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3D Sensing (Depth Estimation)
* 3D Sensing

— Estimating depth or distance from a sensor to the scene surface,
or complete 3D shape (structure) of the scene based on the geometrical
and photometrical properties

1) 3D sensing with laser scanner 2) 3D sensing using stereo vision
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3D Sensing using Active Sensors

Time of Flight Sensor

Distance »

Laser @@
Time the pulse was sent

Lense
et Time the pulse
= was received
//
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Sensor Target Object

Principle of ToF sensors and acquired 3D data

Laser Scanner

CCD/PSD - Sensor

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich
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3D Sensing using Shape-from-X

e Shape (Structure)-from-X

— X:visual cue that can be extracted from images

e Shading
* Silhouette
* Focus Pros
. Perspective effects App(!lf[?ble in general and relatively uncontrolled
: conditions
* Occlusion Large working ranges
e Stereo Low accuracy compared to the methods in metrology
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3D Sensing using Shape-from-Stereo

Stereo:

— Shape from “motion” between two views

— Infer 3D shape of scene from two (or multiple) images from different viewpoints

Main idea: scene point
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3D Sensing using Single (=Monocular) Image Only?

* Goal: Estimate 3D depth map from single image

— Numerous approaches have been proposed using hand-crafted cues

Ex) object contour, object segment, object motion and shading

o

—
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Such hand-crafted approaches often
fail to capture plausible depth or
work only at restricted environments
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3D Sensing using Single (=Monocular) Image Only?

e Goal: Estimate 3D depth map from single image

Convolutional neural networks (CNNs) leads to a substantial
improvement in 3D sensing using a single image
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L5
Input images Depth maps from CNN-based
monocular depth estimation approach
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Overview of Monocular Depth Estimation for Deep Network

1) Constructing Large scale RGB+D Dataset

Large -scale RGB Database
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”g 2) Deep learning model for
single image depth estimation

D : Ground truth depth maps from 3D depth sensing devices
D*: Depth map estimated using deep network
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Overview of Monocular Depth Estimation for Deep Networkn

* Research items
1. Constructing large-scale RGB+D dataset
2. Deep learning model for single image depth estimation

Related Project

High quality 2D-to-Multiview contents generation from large-scale-RGB+D database
Funding: Information and communications Technology Promotion (IITP)

Period: 2015.07 ~ 2017.08
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Research Papers from the Project

* Constructing large-scale RGB+D dataset
[1] DIML/CVL RGB+D dataset (1M outdoor dataset)
[2][3][4][5] Stereo confidence estimation

* Deep learning model for single image depth estimation

[6] Deep variational approach for single image depth estimation

[1] A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation, IEEE Trans. on Image Processing (under review)
[2] Feature Augmentation for Learning Confidence Measure in Stereo Matching, IEEE Trans. on Image Processing 2017

[3] Unified Confidence Estimation Networks for Robust Stereo Matching, IEEE Trans. on Image Processing 2019

[4] Learning Adversarial Confidence Measures for Robust Stereo Matching, IEEE Trans. on Image Processing (under review)
[5] LAF-Net: Locally Adaptive Fusion Networks for Stereo Confidence Estimation, IEEE CVPR 2019 (oral presentation)

[6] A Deep Variational Approach for Single Image Depth Estimation, IEEE Trans. on Image Processing, 2018
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In This Talk

* Constructing large-scale RGB+D dataset
[1] DIML/CVL RGB+D dataset (1M outdoor dataset)
[5] Stereo confidence estimation

* Deep learning model for single image depth estimation

[1] A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation, IEEE Trans. on Image Processing (under review)

[5] LAF-Net: Locally Adaptive Fusion Networks for Stereo Confidence Estimation, IEEE CVPR 2019 (oral presentation)
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DIML/CVL RGB+D Dataset

1. How to acquire and process the RGB+D dataset

DIML/CVL RGB-D Dataset: 2M RGB-D Images of Natural Indoor and Outdoor Scenes, Technical Report
(http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/technical_report.pdf)

2. Analyzing the RGB+D dataset

A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation, IEEE Trans. on Image Processing (under review)

s (=) O|oix|ljoty

\‘“%g{)/‘ EWHA WOMANS UNIVERSITY



RGB+D Dataset

* RGB+D dataset
— RGB (color image) + D (depth map)
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RGB+D Dataset

 Many RGB+D datasets exist for indoor scenes

NYU Depth Dataset V2

Nathan Silberman, Pushmeet Kohli, Derek Hoiem, Rob Fergus

If vou use the dataset, please cite the following work:

Indoor Segmentation and Support Inference from RGBD Images
ECCYV 2012 [PDF][Bib]
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RGB+D Dataset

* But for outdoor scenes, a large-scale dataset is not ready yet
due to the difficulty in obtaining depth maps!

