2016-08-22
BYoBAE T HFtn

Recent descriptors for challenging
conditions

Dongbo Min
Department of Computer Science and Engineering

Chungnam National University, Korea
E-mail: dbmin@cnu.ac.kr Web: http://cvlab.cnu.ac.kr/

Acknowledgement: Dr. Jiangbo Lu (ADSC), Prof. Minh N. Do (UIUC), Seungryong Kim
(Yonsei), Prof. Kwanghoon Sohn (Yonsei)

AT =8


mailto:dbmin@cnu.ac.kr
http://cvlab.cnu.ac.kr/

1Indr_.?:f:d, one of the oft-told stories is that when a student asked Takeo
Kanade what are the three most important problems in computer vision, his
reply was: “Alignment, alignment, alignment!”. [Aubry et al., CVPR’14]

Correspondence, correspondence,
correspondence

e |mage alignment
e |mage registration
e |mage matching

e Optical flow

e Stereo
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A number of challenges

Large displacement
Non-rigid motion

Independent object motion ﬂ RObUSt

Small objects

Photometric differences (e.g. exposure, tone, sharpness)
Weakly textured regions

Matching across different scene contents

sy Dense
Motion coherence vs. boundary/detail preserving

Precision vs. recall, density, spatial coverage/distribution
Computational load

Memory cost ﬂ Fast

Large hypothesis space
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Applications of Dense Correspondences

CVPR 2014 Tutorial
Dense Image Correspondences for Computer Vision

Ce Liu! Michael Rubinstein! Jaechul Kim? Zhuowen Tu3
"Microsoft Research *Amazon -UCSD

Input image = MNearest neighbors

+ Labels
« Motion
* Depth e
L ﬁ
Y
il ¥ 2
n -] - « Motion
: = Depth
ol | .
L]
. B
b L 1Y
- % = = $)
_ mo
The space of world images a =
X



1 <
| Y,
ﬁ{“ (’ [Hassner “13]

[Hassner&Basri ‘06a, ‘06b, 13]

Why is this
useful?
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Taxonomy (a matrix form)
Typical MAP setup: Matching evidence term with
build-in coherence or smoothness regularization

e Matching evidence * Regularization
evaluation (Descriptors) — Local aggregation
— General local features — Non-local/semi-global

aggregation or
regularization
— Similarity measures — Global

— Specific tuned features

— Learned discrete/continuous

features/measures labeling optimization

— Continuous variational
models

— Non-parametric motion
models



What decides the performance of visual correspondence?

1. How well can we describe input images in a local manner?

Ex) SIFT (Scale-invariant feature transform)

Image gradients Keypoint descriptor

2. How well can we optimize an objective defined for estimating
visual correspondence?

Ex) Belief Propagation
(message passing algorithm)




General Formulation

* Find the label [,, for each pixel p, for instance, by minimizing the
following objective consisting of the data fidelity E;, and the prior
term E,,

E = ZE L W)+ Y Byl dy)
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Evaluating matching evidences with Enforcing the spatial smoothness constraint
local image descriptors or matching

similarity measures
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Evaluating matching evidences: local image descriptors and
matching similarity measures

e Descriptors for matching (sparse) interest points
— SIFT [1], BRISK [2], BRIEF [3], Affine SIFT (ASIFT) [4]

 Descriptors for dense wide-baseline matching
— DAISY [5]

 Descriptors for semi-dense large displacement matching
— Deep Matcher [6]

e Descriptors for matching semantically similar image parts (e.g. cross-domain
matching)
— Local Self-Similarity (LSS) [7], Locally Adaptive Regression Kernels (LARK) [8]

e Similarity measures for handling photometric and multi-modal variations

— Rank Transform, Census transforms [9], Mutual Information (MI) [10], Normalized Cross-
Correlation (NCC) [11], Zero-mean Normalized Cross-Correlation (ZNCC) [12], Dense
Adaptive Self-Correlation (DASC) [13,14], Deep Self-Correlation (DSC) Descriptor [16]

e Future work/trend: Learned matching similarity from CNN models, e.g. [CVPR’15]

— Computing the Stereo Matching Cost With a Convolutional Neural Network [full paper] [ext. abstract]
Jure Zbontar, Yann LeCun
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http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1B_053_ext.pdf

Reference - Descriptor

1. D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. Journal of Computer Vision, 2004.

2. S. Leutenegger, et al., “BRISK: Binary robust invariant scalable keypoints,” ICCV 2011.

3. M. Calonder, et al., “BRIEF: Computing a local binary descriptor very fast,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012.
4.]). M. Morel and G. Yu, “ASIFT: A new framework for fully affine invariant image comparison,” SIAM Journal on Imaging Sciences, 2009.

5. E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor applied to wide-baseline stereo,” IEEE Trans. Pattern Analysis and
Machine Intelligence, 2010.

6. P. Weinzaepfel, J. Revaud, Z Harchaoui, and C. Schmid, “DeepFlow: Large displacement optical flow with deep matching,” ICCV 2013.

