our loss functions: (a) input real rainy image, results of our method trained with (b) Lb only, (c) Lb and Ls , (d) Lb, Ls , and Lr ,
and (e) Lb, Lr , Ls , and Lv . By jointly using all the proposed loss functions, our method can provide highly improved performance.

We further present additional loss functions such as a
structure similarity loss to make the input and output images
have the similar structural information, and a directional
gradient loss to make the estimated rain streaks have a few
dominant gradients. The reconstruction loss is used following
the definition of the rain model.

In the deraining networks, we first extract the multi-scale
features at different scales, and then fuse them through a
learned fusion weight, where the optimal fusion weight is
dynamically determined conditioned on input features. In the
directional gradient networks, dominant rain directions are
trained. The clipping layer prevents background images to
be negative. To train the networks with rainy images only,
we construct a large-scale time-lapse dataset, where each scene
contains the same backgrounds but different rain streaks. Note
that during an inference, the networks only require a single
image as input. Unlike the video deraining methods [2], [11],
[47]–[50] making full use of the information among frames
spatially and temporally, we exploit the time-lapse sequences
including the spatial invariance for single image deraining.
Moreover, while our method only uses single image at testing
thanks to the time-lapse sequences and our network, video
deraining methods require multiple images as inputs.

B. Loss Functions

1) Background Consistency Loss: In the time-lapse
sequences Tc taken at a static scene, background images should
be invariant to time-varying rain streak changes. To generate
consistent background images across the time-lapse sequences,
we formulate the background consistency loss that uses an L1
penalty among the estimated background images such that

Lb =
∑

c

∑

{m,n}∈N

∑

i

∥∥Bc,m
i − Bc,n

i

∥∥
1, (2)

where Bc,m is a background that is decomposed from I c,m ,
and m and n represent indexes of different input images from
the time-lapse sequences. Here, Bc,m

i and Bc,n
i are the pixel

elements from the image Bc,m and Bc,n , respectively. How-
ever, since minimizing this loss function is under-constrained,
we present additional loss functions to further constrain the
output.

2) Structure Similarity Loss: We argue that most of the
color or texture in estimated backgrounds should be well
approximated by input images. To realize this, inspired
by [63], [64], we present the structural similarity loss that
encourages estimated backgrounds to be close to the input
images. This loss helps to initialize the structure of the
overall background information. We minimize an L1 penalty
of estimated backgrounds and input images such that

Ls =
∑

c

∑

{m,n}∈N

∑

i

γ
∥∥I c,m

i − Bc,n
i

∥∥
1, (3)

where γ is reduced linearly from 0.1 to 0.0001 during the
first 30% of the training and then fixed. This loss function
enables the networks to produce good initial results at the early
training stages. Fig. 3(c) shows the validation of this loss.
Note that an input image and an output background image
should be selected in different samples (i.e., m �= n). When
training the networks with the pair of the same input image
(i.e., m = n), the networks are unable to reduce rain streaks
effectively. Different input images prevent this undesirable
effect during training.

3) Directional Gradient Loss: To enforce the estimated
rain streaks to have a few dominant gradient directions,
we present a novel loss function that clusters the gradients
of rain streaks into majority cluster centroids. We first extract
the gradient orientation of the estimated rain streaks such that
θ = tan−1(∇y S/∇x S), where ∇x and ∇y indicate the gradient
of x- and y-directions, respectively. To estimate the directional
gradient centers {ck}, inspired by [65]–[67], we minimize the
following objective function:

V (k) =
∑

i

αk(θi ) ‖θi − ck‖1 , (4)

where θi is the gradient orientation at pixel i and ck is k-th
cluster center. αk(θi ) denotes the membership of the gradient
orientation θi to k-th cluster, defined as follows:

αk(θi ) = eW T
k θi+bk

∑
k′ eW T

k′ θi +bk′
, (5)

where Wk and bk are sets of trainable parameters for k-th
cluster. To learn the cluster centroids and make the gradient
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directions of all pixels be concentrated on them, we minimize
V (k) with an L1 penalty such that

Lv =
∑

k

‖V (k)‖1. (6)

Fig. 3 shows the effectiveness of directional gradient loss in
capturing rain streaks.

