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Local Image Descriptors
• Objective

– Providing visual cues for establishing visual correspondence 
among multiple images

( ,  , ): simple 3-D feature descriptor

: simple 75-D feature descriptor 
(when using 5 × 5 window)

Such simple representations do NOT 
work well in many computer vision tasks.
Q: Is there a better way of doing this?
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Image Descriptors
• Most features can be thought of as templates, histograms 

(counts), or combinations in hand-crafted descriptors

• The ideal descriptor should be
– Robust
– Distinctive
– Compact
– Efficient

• Most available descriptors focus on edge/gradient 
information
– Capture texture information
– Color rarely used

Slide courtesy from K. Grauman, B. Leibe
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Image Descriptors
• Hand-crafted descriptors

– SIFT, BRISK, BRIEF, Affine SIFT (ASIFT)
– DAISY, Local Self-Similarity (LSS), Locally Adaptive Regression 

Kernels (LARK)
– Rank Transform, Census transforms, Mutual Information (MI), 

Normalized Cross-Correlation (NCC), Zero-mean Normalized 
Cross-Correlation (ZNCC), Dense Adaptive Self-Correlation 
(DASC), Deep Self-Correlation (DSC) Descriptor

• Learning-based descriptors
– Brand new approaches based on metric learning or 

convolutional neural networks (CNNs)
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Local image descriptors and matching similarity measures

• Descriptors for matching (sparse) interest points
– SIFT [1], BRISK [2], BRIEF [3], Affine SIFT (ASIFT) [4]

• Descriptors for dense wide-baseline matching
– DAISY [5]

• Descriptors for semi-dense large displacement matching
– Deep Matcher [6]

• Descriptors for matching semantically similar image parts (e.g. cross-domain matching)
– Local Self-Similarity (LSS) [7], Locally Adaptive Regression Kernels (LARK) [8]

• Similarity measures for handling photometric and multi-modal variations 
– Rank Transform, Census transforms [9], Mutual Information (MI) [10], Normalized Cross-

Correlation (NCC) [11], Zero-mean Normalized Cross-Correlation (ZNCC) [12], Dense Adaptive 
Self-Correlation (DASC) [13,14], Deep Self-Correlation (DSC) Descriptor [15]

• Learning based descriptors
– Measure the patch similarity using CNNs [18], [19], [20], [21]
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Detectors and Descriptors for Hand-Crafted Features

SUSAN

1997

Intensity-based
Wedge model detector

2005

FAST

2010 2011

ORB
BRISK

Gradient-based
Harris

Harris-
Laplace

SIFT
2006PCA-SIFT

GLOH

CHoG

2012

FREAK

Floating-point Ds
High Discrimination Power

Binary Ds
Less Storage Fast Matching

2012

MROGH

BRIEF

SIFT-group
Gradient-based
Histogram-Ds

ORB-group
Comparison-based
Binary-Ds

Robustness

Compactness

Machine 
Learning-based
Binary-D

“ORB: an efficient alternative to SIFT or SURF”

Courtesy from Prof. Chee Sun Won
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Sparse Dense

Density

SIFT, BRIEF, 
BRISK, SURF

DAISY, DASC, 
DSC

Photometric Distortion

Deep 
Matcher

Exposure Imaging Modality

Rank Transform, Census transform, Mutual 
Information, Normalized Cross-Correlation (NCC)

DASC, DSC
Absolute NCC (ANCC)

Illumination Semantically Similar

?

Geometric Distortion

None Affine transform

DASC Affine SIFT

Scale, rotation Projective transform

?
SIFT, SURF, Deformable spatial 
pyramid, Scale-space SIFT, 
DAISY Filter Flow, GI-DASC

(Considering computational redundancy!)