7. E. Schechtman and M. Irani, “Matching local self-similarities across images and videos,” CVPR 2007.

8. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. on Image Processing, 2007.
9. R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” ECCV 1994.

10. H. Hirschmuller, “Stereo processing by semi-global matching and mutual information,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, 2008.

11.Y.S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, 2011.

12. X. Shen, L. Xu, Q. Zhang, and J. Jia, “Multi-modal and multi-spectral registration for natural images,” ECCV 2014.

13. S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-
spectral Correspondence,” CVPR 2015.

14. S. Kim, D. Min, B. Ham, M. N. Do, and K. Sohn, “ DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence
Estimation,” IEEE Trans. on Pattern Analysis and Machine Intelligence. (under revision)

15. S. Kim, D. Min, S. Lin, and K. Sohn, “Deep Self-Correlation Descriptor for Dense Cross-Modal Correspondence,” ECCV 2016

16. H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2009.

17. C. Vogel, S. Roth, and K. Schindler, “An Evaluation of Data Costs for Optical Flow,” GCPR 2013.

o=
%7 T

AWK
10 S et

A



Density (Considering computational redundancy!)

Sparse Dense
SIFT, BRIEF, Deep DAISY, DASC,
BRISK, SURF Matcher DSC
Geometric Distortion
None Scale, rotation
DASC SIFT, SURF, Deformable spatial
pyramid, Scale-space SIFT,
DAISY Filter Flow, GI-DASC
Photometric Distortion
Exposure lllumination

Rank Transform, Census transform, Mutual
Information, Normalized Cross-Correlation (NCC)

Affine transform Projective transform

Affine SIFT

Imaging Modality Semantically Similar

DASC, DSC ?
Absolute NCC (ANCC) o
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PART 1.1: DAISY: AN EFFICIENT DENSE
DESCRIPTOR

E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor applied to wide-baseline stereo,”
Trans. Pattern Analysis and Machine Intelligence, 2010.
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DAISY Descriptor

e DAISY [Tola’2010’TPAMI]

— SIFT works well for sparse wide-baseline matching, but it is very
SLOW for dense matching tasks.

— DAISY retains the robustness of SIFT and be computed efficiently.

NCC results SIFT results DAISY results £

by
e
NCC: Normalized Cross Correlation 14 o



DAISY Descriptor

e Gaussian convolved orientation maps
G,” = Gy + (01/d0)"

— Gyx: Gaussian convolution filter with variance
— dI/do: image gradient in direction o.
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DAISY Descriptor

Step 1. Compute histograms for each pixel

hy(u,v) = [G1* (W, v), G,* (W, V), ..., Gg™ (u, v)]T

hs(u, v): histogram at (u, v)

Glz(u, v): Gaussian convolved orientation maps
Step 2. Normalize histograms to unit norm

Step 3. DAISY descriptor is computed as

[h21 (u,v), :
hy, (I (W, v)), ..., hy, (Iy(u, v)),
hy,(I; (W, v)), ..., hy, (Iy (u, v)),
hs., (L (u,v)), ..., hs., (In(u,v))]

D (ug, vg) =
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DAISY Descriptor

direction—j

DAISY Feature Descriptor
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Runtime Analysis

TABLE 2
Computation Time in Seconds on an IBM T60 Laptop

Image Size | DAISY | SIFT
800x600 3.8 252
1024x768 6.5 432
1280x960 9.8 651
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PART 1.2: LOCAL SELF-SIMILARITY

E. Schechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007.



Conventional Image Descriptors

e Measuring image properties from images.

— Gradient, edge, or spatial structures

A Gradients features

| | Color features

Does It describes underlying visual Property?

%
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Conventional Descriptors vs. Self-Similarity

e Conventional Descriptors

— Direct visual properties shared by images of the same class (e.g. colors,
gradients,...)

e Self-Similarity
— Indirect property: Geometric layout of repeated patches within an image
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Do Not share common image properties (colors, textures, edges), but Do
share a similar geometric layout of local internal self-similarities.
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Local Self-Similarity (LSS) Descriptor

 Explore local internal layouts of self-similarities

23



Local Self-Similarity (LSS) Descriptor

e The LSS may be useful in overcoming limitations of existing

descriptors in establishing correspondence between multi-modal
images.

e Aninputimage fi : Z — R or R3, a dense descriptor D;: T — Rt
is defined on a local support window centered at each pixel i

T™
11

Key idea: The local internal layout of self-

similarities is less sensitive to photometric
distortions

24 ::mll::;



Local Self-Similarity (LSS) Descriptor

Formally, D,LSS

U,dLSS forl =1, ...,

[LSS jg g [LSS 1

feature vector, and can be written as follows:

dLSS

max {C(/,j)7,

J€bin;(/)

C(i,j) = exp (=SSD(F;, Fj)/os)

where bin;(/) = {j|j € Ri, pr_1 <

(i — ) <0,}.