4) Reconstruction Loss: Following the definition of the
rain model [6], [7], [15]–[19], the input image I should be
reconstructed with B and S. We present a reconstruction loss
as follows:

Lr =
∑

c

∑

m∈N

∑

i

∥∥I m
i − (Bm

i + Sm
i )

∥∥1. (7)

This strongly prevents any deviation from Eq. 1. Empirically,
this loss reaches close to 0 after 10% of training.

5) Total Loss: With all the aforementioned loss functions,
the total loss function is formulated such that

Lt = λbLb + λsLs + λvLv + λrLr , (8)

where λb, λs , λv , and λr are weighting factors.

C. Network Architecture

The proposed method consists of two sub-networks, includ-
ing the deraining networks to estimate a rain streak and the
directional gradient networks to enforce the estimated rain
streak to have a few dominant gradient directions.

1) Deraining Networks: We formulate the deraining net-
works as encoder, dynamic fusion module, and decoder,
as illustrated in Fig. 4. Based on the intuition that rain artifacts
can be encoded at multiple scales [5], [19], [22]–[24], [58],
we present multiple encoders E3, E5, and E7 consisting of
convolution layers having kernel sizes of 3 × 3, 5 × 5, and
7 × 7, respectively, as shown in Table I.

The features from multiple encoders are fused to predict
the rain streaks (S). Multiple features from multiple encoders
have its own receptive field containing various spatial contex-
tual information. However, a simple concatenation disregards
the characteristic of each feature [62] and may provide a
limited performance. To address this limitation, we introduce
a dynamic fusion module to find an optimal fusion weight.
The dynamic fusion module dynamically combines the output
feature of E3, E5, and E7, where the optimal fusion weight
W G,∗

E can be learned with respect to each input with an
additional convolutional network using filter-generator [33]
such that

W G,∗
E = G(E3(I ), E5(I ), E7(I ); W G

E ), (9)

with W G
E denotes the parameters of filter generator. Since

W G,∗
E is conditioned on input features, we can find more

optimal fusion weights. The concatenated features are then
convolved with the generated filter, and resulting features are
fed into the decoder. We will verify the effectiveness of the
dynamic fusion module compared to other fusion methods in
Section IV.C.2.

In the decoder, the spatial resolution of the encoder
feature is progressively enlarged through the sequences of
deconvolution and convolution layers, as shown in Table II.
Each layer is composed of 3 × 3 deconvolution and convolu-
tion layers followed by ReLU, and is connected to the encoder

Fig. 4. The architecture of the deraining networks consisting of three
components. The multi-scale encoder first captures features at different scales.
The filter-generator aggregates multi-scale features adaptively. The decoder
resolves spatial resolution details using skip connections.

TABLE I

NETWORK ARCHITECTURE OF THE MULTI-SCALE ENCODER OF DERAIN-
ING NETWORKS, WHERE ‘KERNEL’ REPRESENTS THE KERNEL SIZE OF

CONVOLUTION LAYER, AND ‘CH. I/O’ AND ‘DO. I/O’ REPRESENTS

CHANNELS AND DOWNSCALING FACTORS OF INPUT AND
OUTPUT RELATIVE TO THE INPUT, RESPECTIVELY

using skip connections. The deconvolution layer consists of
the transposed convolution with fixed bilinear upsampling
kernel. The decoder yields the same resolution output as an
input image. In addition, the decoder output, denoted by S,
is subtracted from the input image using a subtraction layer.
A clipping layer is finally applied to the residual to prevent a
final output, denoted by B , from being a negative.
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Fig. 5. Illustration of the directional gradient networks, implemented by
standard CNN layers including convolutions and softmax.