Challenges of 
Image Descriptors 
Note that here we show the hand-
crafted descriptors, as the 
performance of learning based 
descriptors are not fully studied yet!
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Density

The density of descriptors depends on applications
- Sparse feature: Camera tracking, image retrieval, Structure-from-Motion
- Dense feature: annotation propagation, dense semantic labeling, depth or motion recovery

Densely computing the descriptors provokes a huge amount of computational complexity!
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Geometric Distortion
Scale and rotation variations Affine transform variation

Projective transform variation

Even state-of-the-arts hand-crafted descriptors can mostly handle scale and rotation variations.
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Photometric Distortion

Exposure or illumination Imaging Modality
Intra class variation:
semantically similar objects

Even state-of-the-arts hand-crafted descriptors can handle rather simple photometric 
distortions such as exposure or illumination variations to some extent.
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Hand-crafted vs. Learning-based Descriptors
• Hand-crafted descriptors

– “Distinctive image features from scale-invariant keypoints,” Int. Journal of Computer 
Vision, 2004. (Sparse, scale/rotation/illumination invariant feature)

– “DAISY: An efficient dense descriptor applied to wide-baseline stereo,”
IEEE Trans. Pattern Analysis and Machine Intelligence, 2010.
(Dense, illumination invariant feature)

– “DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence 
Estimation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016 (In press)
(Dense, scale/rotation/illumination invariant feature)

• Learning-based descriptors
– “Computing the Stereo Matching Cost With a Convolutional Neural Network,” CVPR, 

2015 (Dense, illumination invariant feature)
– “Learning to compare image patches via convolutional neural networks,” CVPR, 2015

(Sparse, illumination invariant feature)
– “Discriminative learning of deep convolutional feature point descriptors,” ICCV, 2015

(Sparse, illumination invariant feature)
– “Universal Correspondence Network,” NIPS, 2016

(Dense, scale/rotation/illumination invariant feature)
Note that ‘sparse’ or ‘dense’ descriptors are classified, depending on 
whether the descriptor can be densely computed in an efficient manner.



PART 1.1: LEARNING-BASED DESCRIPTORS
DISCRIMINATIVE LEARNING OF DESCRIPTORS USING CNNS

J. Zbontar and Y. LeCun, “Computing the Stereo Matching Cost With a Convolutional Neural Network,” CVPR, 2015
S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convolutional neural networks,” CVPR, 2015
E. Simo-Serra, et al, “Discriminative learning of deep convolutional feature point descriptors,” ICCV, 2015
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Fully convolutional networks for semantic segmentation

• Received CVPR 2015 best paper award!
– First work employing fully convolutional network for pixel-level labeling tasks
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Fully convolutional networks for semantic segmentation

• But, this work relies on network architecture for a single task 
(semantic segmentation)
Q: What if we wish to do different task? New architecture is needed

• This does NOT provide the location of components?
Ex) Where is the ear of dog?

General purpose pixel-level 
image descriptors based on 
CNN are STRONGLY needed

Next step
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Matching Cost in Convolutional Neural Networks (MC-CNN)

• Apply CNN to stereo matching!
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MC-CNN
• Procedures

1. Train two patches (positive or 
negative samples)

2. Measure a similarity value between 
two patches in test phase

=



18

MC-CNN
• Prepare training patches for positive and negative examples

• Negative examples
–  : an offset corrupting the match, chosen randomly from the set {− , … , − ,  , … , }

• Positive examples
–  : chosen randomly from the set {− , … , }
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Network Architecture

5 × 5 × 32
convolutional kernel

Fully connected layer

Output with two real numbers that are fed 
through a softmax function, producing a 
distribution over the two classes (good match 
and bad match)

Note) L1, L2, and L3 of the networks 
for left and right patches are tied
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Fast Implementation of MC-CNN

Original accurate version Fast version

J. Zbontar and Y. LeCun, “ Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches, 
Journal of Machine Learning Research, 2016 (Extension of CVPR 2015)
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Outstanding Performance on Benchmark

The highest ranking methods on the KITTI 2012 data set as of October 2015
Note) This simple CNN based method outperforms all state-of-the-arts approaches.
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Learning to Compare Image Patches via CNNs, CVPR 2015

• Goal: learning a general similarity function for image patches
• Almost similar to MC-CNN, the method models the patch 

similarity using CNNs
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Three basic network architectures
• 1) 2-Channel, 2) Siamese, 3) Pseudo-Siamese
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Extended Siamese network
• A central-surround two-stream network that uses a 

siamese-type architecture to process each stream

Conv+ReLU

Max pooling

Fully connected 
layer
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Learning of Similarity Network
• Optimization

– Optimizing with stochastic gradient descent (SGD) for the 
objective with hinge-based loss term + L2-norm regularization

• Data Augmentation and preprocessing
– To avoid overfitting, they augment training data by 1) flipping 

patches pairs horizontally and vertically and 2) rotating to 90, 
180, 270 degrees.