25
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Local Self-Similarity (LSS) Descriptor

e Step 1: Compute self-similarity on correlation surface

— Determine N X N correlation surface C(i,])

C(i,7) = exp (=SSD(F;, F;) /o)

e Step 2: Transform into log-polar coordinates, and select the

maximal correlation value in each bin

dy)® = max {C(i, )}

This descriptor vector is normalized by linearly

stretching its values to the range [0..1]

26
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Local Self-Similarity (LSS) Descriptor

Step 1: Compute correlation surface.

Step 2: Transform into log-polar coordinates, and select the maximal correlation
value in each bin.

Input image Correlation Image
surface descriptor

@

Correlation Video l
volume descriptor §

=
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Properties and Benefit of LSS Descriptor

Locality

— Self-similarities are treated as a local image property, and are accordingly
measured locally (within a surrounding image region).

Robust to Affine Deformation

— The log-polar representation accounts for local affine deformation in the self-
similarities.

Robust to Non-Rigid Deformation

— Insensitive to the exact position of the best matching patch within that bin
(similar to the observation used for brain signal modelling).

Meaningful Image Patterns

— The use of patches (at different scales) captures more meaningful image
patterns than individual pixels.

a ’
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LSS Descriptor Applications

 Object Recognition, Image Retrieval, Action Recognition
— Ensemble matching [Shechtman CVPR 07]

— Nearest neighbor matching [Boiman CVPR 08]

— Bag of Local Self-Similarities [Gehler ICCV09, Vedaldi ICCVO09,
Horster ACMMOS8, Lampert CVPR09, Chatfield ICCV09]

1. Compute LSS descriptors for an image.
2. Assign the LSS descriptors to a codebook.
3. Represent the image as a histogram of LSS descriptors.

29 =8 7
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Interest Object Detection in Images

Single template image

The images against which it was compared with the
corresponding detections.

30
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Image Retrieval by “Sketching”

L
x Hand-sketched template

.‘

0 11

The images against which it was compared with the
corresponding detections.

AT =8
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Comparison to Other Descriptors

Img 1 Img 2 LSS GLOH Shape M
(template) (extended SIFT) Context
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PART 1.3: DASC: DENSE ADAPTIVE SELF-
CORRELATION DESCRIPTOR

S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “DASC: Dense Adaptive Self-Correlation Descriptor
for Multi-modal and Multi-spectral Correspondence,” CVPR 2015.



Can we find correspondences in the images below?

Yes! It is possible using our new descriptor (DASC).

DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-
spectral Correspondence, CVPR 2015
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Image Descriptor Matters!

DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal
and Multi-spectral Correspondence, CVPR 2015
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(a) (b) (c) (d) () (f)
Figure: Comparison of dense correspondence for different exposure images and

blurred-sharpen images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY,

(e) LSS, (f) DASC. The results consist of warped color images and 2-D flow fields. v'gl'.l'l';‘:‘
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Our Goal

g Our Goal _

1) Addressing photometric distortions in multi-modal and
multi-spectral images
2) The descriptor should be dense, and be computed very efficiently

-

J

Contribution

1. A patch-wise receptive field pooling with sampling patterns
optimized via a discriminative learning.

2. An efficient scheme using edge-aware filtering (EAF)
to compute dense descriptors for all pixels

3. An intensive comparative study with state-of-the-art methods
using various datasets.
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Problem of Existing Descriptors

e Challenging limitations in multi-modal and multi-spectral images

— Nonlinear photometric deformation even within a small
window, e.g., gradient reverses and intensity variation.

— OQutliers including structure divergence caused by shadow or
highlight.

Most of the existing descriptors may fail to compute a
reliable descriptor in the images below.

»




Problem of Existing Descriptors (including LSS)

However, even LSS often produces inaccurate correspondence.

Ul
N

0.25 T T T T T 0.26 T T T T T 0.3 T T T T T y
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0 ‘ ‘ 006 ‘ . ‘ ‘ 012 . . . . .
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search range search range search range

(a) Matching cost in A (b) Matching cost in B (c) Matching cost in C
Figure: Examples of matching cost comparison. Multi-spectral RGB and NIR images

have locally non-linear deformation as depicted in A, B, and C. AR
Ly b
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Dense Adaptive Self-Correlation (DASC)

~—— Limitation of the LSS descriptor N

1) The center-biased max pooling is very sensitive to the degradation of a center
patch.

2) No efficient computational scheme designed for computing dense descriptor
- J

~~

Intuitions for the DASC Descriptor

1) There frequently exist non-informative regions which are locally degraded,
e.g., shadows or outliers.

2) The randomness enables a descriptor to encode structural information more
robustly.

PECAT T
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LSS vs. DASC

e Center-biased dense max pooling vs. Randomized pooling
— Note that the DASC descriptor does NOT use the max operation.
— The max operation may lead to wrong localization!

Rk i HF
N/ A
.‘\ - -

\ ,/'

f .
bin, (/)

(a) LSS descriptor (b) DASC descriptor
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Randomized Receptive Field Pooling

e Using all sampling patterns does NOT always produce the best

results

IZ> Let’s select a subset of sampling patterns randomly

IZ> What about learning this sampling patters?