TABLE II

NETWORK ARCHITECTURE OF THE FILTER-GENERATOR AND DECODER
OF DERAINING NETWORKS, WHERE ‘KERNEL’ REPRESENTS THE

KERNEL SIZE OF CONVOLUTION LAYER, AND ‘CH. I/O’ AND ‘DO.
I/O’ REPRESENTS CHANNELS AND DOWNSCALING FACTORS

OF INPUT AND OUTPUT RELATIVE TO THE INPUT, RESPEC-
TIVELY. ‘DYN’ AND ‘MK’ MEANS DYNAMIC

AND MAKE, RESPECTIVELY

2) Directional Gradient Networks: To regulate the esti-
mated rain streak to have a few dominant gradient directions,
we introduce the directional gradient networks, as shown
in Fig. 5, where a few dominant gradient directions of rain
streaks are trained as cluster centers [65]–[67]. The networks
consist of convolution layers and a soft-max layer. The con-
volution layers consist of a set of k filters Wk that have spatial
support 3 × 3 and biases bk . The output of the convolution
layers is passed through the soft-max function to obtain a
soft assignment αk(θi ) that weights the different terms in
the cluster center layer. The weighted sum of θi and αk(θi )
are trained in cluster center layer. By minimizing Eq. 6,
we estimate Wk and bk . Note that the directional gradient
networks play the role of regularizing the deraining networks,
and are not used during an inference.

D. Time-Lapse Sequence Dataset

1) Observation: Existing synthetic rain datasets have lim-
ited realism to model real rainy characteristics [24], [25].
There are some datasets [2], [11], [36], [50] generated syn-
thetically by commercial software program such as Adobe
After Effects1, but they incur the domain adaptation problem.

1https://www.adobe.com/AfterEffects

Fig. 6. Examples of synthetic rain dataset and our time-lapse sequences from
real world. Our dataset contains more general rainy circumstances.

TABLE III

OVERVIEW OF THE EXISTING DATASETS AND OUR DATASET. Total.,
Train., AND Test. DENOTE THE TOTAL NUMBER OF DATASETS,
TRAINING, TESTING IMAGES, RESPECTIVELY. ‘*’ DENOTES

THAT THE METHOD REQUIRES ADDITIONAL

TRAINING DATA FOR TRAINING

Instead, we construct the time-lapse sequences that enable
our method to estimate background images through the struc-
ture preserving property [29]–[31]. Note that there were no
attempts to use the time-lapse data to train the deraining
networks directly.

2) Data Acquisition: We built up the training data consist-
ing of the time-lapse sequences, each of which contains the
same background scenes with different rain streaks, by tak-
ing our own real time-lapse data and collecting them from
Youtube. For a better generalization, we considered various
rain conditions at diverse scenes. We mounted a camera (Sony
A7M2) on a tripod, and acquired 110 time-lapse sequences for
outdoor scenes. 76 time-lapse sequences were also collected
from Youtube. Since a rainy video, in which both camera and
scenes are static over all frames, is rare among public videos,
we extracted the static part of the rainy video. The time-lapse
data was carefully examined to ensure that images in each set
contain the various rain types in terms of shapes, directions,
and sizes of rain streaks. Note that all the time-lapse sequences
taken from real environments have no ground truth back-
grounds. Fig. 6 and Table III show the comparison of existing
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datasets and our dataset quantitatively and qualitatively. Our
dataset improves the deraining performance effectively on real
rainy images. The effectiveness of our dataset will be discussed
in experiments.

E. Implementation Details

The proposed networks were implemented with the VLFeat
MatConvNet library [68] library, using an NVIDIA GeForce
GTX 1080 Ti GPU. All training images were cropped and
then resized to 128 × 128 with a batch size of 4. We did not
use data augmentation such as flipping and rotating because
our data already contains sufficiently various scenes. For an
efficient stochastic optimization, the Adam solver [69] was
adopted with a fixed learning rate of 10−4 and momentum
of 0.9. We set k = 4, λb = 1, λs = 0.1, λv = 0.01, and
λr = 0.001. We set C = 186 and N = 30. For each rainy
sequence, 2 images were sampled from 30 images, and thus
total number of combinations is 186 × 30C2 = 80,910. The
E3 encoder networks were the same architecture as the first
7 layers of VGG network [61]. Our method takes 2 days for
training.