- Capturing devices/tools ~N

Laser scanner
Structured light (Kinect) Time-of-flight (Kinect v2) (Velodyne LiDAR)

Not applicable to Not applicable to
outdoor scenes outdoor scenes

><

Accurate sensing results
Too sparse and expensive

x (16 lines for vertical resolution)
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RGB+D Dataset

* But for outdoor scenes, a large-scale dataset is not ready yet

due to the difficulty in obtaining depth maps!

/

Capturing devices/tools

3D Graphic Rendering

!

Non-photorealistic

><

Manual Labeling

Cityscape data
for semantic
segmentation

Number of Semantic Labels: 30

KITTI data
for depth map

Number of Depth Labels: >>1000
Manual labeling is impossible!

><




Our RGB+D Dataset: DIML/CVL Dataset

e Qur solution

Stereo camera

o)

\ ZED \

Pros: High resolution and cheap

Cons: Stereo matching error
To compensate for erroneous

depth estimates
 DIML/CVL RGB+D dataset

— https://dimlrgbd.github.io/
— Using stereo camera

— Stereo matching for depth estimation

— Confidence estimation of depth map
Confidence map: indicates whether an estimated depth is reliable or not
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DIML/CVL RGB+D Dataset

Samples of our dataset

Confidence map: indicates
whether an estimated depth

is reliable or not
(0: unreliable <-> 1: reliable)
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DIML/CVL RGB+D Dataset

Stereo matching network Confidence estimation
ZED | Left network
2" g q D = (fb)/d
% Conversion
— 5 Depth (D)
=
g..19
5 E Disparity (d)
Wide baseline Capture Right | N Ster_eo_matching . . .
camera (MC-CNN) Confidence estimation Confidence

Note) Any kind of stereo matching and confidence estimation approaches
can be used here.
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DIML/CVL RGB+D Dataset

_ ZED stereo Built-in stereo

Color resolution 1920 x 1080 1920 x 1080
1280 x 720 1280 x 720

Depth resolution 1920 x 1080 1920 x 1080
1280 x 720 1280 x 720

Depth range 0.5-20m 2-80m

Baseline 12 cm 40 cm

Focal length 2.8 mm 3.5 mm
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DIML/CVL RGB+D Dataset
T Sutdoor dataset

Data acquisition  Stereo camera (ZED and built-in camera)

e Calibration and rectification using Caltech
toolbox

* Stereo matching

* Confidence estimation

Data processing

Color images
- Rectified left and right images

Disparity, depth, and confidence map
Data format - Left disparity and depth map
- Left Confidence map

Calibration parameters
- Intrinsic/extrinsic parameters for stereo camera
22 (,&\ O]} o x|} ofj o}
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DIML/CVL RGB+D Dataset

* Shooting Location

— Our dataset was acquired in various outdoor scenes including park, building, brook, road,
apartment, and so on.

— 4 different cities in South Korea: Seoul, Daejeon, Cheonan, Sejong
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Category # of folders  # of files Scene Catego ry

of our dataset

brook 1 4672
building 22 58704
construction 1 1871
driveway 7 11114
field 3 3039
) Our dataset
Non-driving scenes using hand-held stereo cameras
overpass 1 2794 (e.g., park, building, apartment, trail, and street)
park 10 23384 Existing dataset
Driving scenes obtained from the depth sensor
street 75 108097 mounted on a vehicle
(e.g., road and traffic scenes)
trail 9 18762
24 ) A