1 (for positive samples) or
-1 (for negative samples)

Network outputs
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Experimental Details
• Training data

– The patches are scale and orientation normalized.
– Three dataset: Yosemite, Notre Dame, and Liberty

• 500,000 ground-truth feature pairs for each dataset, with equal 
number of positive (correct) and negative (incorrect) matches.

• Each of the subsets was generated using actual correspondences 
obtained via multi-view stereo depth maps.
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Experimental Results

• 2-channel & 2 stream network is the best.
• Decision network works better than simple L2 distance.

[19] Learning Local Feature Descriptors Using Convex Optimisation, IEEE TPAMI 2014

Key idea: learning the pooling regions for 
defining feature descriptors based on sparsity
(Hand-crafted descriptors)
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Similarity Network using SPP
• Putting spatial pyramid pooling (SPP) on the top of 

branch networks
– Top decision layer has an input of fixed dimensionality for any 

size of the input patches.
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Spatial Pyramid Pooling in Deep Convolutional Networks for 
Visual Recognition, TPAMI 2015

• Addresses the implementation issue that CNN takes an input with a 
fixed size only.
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Spatial Pyramid Pooling in Deep Convolutional Networks for 
Visual Recognition, TPAMI 2015

• Multiple responses are concatenated from spatial 
pyramid pooling layers.



31

Similarity Network using SPP

1. Use the ellipses detected by MSER (Maximally stable extremal 
regions) for interest points.

2. These ellipses are used as inputs for the similarity network using 
SPP.

MSER results from http://www.vlfeat.org/overview/mser.html
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Local descriptors performance evaluation
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Concluding Remarks

• 2-channel 2-stream network produce the best results
à Future work: Accelerating the evaluation of this network

• 2-stream multi-resolution models and SPP based models 
consistently improve the descriptor quality.

• Learning with a larger training set may improve the 
performance of the proposed method. 
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Discriminative Learning of Deep Convolutional Feature 
Point Descriptors, ICCV 2015

Schematic of a Siamese network, where pairs of input patches are processed 
by two copies of the same CNN.

Positive examples

Negative examples

Note) This is almost similar 
to CVPR 2015 paper, except 
using L2 distance
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Discriminative Learning of Deep Convolutional Feature 
Point Descriptors, ICCV 2015

Complexity matters!

Patch-wise similarity measure
is extremely slow.



PART 1.2: LEARNING-BASED DESCRIPTORS
UNIVERSAL CORRESPONDENCE NETWORK

C. B. Choy, Y. Gwak, and S. Savarese, “Universal Correspondence Network,” NIPS, 2016
M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer Networks,” NIPS 2015
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Spatial Transformer Network, NIPS 2015
• Goal: dealing with spatial transformation in an end-to-end training 

framework

• Interleaving convolutional layers with max-pooling layers allows 
translation invariance.

+ Exceptionally effective
- Pooling is simplistic.
- Only small invariances per pooling layer
- Limited spatial transformation
- Pools across entire image

• Can we do better?
M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer Networks,” NIPS 2015

Slide Courtesy from M. Jaederberg
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Conditional Spatial Warping
• Conditional on input feature map, spatially warp image.

+ Transforms data to a space expected by subsequent layers
+ Intelligently select features of interest (attention)
+ Invariant to more generic warping

Slide Courtesy from M. Jaederberg
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Conditional Spatial Warping

Slide Courtesy from M. Jaederberg
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A differentiable module for spatially transforming data, 
conditional on the data itself

Slide Courtesy from M. Jaederberg
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Sampling Grid

• Warp regular grid by an affine transformation

Slide Courtesy from M. Jaederberg
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Sampling Grid

• Warp regular grid by an affine transformation
(Attention model)

Slide Courtesy from M. Jaederberg



43

Conditional Spatial Warping

Identity transformation Affine transformation

Slide Courtesy from M. Jaederberg
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Sampler
• Sample input feature map U to produce output feature 

map V (i.e. texture mapping)

e.g. for bilinear interpolation:

and gradients are defined to allow backpropagation, eg:

Slide Courtesy from M. Jaederberg
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A differentiable module for spatially transforming data, 
conditional on the data itself

Slide Courtesy from M. Jaederberg



46

Spatial Transformer Networks
• Spatial Transformers is fully differentiable, and so can be inserted at any point in 

a feed forward network and trained by back propagation

Example:
- digit classification, loss: cross-entropy for 10 way classification

Slide Courtesy from M. Jaederberg
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Task: classify MNIST digits
• Training and test randomly rotated by (+/- 90°)
• Fully connected network with affine ST on input

Slide Courtesy from M. Jaederberg
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Generalizations 1: transformations

• Affine transformation – 6 parameters

• Projective transformation – 8 parameters

• Thin plate spline transformation

• Etc

• Any transformation where parameters can be regressed

Slide Courtesy from M. Jaederberg
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Rotated MNIST

Slide Courtesy from M. Jaederberg
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Rotated, Translated & Scaled MNIST

Slide Courtesy from M. Jaederberg
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Objective Performance
• The percentage errors for different models on different 

distorted MNIST datasets
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App: Fine Grained Visual Categorization

• Pre-train inception networks on ImageNet
• Train spatial transformer network on fine grained multi-way classification

Slide Courtesy from M. Jaederberg
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Summary of STN

• Spatial Transformers allow dynamic, conditional cropping and 
warping of images/feature maps.

• Can be constrained and used as very fast attention mechanism.

• Spatial Transformer Networks localize and rectify objects 
automatically. Achieve state of the art results.

• Can be used as a generic localization mechanism which can be 
learnt with back-propagation.

Slide Courtesy from M. Jaederberg
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Universal Correspondence Network (UCN), NIPS 2016

• Hand-crafted descriptors
– Count on local image properties such as image gradient.
– Different descriptors are used for various correspondence applications

• SIFT, SURF: sparse structure from motion
• DAISY, Deformable Spatial Pyramid (DSP): dense matching
• SIFT Flow, FlowWeb: semantic matching

• Existing learning-based descriptors
– Typically deal with patch-wise similarity using Siamese network.
– It is well-known that CNN is invariant to scale and translation thanks to 

convolution and pooling layers.
– However, handling variations with data augmentation or explicit network 

structure yields higher accuracy! 
à Spatial transformer network (STN, NIPS 2015)
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Universal Correspondence Network (UCN)
• The UCN learns a metric space for geometric correspondences, dense 

trajectories or semantic correspondences.

• Existing learning-based descriptors using patch-similarity require ()
feed-forward passes where n: # of patches, while UCN use only ().
– Note that this is very similar to the fast version of MC-CNN.
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Three Key Contributions

1. Deep metric learning with a constrastive loss for learning a feature 
representation that is optimized for the given correspondence 
task.

2. Fully convolutional network with fast active hard negative mining.

3. Fully convolutional spatial transformer for patch normalization,
by incorporating spatial transformer network (STN) in their 
network.
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Network Architecture
• Fully convolutional NN: convolutions, pooling, and nonlinearities (ReLU)
• Convolutional spatial transformer: deal with geometric variations
• Channel-wise L2 normalization: is similar to SIFT
• Correspondence contrastive loss: is used for an effective learning
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Correspondence Contrastive Loss
• Generalized form of contrastive loss

– Key idea: use a set of all patches, NOT just a single patch.

Note) Compare with the following contrastive loss used in ICCV 2015 paper
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Hard Negative Mining

• The second term is active only when the distance between the 
feature are smaller than the margin .

• So, random negative pairs do not contribute
to training, since they are generally too far from
each other.

Positive samples Negative samples


  = max (0,  −  )
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Hard Negative Mining

• Hard negative mining solution in UCN
1) Extract features in the first image
2) Find the nearest neighbor (NN) in the second image
3) Use as negative pairs NN candidates far from the ground truth

Ground truth 
corresponding point

NN point

This is a negative sample!

First image Second image
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Geometric Invariance in CNNs
• Suppose two adjacent pixels have different scales and rotations

Input image

p1 p2

p1: scale = 1, rotation = 0
p2: scale = 1.5, rotation = 30

Problem: Patch size and orientation 
are different from all pixels
-> Convolutional kernel should be 
varying for each pixel, which is 
contradictory to conventional CNNs.
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Convolutional Spatial Transformer (CST)
• The method incorporates the spatial transformer network (STN) [1] 

into their network architecture to enable an end-to-end learning.