IV. EXPERIMENTS

A. Experimental Settings

In experiments, we evaluated the proposed method in
comparison to conventional hand-crafted approaches, such as
discriminative sparse coding (DSC) [17], Gaussian mixture
model (GMM) based method [18], joint convolutional
analysis and synthesis sparse representation (JCAS) [34]2

and CNN based supervised approaches such as deep detailed
network (DDN) [4],3 joint rain detection and removal
(JORDER) [5],4 density-aware single image de-raining
network (DID) [22],5 non-locally enhanced encoder-decoder
network [21] (NLEDN)6 progressive image deraining
networks [40] (PReNet),7 Semi-supervised Transfer Learning
for Image Rain Removal [25] (SIRR),8 Spatial Attentive
Single-Image Deraining [24] (SPANet),9 JORDER-E [42],
Depth-attentional Features for Single-image Rain
Removal [14] (DAF-Net),10 and Heavy Rain Image Restora-
tion [56] (HeavyRain).11 We used the pre-trained models
provided by authors for comparison. Our method was trained
with our time-lapse data using the dynamic fusion module
and all loss functions.

For evaluation on real images, we use the SPANet [24] that
provides 1,000 paired pseudo ground truth testset consisting
of natural rain scenes using percentile filtering. We also use
some examples collected from previous works [5], [20] and

2https://sites.google.com/site/shuhanggu/home
3https://xueyangfu.github.io/projects/tip2017.html
4http://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html
5https://github.com/hezhangsprinter/DID-MDN
6https://github.com/AlexHex7/NLEDN
7https://github.com/csdwren/PReNet
8https://github.com/wwzjer/Semi-supervised-IRR
9https://stevewongv.github.io/derain-project.html
10https://github.com/xw-hu/DAF-Net
11https://github.com/liruoteng/HeavyRainRemoval

our dataset. We measure the performance of the synthe-
sized data using two metrics, including Peak Signal-to-Noise
Ratio (PSNR) and Structure Similarity Index (SSIM).

For synthetic data evaluation, we use three benchmark
datasets, provided by DDN [4], JORDER [5], and DID [22].
DDN [4] provides 4900 rainy/clean image pairs, which
were synthesized from 350 clean images with 14 dif-
ferent rain streaks. JORDER [5] provides Rain100H and
Rain100L each of which consists of 100 images selected from
BSD200 [70]. As pointed out in [5], [21], since the synthesized
examples in Rain100H are inconsistent with real images,
we used Rain100L for performance evaluation. The DID [22]
provides 1,200 image pairs containing rain streaks with dif-
ferent orientations and scales, where 400 images are pro-
vided for each per rain density level (i.e., light, medium and
heavy).

Furthermore, to evaluate the proposed method on the chal-
lenging scenarios that contain not only rainy but also haze
degradations, we additionally collected the rainy images with
haze from Internet.

B. Comparison With the State-of-the-Arts

1) Analysis on Real World Data: We first measured the
deraining performance of all competing methods and ours
on real rainy images. We collected real world dataset from
previous works [5], [20], [24] and our dataset. Fig. 7 shows
the qualitative evaluations on real rainy images. While existing
methods [3], [5], [21], [22], [24], [25] suffer from artifacts on
long and thin rain streaks, our method effectively removes
various types of rain streaks and preserves background infor-
mation well. The derained results on real rain images taken
from different rain conditions and various scenes demonstrate
the superiority of our method. Note that although the state-
of-the-art methods [21], [24], [25], [40] achieve significant
performance on synthetic datasets, their performance was
limited to real rainy image. They had a difficulty in com-
prehensively considering the complex distribution of real rain
since they could not generalize various type of rain perfectly.
We also reported quantitative and qualitative comparisons on
the SPANet data [24] as shown in Fig. 8 and Table IV.
As shown in Table IV, the model-driven method such as
JCAS [34] even outperforms some CNNs based methods,
i.e., DDN [4] and DID [22]. Note that although the CNNs
based methods are generally superior to handcrafted methods,
they still suffer from generalization issue on real world data.
For instance, PReNet [40] and SIRR [25] make some holes
on rain regions (result in the first row in Fig. 8 (g) and result
in the second row in Fig. 8 (h)). Unlike these, our method
achieves an outstanding performance over existing state-of-
the-art methods.

2) Analysis on Synthetic Data: We analyzed the supervised
learning based methods [4], [5], [21], [22], [24], [25], [40]
on various synthetic data. The comparison was summarized
in Table V and Fig. 9. As shown in Table V, recent supervised
learning based methods clearly outperform most hand-crafted
methods [17], [18]. However, those trained deep models show
limited performance on other synthetic datasets. Especially,
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Fig. 7. Visual comparison of single image deraining on real rain images. Note that we collect real world examples from [5], [20] and our dataset.