Comparison with Existing Outdoor Datasets

[ DispNet J

Depth map: Sparse LiDAR Depth map: Graphic rendering
RGB texturing: Real RGB texturing: Synthetic
# of RGB+D data: 40,000 # of RGB+D data: 3,900
Spatial resolution: 1242x375 Spatial resolution: 960x540
Driving scenes Graphic Data

using LIDAR mounted on
moving vehicle (40,000 data)

25

[ DIML/CVL dataset J

Depth map: Stereo matching + Confidence map
RGB texturing: Real
# of RGB+D data : 1,000,000
Spatial resolution: 1920x1080

Non-driving scenes

using hand-held stereo camera
(1,000,000 data)
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Our Approach using DIML/CVL Dataset

Our approach is based on ‘Student-Teacher strategy’

Teacher network: stereo matching & confidence measure networks
(stereo images -> depth map & confidence map)

Student network: monocular depth network (single image -> depth map)

Pseudo ground truth depth maps + Confidence maps

S Confidence = | u
Ay 4
Network E Network )
Disparity Map D .
Teacher Network with Data Ensemble Stereo Confidence measure
1
Stereo Image
[ Student Network ]
Monocular Depth Network Depth Map E
, £F) olztoixjcyetm
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Our Approach using DIML/CVL Dataset

Teacher network: RGB+D data generation
Training & Test: Left & Right image -> Left depth map & Confidence map

Student network

Training: Left image -> Left depth map (assisted by confidence map)

Test: Left image -> Left depth map

Stereo Image

Stereo
Matching
Network

Teacher Network

[ Student Network ]

L]

Monocular Depth Network

Loss function for student network

1 R -
L.= M, - |D(p) — D(p)| ,
ZMp; p () ()1
b
__________ : 1, ifC(p)>r
il 2 —
M, {0, ifC(p) <7t

C(p): confidence at pixel p

Pseudo ground truth depth maps + Confidence maps

Disparity Map D
with Data Ensemble

Depth Map B

27
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Our Approach using DIML/CVL Dataset

Our method is a semi-supervised approach
- Teacher network (stereo matching and confidence measure networks) are trained
in a supervised manner, but no massive training data is not needed.

- Student network (monocular depth network) are trained using pseudo ground
truth depth maps and confidence maps obtained from the teacher network

Supervised learning

Confidence D u
T —| Measure T )
E Network (—;\

Disparity Map D Supervised learning
Teacher Network with Data Ensemble

Stereo
Matching
Network

Stereo Confidence measure

Stereo Image

[ Student Network ]

Monocular Depth Network Depth Map E

Semi-supervised learning” Trained using pseudo ground truth depth maps & confidence maps
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Our Approach using DIML/CVL Dataset

* Teacher network: Stereo matching network [32]

Note) Any kind of stereo matching approaches can be used here.

ol DispResNet

[32]J. Pang, W. Sun, JSJ. Ren, C. Yang, and Q. Yan, “Cascade Residual Learning: A Two-Stage Convolutional Neural Network for Stereo Matching,” ICCV 2017

%)) O| SO X} S}

%  EWHA WOMANS UNIVERSITY

29



Our Approach using DIML/CVL Dataset

* Teacher network: Confidence measure network [26]

Note) Any kind of stereo confidence approaches can be used here.

A
\

N

9x9x1

N

Tx7x64

conv(3x3s1,64) conv(3x3s1,64)

RelU

RelLU

5x5x64
conv(3x3s1,64)
RelU

@'XIXIXI

3x3xb64 1x1x64 100
conv(3x3s1,64) RELU RelLU
RelU

[26] Learning from scratch a confidence measure, BMVC 2016

30
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Our Approach using DIML/CVL Dataset

* Student network: Monocular depth network

A variant of U-Net architecture [1]

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” MICCALI, 2015.

Note that this baseline architecture is very simple, when compared to state-of-the-arts for
monocular depth estimation.

Even with such a simple baseline architecture, our method outperforms the state-of-the-arts.

[] Conv + Batch Normalization + ReLU Il Pooling M Upsampling

128

Pooling Indices

256

Encoder

512

512 512

31

512

256

Decoder
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Analysis: Why is DIML/CVL Dataset Useful?