Randomized Receptive Field Pooling
o Let Iy = {j|j € Ri,|i — jl = pr, £(i — j) = ba}.
e Our DASC descriptor D; = | J,d;; for =1, ..., L is encoded

with a set of patch similarity between two patches based on
sampling patterns that are randomly selected from I;:

di,f — C(Sr',fa tf,f)a Sil, tf:f € ra"a

where s; and t; are /' randomly selected sampling patterns.

41

Ex) 41 points

- # of possible sampling
pattern: 41 X 40/2

- Let’s just select 3

sampling patterns

randomly.




Randomized Receptive Field Pooling

e Sampling Pattern Learning

— Key idea: Learn the sampling pattern using training pairs

From a large number of randomly generated pairs from [;, our
goal is to select the best sampling patterns.

e First, the feature rp, = |J, rm,s that describes two support
window pairs RL and R?2 is defined

i = exp (—(dh — d2,)"/202)

e The decision function to classify the training data set P as

- An amount of contribution of
p(rm) :@rm+b, each candidate sampling
pattern

where weight v indicates an a weight of sampling pattern.
e We use LIBSVM? to learn the weight function. S,

42 w0 bz
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Randomized Receptive Field Pooling

 Sampling Pattern Learning

— The training data-set was built from images taken under varying
illumination conditions and/or imaging devices

FoH09 F 109 F 409

roH08 F 0.8 F 0.8

P07

£ 106

(a) (b) (c)

Figure: Visualization of patch-wise receptive fields of the DASC descriptor which are
learned from (a) Middlebury benchmark, (b) multi-spectral and multi-modal
benchmark, and (c) MPI SINTEL benchmark.

e
i w
v TN &
43 o, W07
d}_w_.éa



The DASC Descriptor Formulation

With the sampling patterns learned, our next job is to compute the
self-similarity between two patches

Adaptive Self-Correlation (ASC) Measure

— For given two patches F, and F;, the patch-wise similarity is
measured using a truncated robust function

C(s,t) = max(exp(—(1 — |¥(s,t)|) /o), T)

— For (s,t) € U¥, we measure the Adaptive Self-Correlation (ASC)

Z Ws, S’wt,t’(fs’ - gs)(ft’ — gt)

!t!

\/Z{wss =61 /S {w(fu — G0

U(s,t)

3z
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We wish to compute the descriptor densely!

e Straightforward computation of the ASC for the selected sampling
patterns of all pixels is extremely time-consuming.

O(INL) I: Image size, N': Patch size

L: the number of sampling patterns

Z ws,s’wt,t’(fs’ - gs)(ft’ — gt)

s/t

V(s t) = = -
JZ i (e = GF 5 e = G0}

Observation: There are computational redundancies in the equation
above when executing this for all pixels.

Our Solution: Let’s employ the constant-time edge-aware filter (EAF)
to reduce the redundancies

%7 T
b g

4 =9 b3
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Efficient Computation of DASC

One problem is the symmetric weight ws s/w¢ ¢/ varies for each
[, and it is 6-D vector, which increases a computational burden

needed for employing constant-time EAFs.

In order to make using EAF computationally feasible, we
approximate the ASC with an asymmetric weight

Z We,s' Wi, (fsr — Gs)(fer — Gr)
\/Z JLW s’ . for — gs)}z\/§ {Lb’r..z.f(_fz.f —g;.)}g
Z Wi, 5/ ( - gi)(fj’ - g’i,j)
> [ W(i, ]) :
—Gi )

\/Z Wi, i — g ) .,Z:., Y (fjr

The similarity measure above can be computed in O(1) time using
e.g., the Guided Filter. But, Other kinds of EAFs can be used as well.

46
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Efficient Computation of Dense Descriptor

I: Image size, N': Patch size
Straightforward computation of ASC for the L: the number of sampling patterns

selected sampling patterns of all pixels

lp( t) 3;;! ws,s’wt,t’(fs’ — gs)(ft’ — gt) O(INL)
s, t) =
T e = GOY 3w = Y

Efficient computation of approximated ASC for the
selected sampling patterns of all pixels using EAF

> wiir(fir = Gi)(fir = Gig) O(IL)

W(i,j) = ’
’ 2 2 No dependency on
\/Z wiir (fir — Gi) \/Z wiit ([ir — Gij)
2! i"gj"

the patch size!

%7 T
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Overview of EAF

Edge-aware Filtering (EAF) = Adaptive summation with similarity of pixels

w(p, q): Pixel similarity between p and g

Pw)= ) wrol@

qEF(p)
1%
B ¥

Convolution

Speed
1° = Nonlinear_operation(I)
~ ). Linear_operation(I)

Filtering quality

Using a better kernel or global optimization?

48
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Intuitive example: Gaussian blur

output

. * n i
Over-smoothing: Halo

Same Gaussian kernel everywhere

g: 2 ?.s‘:
Vezas
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Intuitive example: Bilateral filter

output

Edge-preserving
capability is important

The kernel shape depends on the image content.