TABLE IV

QUANTITATIVE COMPARISON OF THE STATE-OF-THE-ARTS AND PROPOSED METHOD ON SPANET DATA [24]

due to a low generalization capability, JORDER [5] shows
substantially degraded performance on DID [22] and DDN [4]

test set. They still include rain streaks on JORDER [5] test
set as exemplified in Fig. 9(c) and (d). Similar results have
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Fig. 8. Visual comparison of single image deraining on SPANet [24].

TABLE V

QUANTITATIVE COMPARISON OF SINGLE IMAGE DERAINING USING VARIOUS SYNTHETIC DATASET. GT MEANS THE METHOD USING PAIRED GROUND

TRUTH DATA. ‘*’, ‘**’, AND ‘***’ INDICATE THAT THE METHODS REQUIRE ADDITIONAL SUPERVISED CUE, I.E., BINARY MASK MAP, RAIN
DENSITY LEVEL, AND ATTENTION MAPS RESPECTIVELY. THE HIGHER THE PSNR AND SSIM, THE BETTER

been shown from other methods and datasets, implying that
the supervised learning based methods using specific synthetic
data have limited generalization. The proposed method consis-
tently achieves the best quantitative performance compared to
other supervised methods as shown in Table V. The qualitative
results in Fig. 9 show that our method generates plausible
derained images at the synthetic data. It is noteworthy that
although our network uses only time-lapse sequences without
using any ground truth data, it outperforms the state-of-the-art
supervised methods on synthetic dataset.

3) Analysis on Rainy With Haze: For more analysis, we con-
ducted experiments on real rain images degraded by haze
effects. For this, we additionally collected rain image degraded
with haze from Internet. Then, we applied our network to
estimate derained images, and compared with state-of-the-
art methods including DAF-Net [14] which proposed a rain
imaging model with rain streaks and haze. Fig. 10 shows
our comparison results. The first row shows the derained
results under long and thin rain accompanied with haze. While
existing methods are difficult to handle the long diagonal
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Fig. 9. Results of single image deraining using synthetic JORDER test data [5]: (a) the input image, (b) ground truth image, (c) DDN [4], (d) DID [22],
(e) SIRR [25], (f) SPANet [24], and (g) Ours.

Fig. 10. Comparison results from the proposed method against those from the state-of-the-art methods on real rain images accompanied with haze.

rain streaks, our method is successful in removing the rain
streaks even with haze. SIRR [25] generates the derained
result corrupted the background. DAFNet shows haze removal
effectively, however, it leaves some rain streaks. The second
row shows that the existing methods fail to remove large and
small rain streaks in the light haze. Though DAF-Net could
handle haze removal, it is still challenging in rain removal.
Unlike those, our method could remove rain streaks affected
by haze in real rainy image thanks to our time-lapse sequences
acquired in the real world and composed of various real
circumstances.

C. Ablation Study

We conducted an ablation analysis on different components
and loss functions in our framework. For the quantitative
evaluation, we used the test split of the SPANet [24].

1) Analysis of Loss Functions: Using time-lapse sequences
from our dataset, we evaluated the effectiveness of the
proposed loss functions, including reconstruction loss, struc-
ture similarity loss, background consistency loss, and direc-
tional gradient loss. In Table VI, we start from the our
model trained with Lr and Lb, and sequentially add other
components. At first, we compare the model trained with and

TABLE VI

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD TRAINED WITH
VARIOUS LOSS FUNCTIONS WITH AND WITHOUT DYNAMIC FUSION

MODULE. DYN. DENOTES THE DYNAMIC FUSION MODULE

without structure similarity loss Ls . We show that the structure
similarity loss improves the deraining results. This loss func-
tion aids the deraining network to estimate some background
information coming from I . The second and third row show
that the model trained with directional gradient loss achieves
much better intermediate results than the model trained with
reconstruction loss. The deraining result by directional gradi-
ent loss is also visually more plausible, as shown in Fig. 11. In
Fig. 11(b) and (c), the deraining result trained with directional
gradient loss finds main direction of rain streaks, and removes
rain streaks more precisely, demonstrating that finding main
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Fig. 11. Comparison of the deraining networks trained without and with
directional gradient loss function: (a) input image, results of our method
trained (b) without and (c) with directional gradient loss function. Our
deraining networks with directional gradient loss function more effectively
remove rain streaks.