• With the scale and rotation estimated, each patch centered at the 
reference pixel is normalized, similar to SIFT.

[1] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial Transformer Networks,” NIPS 2015

[1]
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Convolutional Spatial Transformer (CST)
• Convolutional Spatial Transformer: Trick for addressing the geometry 

variance
1) The CST takes an input from a lower layer and applies independent spatial 

transformation for each patch.
2) The activations are normalized (transformed) independently, e.g., 5 × 5

window as below. 
3) The transformed activations are placed in a larger activation without 

overlap. 
4) Apply a successive convolution with the stride (Here, 5) to combine the 

transformed activations independently.
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Comparison with Other Descriptors

[22] J. Long, N. Zhang, and T. Darrell. Do convnets learn correspondence? In NIPS, 2014.
[23] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
[26] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. DeepMatching: Hierarchical Deformable Dense Matching. Oct. 2015.
[30] E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo. PAMI, 2010.
[35] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned Invariant Feature Transform. In ECCV, 2016.
[36] S. Zagoruyko and N. Komodakis. Learning to Compare Image Patches via Convolutional Neural Networks. CVPR, 2015.
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UCN: Experimental Setup
• Performance measure: PCK@T

– The percentage of correct keypoints (PCK) metric with threshold T

• Dataset
1. Geometric correspondence: KITTI 2015 Flow benchmark, MPI Sintel dataset

2. Semantic correspondence: PASCAL-Berkeley dataset with keypoint
annotations and a subset used by FlowWeb, Caltech-UCSD Bird dataset

3. Camera motion estimation: raw KITTI driving sequences which include 
Velodyne scans, GPS and IMU measurements
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Geometric Correspondence
• Generating training data

– Randomly pick 1000 correspondences in KITTI, MPI Sintel image 
– Hard negative samples: a pair of correspondence when the 

nearest neighbor in the feature space is more than 16 pixels 
away from the ground truth correspondence

Matching performance PCK@10px on KITTI Flow 2015 and MPI-Sintel

[8] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
[19] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. CVPR 2013.
[20] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applications. PAMI, 33(5), May 2011.
[23] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
[26] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. DeepMatching: Hierarchical Deformable Dense Matching. 2015.
[33] H. Yang,W. Y. Lin, and J. Lu. DAISY filter flow: A generalized approach to discrete dense correspondences. In CVPR, 2014.

[20][26][33]: uses additional global optimization techniques, while UCN just employs WTA
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Geometric Correspondence

• Visualization of nearest neighbor (NN) matches on KITTI images
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Semantic Correspondence
• Per-class PCK on PASCAL-Berkeley correspondence dataset

• Using PCK with (: image size max (, ℎ),  = 0.1)

• Ours-HN-ST: hard negative mining and spatial transformer
• Ours-HN: without spatial transformer
• Ours-RN: without spatial transformer and hard negative mining 

Instead, providing random negative samples that are at least 
certain pixels apart from the ground truth correspondence location 
instead
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UCN: Experimental Results

• Qualitative semantic correspondence results
– PASCAL-Berkeley keypoint annotation and Caltech-UCSD Bird dataset
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Conclusion of UCN
• Key contributions

– Correspondence contrastive loss in a fully convolutional manner

– On-the-fly hard negative mining

– Convolutional spatial transformer network

à More efficient training, accurate gradient computations, faster 
testing and local patch normalization

à Outperform prior state-of-the-art on geometric and semantic 
correspondence tasks, even without using any spatial priors or 
global optimization
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Remaining Challenges
• Hand-crafted feature descriptors

– Finding a way of handling affine transform or projective 
transform

– More generic framework for dealing with photometric distortion

• Learning based descriptors
– Addressing both geometric and photometric variations in an 

end-to-end manner in ConvNet
– Trade-off between Speed vs. Geometric Invariance
– Hybrid approaches benefiting from a plenty of hand-crafted 

feature descriptors, when dealing with geometric and 
photometric variations
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One More Thing…
• Ongoing work along semantic descriptors
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Ongoing work along semantic descriptors