2320,

HER
ez
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O(1) Time EAF
* O(1) time algorithm?
BF[I], = —ZG (lp-al) (G, (1, -, )1,

qeS
Non- Imear weight!
Processing time (sec) Processing time (sec)
70 - 70 -
60 - 60 -
50 - ? 50 -
40 - —— > 40 -
30 - 30 -
20 - 20 -
10 - 10 -
0 0
1 6 11 16 21 26 1 6 11 16 21 26
Window (S) size Window (S) size
Brute force algorithm O(1) time algorithm o

o
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0(1) EAF — state-of-the-arts

GF, DT, AM, LO, FGS have been included in the official OpenCV release 3.1!

O(1) Time Bilateral Filter
— F. Porikli, “Constant time O(1) bilateral filtering,” CVPR 2008

— S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing approach,” ECCV
2006

— Q.Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” CVPR 2009
e Guided Filter (GF)

— K. He, J. Sun, and X. Tang, “Guided image filtering,” ECCV 2010
e Cross-Based Local Multipoint Filter (CLMF)

— J. Ly, K. Shi, D. Min, L. Lin, and M. N. Do, "Cross-based local multipoint filtering," CVPR 2012
e Domain Transform Filter (DT)

— E.S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and video processing,”
SIGGRAPH 2011

 Adaptive Mainfold (AM)

— E.S. L. Gastal and M. M. Oliveira, “Adaptive manifolds for real-time high-dimensional filtering,” SIGGRAPH
2012

e L0 smoothing (LO)
— L. Xu, C. Ly, Y. Xu, J. Jia, “Image Smoothing via LO Gradient Minimization,” SIGGRAPH Asia 2011

e Fast Global Smoothing (FGS)
— D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast Global Image Smoothing Based on Weighted

Least Squares,” IEEE Trans. on Image Processing, 2014 ;:’ ‘§;
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Overall Process of DASC Descriptor

EAF: Edge-Aware Filtering

T Ry e ey
e e ==
¢l - P,
L4 - #
,I -,
---------------- -’

AR 5
P ——— e Gwdaqce Image EAF

image ST 4 4 >
‘//,—,. _ 5,14
Guidance Image/ EAF/ /

Note that all pixels share the same sampling pattern!

re-arrange :
g g /_;____;_____g___? DASC descriptor volume
P 77l e (
sampling pattern - */,-fe. re-index
e >
* ——
- 78,7
e e
Guidance Image EAF
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Computational Complexity Analysis

e Let /, N, and L represent an image size, a patch size, and the
number of sampling patterns, respectively.

e A straightforward computation is extremely time-consuming,
in specific, the computational complexity becomes O(/NL).

e Our approach removes the complexity dependency on the
patch size N, i.e., O(IL). Furthermore, since there exist
repeated offsets, the complexity is reduced as O(/L) for L < L.

Image size DAISY® LSS DASC* DASC
463 x 370 2.5s 31s 128s 5s

Table: Evaluation of computational complexity. The brute-force and efficient
implementation of DASC is denoted as * and T, respectively.

[6] E. Tola, V. Lepetit, and P. Fua, Daisy: An efficient dense descriptor applied to wide-baseline stereo, IEEE TPAMI, 2010.
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Experimental Environments

e We implemented the DASC descriptor in C++ on Intel Core
i7-3770 CPU at 3.40 GHz, and measured the runtime on a
single CPU core without further code optimizations and
parallel implementation using multi-core CPUs/GPU.

e The DASC descriptor was evaluated with other state-of-the-art
descriptors, e.g., SIFT’, DAISY, BRIEF3, and LSS, and other
area-based approaches, e.g., ANCC® and RSNCC*.

"D. Lowe. Distinctive image features from scale-invariant keypoints, 1JCV, 60(2):91-110, 2004.
8M. Calonder. Brief; Computing a local binary descriptor very fast, IEEE TPAMI, 34(7):1281-1298, 2011.

2 Heo, K. Lee, and S. Lee. Joint depth map and color consistency estimation for stereo images with different
illuminations and cameras, |IEEE TPAMI, 35(5):1094-1106

10y Shen, L. Xu, Q. Zhang, and J. Jia. Multi-modal and multi-spectral registration for natural images, ECCV,
2014.
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Parameter Setting

Our DASC descriptor is constructed with the following same
parameter settings for all datasets:
{o,7,N,M, L} = {0.5,0.03,5 x 5,31 x 31,128}.

Effect of support window size Effect of descriptor dimension

35 ‘ 20 ! ‘ ‘ : .
—de— Exp. 0/1 ol S —d— Exp. 0/1 ||
| : | : —8— Exp. 0/2 : | | : —&— Exp. 0/2
SO\ C\ A S S = |[lum. 1/2]] NG S o o == llum. 1/2]]
| : | ' = lllum. 1/3 17N R P SR SR — lllum. 1/3
AN\ BN TT—

-
(8]

—_

200\ - NN T S R S

-

—_
8]

Error in unoccluded area (%)
Error in unoccluded area (%)

-
—_

i i i i 1 | 10 i i i i i i
5X5 9X9 13X13 17X17 21X21 25X25 20X29 33X3 50 100 150 200 250 300 350 400
support window size descriptor dimension

Figure: Average bad-pixel error rate on Middlebury benchmark of DASC+LRP
descriptor with WTA optimization as varying support window size and descriptor
dimension.
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Middlebury Stereo Benchmark

We first evaluated our DASCHLRP descriptor in Middlebury stereo
benchmark containing illumination and exposure variations.