Fig. 12. Performance gain by dynamic fusion module: (a) input image, results
of our method trained (b) without and (c) with dynamic fusion module. Our
deraining networks with dynamic fusion module more effectively remove rain
streaks.

TABLE VII

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD TRAINED WITH
DIFFERENT FUSION METHODS. CONCAT., SUM., PROD. AND DYN.

DENOTES THE CONCATENATION, SUMMATION, PRODUCTION, AND

DYNAMIC FUSION MODULE, RESPECTIVELY

directional gradient orientation helps deraining. We show that
the results of the model trained with all loss functions achieves
the highest PSNR and SSIM.

2) Analysis of Dynamic Fusion Module: We also eval-
uated the performance of the dynamic fusion module.
Table VI shows that the model trained with the dynamic
fusion module achieves a substantial accuracy gain over the
model trained without dynamic fusion module. The effec-
tiveness of the proposed dynamic fusion module is also
shown in Fig. 12.

Moreover, we compare the deraining performances of our
networks with several fusion methods including summation,
product, concatenation, and dynamic fusion. The summation
and product fusion produce the fused features by element-
wise summation and multiplication, respectively. The con-
catenation fusion concatenates the features in the channel
dimension. All models are trained with the total loss
(Eq. (8)). The results are quantitatively given in Table VII.
Since the dynamic fusion module dynamically learns optimal
fusion weight conditionally determined by multiple features,
the model with the dynamic fusion results achieves the best
performance.

3) Compared With Time-Averaging: To verify the effective-
ness of our framework using the time-lapse data as weak
supervisions, we compared it with a simple time-averaging
operation. Considering the characteristics of the time-lapse
sequences taken from a static scene, simply averaging all
frames along a time may reduce an interference by rain
streaks. The time-averaging result can be used as a final
derained image, but this approach is not practical as it always
requires using multiple frames for performing the deraining
task. Contrarily, our networks are trained using the time-lapse
sequence, but only a single input image is used during an
inference. Alternatively, the time-averaging results can play
a role of supervisions in training the proposed networks.
Namely, the proposed networks can be trained in a supervised
manner with a pair of input image and the time-averaged
output. In this case, the upper bound of the supervised learning
approach is determined by the accuracy of supervision used
for training. Fig. 13 and 14 show the qualitative and quanti-
tative results of the proposed method and the time-averaging
operation.

In Fig. 13, our results show that the more images are used,
the better the performance. In contrast, the time-averaged
results still contain rain streaks patterns. Fig. 14 shows that
when the number of input images with different rain streaks
is small, the proposed method achieves better performance
than the time-averaging operation. Even when the number of
rain streaks in training data increases, the proposed method
still outperforms the time-averaging operation in terms of
PSNR. This indicates that our approach using the time-lapse
sequences as weak supervisions is a much better choice than
the supervised approach using time-averaged outputs as the
pseudo ground truth.

4) Analysis of Learned Features: To better understanding
what the networks encode, we provide the visualization of
learned features by our network. Fig. 15 shows a real rain
image, our results, and feature maps of the first and last
convolution layers. Fig. 15(d) shows four intermediate features
of the convolutional output of input rain image in encoder of
the first convolution layers. These contain the various types of
rain streaks, and object edges which are uncorrelated to the
rain streaks (i.e., the details of trees and grass). Fig. 15(e)
shows four intermediate features of the last decoder layer.
This feature maps show highly correlated with rain streaks.
The visualization of learned features demonstrates that the
deraining network discriminates and removes rain streaks and
background effectively.