Figure: Comparison of disparity estimation for Moebius image pairs taken under
illumination combination ‘0/2". (from left to right, top and bottom) Left color image,
right color image, and disparity maps for the ground truth, ANCC, BRIEF, DAISY,
SIFT, LSS, DASC+RP, and DASC+LRP.
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Middlebury Stereo Benchmark

GC results under illumination variations GC results under exposure variations
35 T T T T T T 30 T T T T T T
. B Vi+SIFT
~ 30; I ANCC H = 5. - ]
> [ RsNCC =
S 25 CISIFT | 8 i
S [ IDAISY 5 20¢ 1
B 20 . | IBRIEF I 3 _
5 _ I [ Lss S 15. ) i
g 15| B DASC+RP || S
= Bl DASC+LRP|| 2 I I
-} - - > 10, u
£ 107 {1 £
S S
0 s | & 5 .
| | L | | L L || 0 L | | | | || L L
1/1 1/2 1/3 2/2 2/3 3/3 0/0 0/1 0/2 1/1 1/2 2/2
left/right image illumination configuration combination left/right image exposure configuration combination

Figure: Average bad-pixel error rate on Middlebury benchmark with illumination
variations and exposure variations. The GC was used for optimization. Our
DASC-+LRP shows the best performance.



Multi-modal and Multi-spectral Image Pairs

Figure: Comparison of dense correspondence for RGB-NIR images and flash-noflash
images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY, (e) LSS, (f)
DASC. The results consist of warped color images and 2-D flow fields.




Multi-modal and Multi-spectral Image Pairs
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(a) (b) (c) (d) (e) (f)
Figure: Comparison of dense correspondence for different exposure images and
blurred-sharpen images for (a) input image pairs, (b) RSNCC, (c) BRIEF, (d) DAISY,
(e) LSS, (f) DASC. The results consist of warped color images and 2-D flow fields.
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Multi-modal and Multi-spectral Image Pairs

RGB- Flash- Diff. Blur- Ave

NIR noflash EXp. Sharp '
NRDCM 54.27 | 48.92 | 51.34 | 59.72 | 53.56
ANCC 18.45 | 14.14 | 11.96 | 19.24 | 15.94
RSNCC 13.41 | 15.87 | 9.15 | 18.21 | 14.16
SIFT 18.51 | 11.06 | 14.87 | 20.78 | 16.35
DAISY 20.42 | 10.84 | 12.71 | 2291 | 16.72
BRIEF 1754 | 921 | 954 | 19.72 | 14.05
LSS 16.14 | 11.88 | 9.11 | 18.51 | 13.91
DASC+RP 11.71 | 751 | 7.32 | 12.21 | 9.68
DASC+LRP | 8.10 | 5.41 | 6.24 | 10.81 | 7.64

Table: Comparison of quantitative evaluation on multi-spectral and multi-modal
images: hierarchical BP optimization was used.

11y, HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski. Non-rigid dense correspondence with
applications for image enhancement, ToG, 2011.
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Concluding Remarks

e The robust novel local descriptor called the DASC has been proposed
for dense multi-modal and multi-spectral matching.
— Adaptive self-correlation measure and patch-wise receptive field pooling.

e Secret Source

— Speed: With the fast edge-aware filters (EAF), our DASC descriptor can
compute the dense descriptor very efficiently.

— Robustness and Accuracy: 1) Randomness + 2) Non-center biased sampling +
3) Adaptive Self-Correlation (ASC)
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PART 1.4: EXTENSION - DASC
(SCALE AND ROTATION INVARIANCE)

DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence Estimation,”
on Pattern Analysis and Machine Intelligence. (under revision)

IEEE Trans.



Limitation of DASC

 NOT appropriate to deal with geometric variations

Two images with both geometric and photometric variations

> GI-DASC (Geometry-invariant DASC) : scale and rotation

127s
#3%
Weged

Z*
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Difficulty in Densely Estimating Scale and Rotation

Edge and Corners: Easy to estimate

? scale and rotation

65



Speed vs. Geometric Invariance

e Suppose two adjacent pixels have different scales and rotations

pl: scale =1, rotation =0
p2: scale = 1.5, rotation = 30

Problem: Sampling patterns of p1
and p2 are NOT overlapped

—> Efficient computation of DASC is
NOT possible!

Input image

o o
pl p2
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Our Solution: Superpixel-induced Framework

* Trade-off between speed and Geometric Invariance

> Assumption: Scale and rotation within a superpixel remain unchanged

i

1

1

. ﬁ)l
{ 3 mi 2

______________________

Superpixel S,
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1.

2.

3.

Dense Estimation of Scale and Rotation

Estimating sparse geometric field (scale and rotation)
—  Similar to SIFT, we estimate scale and rotation for features only.

Assign scale and rotation for each superpixel, where valid
geometric fields exist.

Interpolate geometric fields for remaining superpixels through the
following quadratic optimization

5 o 1 2 S o 9
Z p?}i((—"?n - Gm) —|_ i“‘ Z L’“*??I;n((;’m o GTI)Q

m neN e

G,,: Dense geometric field (scale and rotation)
G*,,: Initial sparse geometric field from step 2
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Dense Estimation of Scale and Rotation
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GI-DASC
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Summary

* GI-DASC

— DASC: works well for photometric distortion (illumination
variation, RGB vs. NIR)

— SIFT: works well for geometric distortion (e.g. scale and rotation)

- GI-DASC: works well for both photometric and geometric
distortion (based on superpixel-induced framework)

Dense matching?

Remaining Question:

How to deal with affine transform or projective transform? ...
/1 “?&a 42?




PART 1.5: EXTENSION — DASC
(DEEP SELF-CORRELATION DESCRIPTOR)

Deep Self-Correlation Descriptor for Dense Cross-Modal Correspondence, ECCV 2016



Non-rigid Deformation vs. Matching Details

* LSS vs. DASC

— Center-biased dense max pooling vs. Randomized pooling

e Max pooling
— Pros: Robust to non-rigid deformation
— Cons: Degenerate the matching details

dip> = max {C(i,7)} C(s,t) = max(exp(—(1 — |¥(s,t)|) /o), T)

J€bin; (1)
Rk 1A
/
\
bin, (/)

(a) LSS descriptor 73 (b) DASC descriptor "t:amﬁ
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Non-rigid Deformation vs. Matching Details

% - @ 7
Q| o N o)
O IIIII O IIIII o IIIII
5 2 2l
= = |[==DSC | =
2 2 24
Cz“ § 'czu Ground truth—
Ground truths Ground truth—
-15 -10 -5 0 5 10 15 -15 -10 -5 ©0 5 10 15 -15 -10 -5 0 5 10 15
search range search range search range
Matching cost in A Matching cost in B Matching cost in C

— DASC descriptor is definitely robust to modality variation

— However, it is sensitive to non-rigid image deformation.
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Handling Both Non-rigid Deformation and Matching Details

Key idea

— 1) Self-correlational responses and 2) Deep architecture
— Single Self-Correlation (SSC): Self-correlational responses

— Deep Self-Correlation (DSC): Self-correlational responses + Deep architecture
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Single Self-Correlation (SSC) Descriptor

 Reformulating LSS in a deep architecture

self-correlation log-polar max-pooling
> Fj'
; -,
MR [tet I ///
L

Computing LSS

multiple self-correlation circular spatial pyramid pooling
— — rf)
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Circular Spatial Pyramid Pooling (C-SPP)

« C-SPP
— To pool the self-correlation responses within each
hierarchical spatial bin in a circular configuration

N Y

Examples of the circular spatial pyramidal bins
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Efficient Computation of Self-Correlation Surface

— Constructing self-correlation surface is very time-consuming
1) To expedite processing, we utilize fast edge-aware filtering (EAF).
2) Pre-computation scheme for self-correlation surfaces.

/’—-) 4M} Y —— / N, xNg
'----.i.-.-s.-.:.-_-_a'___’_.'; )
szM’” 4

OUMzrNgMz) - O(14M3)

Mg — 1: Using EAF
NKMR2 - 4MR2: Using the pre-computation of self-correlation surfaces

I: Image size, Mg: Patch size, Ni: # of sample patches, Mp X Mg: Window size &rm.f,
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Pre-computation of self-correlation surfaces

Image

Window
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Deep Self-Correlation (DSC) Descriptor

* SSCvs. DSC

— Average Pooling: Encoding self-similar structures at multiple
levels, similar to a deep architecture
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Experimental Results

e Deep Self-Correlation (DSC) Descriptor

— Dense correspondences for cross-modality (RGB-NIR, flash-
noflash, different exposure, and blurring)

...........

Image 1 Image 2 BRIEF LSS DASC SSC DSC.....
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Experimental Results

e Deep Self-Correlation (DSC) Descriptor

— Dense correspondences for non-rigid image deformations

Image 1 Image 2 DAISY
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PART 1.6: CONCLUDING REMARKS



Recent Work (mc-cnn)

 Apply CNN to stereo matching!

Left input image

Output disparity map

20 m 1.7 m

Right input image

Computing the stereo matching cost with a convolutional neural network, CVPR 2015
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Recent Work (mc-cnN)

Left image patch

MC-CNN

1.

2.

Train two patches (positive or
negative samples)

Measure a similarity value between
two patches in test phase

Similarity score

| Fully-connected, Sigmoid |
| Fully-connected, ReLU |

| Fully-connected, ReLU |
| Fully-connected, ReLU ‘
| Concatenate ‘

| Convolution, ReLU | | Convolution, ReLU |

Convolution, ReLU |

Convolution, ReLU |
A

Righ input patch

| Convolution, ReLU
| Convolution, ReLU

Left input patch
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Recent work (CNN-based descriptor 1)

— Use a Siamese network (to accelerate the training process)

Patches Siamese network

Complexity matters!