D. Analysis of the Number of Network Parameters

We conducted experiments to analyze the effects of the
number of parameters in our method. By reducing the num-
ber of parameters, i.e., the kernel size of convolution layer
from 3 × 3, 5 × 5, and 7 × 7 to 1 × 1, 3 × 3, and
5 × 5, and the number of input and output channels for
each layer, we measured our performance for single image
deraining. The results are shown in Fig. 17. Surprisingly,
even with the small enough parameters, our method still has
shown competitive performances compared to other methods.
Furthermore, the performance gap as varying the network
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Fig. 13. Visual comparison of time-averaged results (first and third rows) and our results (second and fourth rows) on real (first and second rows) and
synthetic (third to fourth rows) time-lapse data. Note that r is the number of input images that contains different rain streaks.

Fig. 14. Quantitative evaluation of the proposed method and averaged time-
lapse sequences on the JORDER [5] dataset (Rain 100L).

parameters was so marginal. We guess those networks were
already having high capacity to contain the rainy artifacts,
and the high performances are attributed to the proposed loss
functions.

E. Application on High-Level Tasks
Existing single image deraining methods focused mainly

on training their models on certain type of synthetic images
and then validating their methods on synthetic data and a few
real images [13]. In this section, we explore how effective
the proposed deraining method is as a preprocessing step
for high-level tasks. We applied off-the-shelf semantic seg-
mentation method [71] on the derained results. Since there
are no rainy images with ground truth segmentation maps,
we visualized only qualitative results. As shown in Fig. 16,
our derained image is beneficial compared to the input rainy
image and derained results obtained from state-of-the-arts
methods [4], [5], [22], [24], [25], e.g., in road region and
traffic sign.

We further conducted the experiments for studying the
problem of object detection in rain images. Fig. 18 shows
a visual result of object detection by applying the off-the-
shelf object detection algorithm [72]. Since rain steaks cause
blur and occlude background scenes, we expect that the
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Fig. 15. Visualization of deraining and intermediate results on real rain image. (a) input rain image, (b) deraining results, (c) estimated rain streaks
corresponding (b), (d) feature maps from the encoder of the first convolution layers, and (e) feature maps from the decoder of the last convolution layers.

Fig. 16. Visualization of deraining results and semantic segmentation on the deraining results: (a) input rain image, deraining and semantic segmentation
results using (b) DDN [4], (c) JORDER [5], (d) DID [22], (e) SIRR [25], (f) SPANet [24], and (g) Ours.

Fig. 17. Quantitative comparison of single image deraining on SPANet [24]
according to the number of parameters.

performance of object detection will degrade in rainy cir-
cumstances. It is obviously that rain streaks can degrade the
performance of object detection, i.e., by missing detections
and producing low recognition confidence. In contrast, our
derained results show that the detection performance has a
significantly improvement over the baseline object detection
algorithm.

F. Running Time

Table VIII shows the running time comparisons of our
method and existing methods. We follow the original setting
of all the released codes. On average, our method takes about
0.39s to obtain derained image of size 512 × 512.

Fig. 18. Visualization comparison of object detection with and without
deraining.

TABLE VIII

AVERAGED PSNR AND SSIM VALUE ON SYNTHESIZED IMAGES

WITH THEIR COMPUTATIONAL TIME (SECOND). WE AVERAGED

ON 1000 IMAGES WITH SIZE 512 × 512

G. Failure Cases
Even though our method achieves an outstanding perfor-

mance on various rain conditions, we found that our model
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Fig. 19. Failure cases: similar to other methods, our method fails to generate
derained images on extremely heavy rain conditions.

often failed to generate the derained image under heavy rain
conditions, as shown in Fig. 19. It is difficult to get clean
information from the heavy rainy image, and thus our results
are unsatisfactory and blurry results. However, our method still
outperformed the state-of-the-art methods.

V. CONCLUSION

We have introduced a novel learning framework to train
single image deraining networks using the time-lapse dataset.
Using the observation that multiple rainy images taken at a sta-
tic scene have consistent backgrounds, we presented the back-
ground consistency loss to enforce the estimated background
images to be similar. A novel structural similarity loss has been
proposed to ensure that input and output images have similar
structural information. For the estimated rain streaks image,
we further introduced the directional gradient loss to make
the estimated rain streaks have the main directional gradients.
The dynamic fusion module was presented to effectively fuse
multi-scale features in the deraining networks. Experiments
have shown that our method is superior to state-of-the-arts
methods and generalizes well on real rainy environments. In
future work, we will investigate the deraining in an unsuper-
vised way.
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