» (1. %) Patch-wise similarity measure
(X1, X2 ]
is extremely slow.

Mean  St.Dewv.

EEEVRETTFEF N &6
B B WEERE » »
BEREEE NERET 8

Figure 3: Pairs of corresponding samples from the MVS dataset. Top: leer’ry (LY). Middle: ‘Notre Dame’” (ND). Bottom:
“Yosemite’ (YO). Right: we compute the pixel difference between corresponding patches on each set and show their mean/std.

Discriminative Learning of Deep Convolutional Feature Point Descriptors, ICCV 2015 :E:m
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Recent work (CNN-based descriptor 1)

e Extended Siamese network

e A central-surround two-stream network that uses a siamese-type
architecture to process each stream

Fully connected
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Remaining Challenges

 Hand-crafted feature descriptors

— Finding a way of handling affine transform or projective
transform

— More generic framework for dealing with photometric distortion

e Learning based descriptors

— Simply applying CNNs to each patch is NOT a good way of
extracting dense descriptors due to extremely huge
computational complexity = Any better way of doing this?

A
88 b:"‘ [}
& )
pL



	Recent descriptors for challenging conditions
	Correspondence, correspondence, correspondence
	A number of challenges 
	Applications of Dense Correspondences
	슬라이드 번호 5
	Taxonomy (a matrix form)�Typical MAP setup: Matching evidence term with build-in coherence or smoothness regularization
	What decides the performance of visual correspondence?
	General Formulation
	Evaluating matching evidences: local image descriptors and matching similarity measures
	Reference - Descriptor
	슬라이드 번호 11
	Paper List
	Part 1.1: DAISY: An efficient dense descriptor
	DAISY Descriptor
	DAISY Descriptor
	DAISY Descriptor
	DAISY Descriptor
	SIFT & SURF & DAISY Comparison
	Runtime Analysis
	Part 1.2: Local self-similarity�
	Conventional Image Descriptors
	Conventional Descriptors vs. Self-Similarity
	Local Self-Similarity (LSS) Descriptor
	Local Self-Similarity (LSS) Descriptor
	Local Self-Similarity (LSS) Descriptor
	Local Self-Similarity (LSS) Descriptor
	Local Self-Similarity (LSS) Descriptor
	Properties and Benefit of LSS Descriptor
	LSS Descriptor Applications
	Interest Object Detection in Images
	Image Retrieval by “Sketching”
	Comparison to Other Descriptors
	Part 1.3: DASC: Dense Adaptive Self-Correlation Descriptor
	Can we find correspondences in the images below?
	Image Descriptor Matters!
	Our Goal
	Problem of Existing Descriptors
	Problem of Existing Descriptors (including LSS)
	Dense Adaptive Self-Correlation (DASC)
	LSS vs. DASC
	Randomized Receptive Field Pooling
	Randomized Receptive Field Pooling
	Randomized Receptive Field Pooling
	The DASC Descriptor Formulation
	We wish to compute the descriptor densely!
	Efficient Computation of DASC
	Efficient Computation of Dense Descriptor
	Overview of EAF
	Intuitive example: Gaussian blur
	Intuitive example: Bilateral filter
	O(1) Time EAF
	O(1) EAF – State-of-the-arts
	Overall Process of DASC Descriptor
	Computational Complexity Analysis
	Experimental Environments
	Parameter Setting
	Middlebury Stereo Benchmark
	Middlebury Stereo Benchmark
	Multi-modal and Multi-spectral Image Pairs
	Multi-modal and Multi-spectral Image Pairs
	Multi-modal and Multi-spectral Image Pairs
	Concluding Remarks
	Part 1.4: Extension – DASC�(scale and rotation invariance)
	Limitation of DASC
	Difficulty in Densely Estimating Scale and Rotation
	Speed vs. Geometric Invariance
	Our Solution: Superpixel-induced Framework
	Dense Estimation of Scale and Rotation
	Dense Estimation of Scale and Rotation
	GI-DASC
	Summary
	Part 1.5: Extension – DASC�(Deep Self-Correlation Descriptor)
	Non-rigid Deformation vs. Matching Details
	Non-rigid Deformation vs. Matching Details
	Handling Both Non-rigid Deformation and Matching Details
	Single Self-Correlation (SSC) Descriptor
	Circular Spatial Pyramid Pooling (C-SPP)
	Efficient Computation of Self-Correlation Surface
	Pre-computation of self-correlation surfaces
	Deep Self-Correlation (DSC) Descriptor
	Experimental Results
	Experimental Results
	Part 1.6: Concluding remarks
	Recent Work (MC-CNN)
	Recent Work (MC-CNN)
	Recent work (CNN-based descriptor 1)
	Recent work (CNN-based descriptor 1)
	Remaining Challenges