1. LIDAR vs. Stereo depth map
— Easy to solve the domain adaption problem with stereo depth maps

2. Stereo image vs. Stereo depth map

Unsupervised approach << Semi-supervised approach
(using stereo image) (using stereo depth map)

&) O| 2} x}ojjot
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Analysis: Why is DIML/CVL Dataset Useful?

3. Effect of confidence map
— How much does the confidence map C(p) have on the final performance?

4. Why do we choose a semi-supervised approach?

— May the teacher network (stereo matching and confidence measure networks) have the
domain adaptation issue?

(=) O|oix|ljoty
OMANS UNIVERSITY
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1. LiDAR vs. Stereo Depth Map: Scene Diversity

Domain adaptation problem

- Diverse scenes must be provided as training data.

DIML/CVL dataset

Stereo camera

ZED \

)

Sparse resolution
Hard to capture various scenes

— Does NOT scale well in obtaining massive
training data consisting of diverse scenes
(Domain adaptation problem)

Easy to capture various scenes

— Appropriate to obtain massive training
data consisting of diverse scenes

(F) olgtoixiiotm
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(c) and (g) Depth maps of state-of-the-art
monocular depth estimation network [22]
Training data: KITTI LiDAR
Test data: KITTI, Cityscape

KITTI (Target)

Though both the KITTI and Cityscapes
datasets contain driving scenes, a severe
domain adaptation problem occurs.

[22] Y. Kuznietsov, J. Tsai, J. Stuckler, and B. Leibe, “Semi-supervised
deep learning for monocular depth map prediction,” CVPR, 2017.

i

(e) (f)

Cityscapes (Novel)
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(c) and (g) Depth maps of state-of-the-art
monocular depth estimation network [22]

Training data: KITTI LiDAR
Test data: KITTI, Cityscape

KITTI (Target)

Though both the KITTI and Cityscapes
datasets contain driving scenes, a severe
domain adaptation problem occurs

[22] Y. Kuznietsov, J. Tsai, J. Stuckler, and B. Leibe, “Semi-supervised
deep learning for monocular depth map prediction,” CVPR, 2017.

(f)

(d) and (h) Depth maps of the proposed

monocular depth estimation network

Training data: KITTI Stereo +
DIML/CVL

Test data: KITTI, Cityscape

Cityscapes (Novel)
@

—
o
ik
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DIML/CVL (Novel)

(k) Depth maps of state-of-the-art
monocular depth estimation network [22]

Training data: KITTI LiDAR
Test data: DIML/CVL

[22] Y. Kuznietsov, J. Tsai, J. Stuckler, and B. Leibe, “Semi-supervised
deep learning for monocular depth map prediction,” CVPR, 2017.

(1) Depth maps of the proposed

monocular depth estimation network

Training data: KITTI Stereo +
DIML/CVL

Test data: DIML/CVL

Remarks)

1. DIML/CVL dataset is complementary to other datasets.

2. In terms of scene diversity, our strategy to construct massive training data
(acquiring stereo images and estimating depth maps) is effective.

. 6%) olgjoixjcyerm
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For training dataset, K = KITTI, CS = Cityscapes, and Ours = DIML/CVL

Test dataset: Eigen split [17]

Sup.: Supervised approach
Unsup.: Unsupervised approach
Semi-sup.: Semi-supervised approach

[17] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction

from a single image using a multi-scale deep network,” NIPS, 2014.

1. Our DIML/CVL dataset is complementary to other datasets.
2. In terms of scene diversity, our strategy to construct massive
training data (acquiring stereo images and estimating depth maps)

is effective.
Method Training data Approach Training RMSE(lin) RMSE(log) Absrel Sqrrel < 125 §<1.252 §<1.25°
Dataset Lower is better Higher is better
cap 80m

Eigen et al. [17] Left + LiDAR Sup. K 7.156 0.270 0.215  1.515 0.692 0.899 0.967

Godard et al. [21] Stereo Unsup. K 5.927 0.247 0.148 1.344 0.803 0.922 0.964

Godard et al. + pp [21] Stereo UnSup. K+ CS 4.935 0.206 0.114  0.898 0.861 0.949 0.976

Kuznietsov er al. [27] Left + LiDAR Sup. K 4.815 0.194 0.122  0.763 0.845 0.957 0.987

Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 4.621 0.189 0.113  0.741 0.862 0.960 0.986

Luo et al. [20] (Sythetic) Stereo + GT Sup. K 4.681 0.200 0.102 0.700 0.872 0.954 0.978

Our Method Left + Pseudo GT Semi-sup K 4.599 0.183 0.099 0.748 0.880 0.959 0.983

Our Method Left + Pseudo GT Semi-sup K + Ours 4.333 0.181 0.098 0.644 0.881 0.963 0.984

Our Method Left + Pseudo GT Semi-sup K+ CS 4.286 0.177 0.097 0.641 0.882 0.963 0.984

Our Method Left + Pseudo GT Semi-sup K + CS + Ours 4.129 0.175 0.095 0.613 0.884 0.964 0.986

cap S0m

Garg et al. [373] Stereo Unsup. K 5.104 0.273 0.169  1.080 0.740 0.904 0.962

Godard et al. [21] Stereo Unsup. K 4.471 0.232 0.140  0.976 0.818 0.931 0.969

Godard et al. + pp [21] Stereo Unsup. K+ CS 3.729 0.194 0.108  0.657 0.873 0.954 0.979

Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 3.518 0.179 0.108  0.595 0.875 0.964 0.988

Luo et al. [20] (Sythetic) Stereo + GT Sup. K 3.503 0.187 0.097 0.539 0.885 0.960 0.981
Our Method Left + Pseudo GT Semi-sup K + CS + Ours 3.162 0.162 0.091 0.505 0.901 0.969 0.986 T
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2. Stereo Depth Map vs. Stereo Image

* Unsupervised approach using stereo images [21]

— Uses stereo images to address the lack of massive training data

— Proposes an unsupervised reconstruction loss

Left image
-> Right image

Target I

Output Ir

Sampler (%7

Disparity dar

CNN %

Input 1L

Naive

Left image
-> Left image

Left image -> Right image
Right image -> Left image

It

I'I‘

IT

JL.

fr
d”

d

No LR

Sl L

j—'l

IT'_

Ours

Several ways to use stereo
images for training the
monocular depth network

[21] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth estimation with left-right consistency,” CVPR, 2016.
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2. Stereo Depth Map vs. Stereo Image

Our semi-supervised approach VS. Unsupervised approach
using stereo depth maps using stereo images [21]
I
Oy [ I" [ I ] Training
with Data Enserle Stereo Confidence messure Left image -> Right image
N | . . Right i -> Left i
[ Student Network ] i I szb/.‘) IT II 'g |mage e lmage
1, -
Monocular Depth Network Depth Map [) i Left image > Left depth map
: a &
Teacher network: RGB+D data generation
Training & Test: Left & Right image -> Left depth map & Confidence map
Student network
Training: Left image -> Left depth map (assisted by confidence map)
Test: Left image -> Left depth map
- Il IT -

[

) X}y ok
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For training dataset, K = KITTI, CS = Cityscapes, and Ours = DIML/CVL

Test dataset: Eigen split [17]

Sup.: Supervised approach
Unsup.: Unsupervised approach
Semi-sup.: Semi-supervised approach

[20] Single view stereo matching, CVPR, 2018.
[21] Unsupervised monocular depth estimation with left-right consistency, CVPR, 2016.
[22] Semi-supervised deep learning for monocular depth map prediction, CVPR, 2017.

1. Our strategy to construct massive training data
(acquiring stereo images and estimating depth maps) is effective,
when compared to the unsupervised approach.

Method Training data Approach Training RMSE(lin) RMSE(log) Absrel Sqrrel < 125 §<1.252 §<1.25°
Dataset Lower is better Higher is better
cap 80m
Eigen et al. [17] Left + LiDAR Sup. K 7.156 0.270 0.215  1.515 0.692 0.899 0.967
Godard et al. [21] Stereo Unsup. K 5.927 0.247 0.148 1.344 0.803 0.922 0.964
Godard et al. + pp [21] Stereo UnSup. K + CS 4.935 0.206 0.114  0.898 0.861 0.949 0.976
Kuznietsov er al. [27] Left + LiDAR Sup. K 4.815 0.194 0.122  0.763 0.845 0.957 0.987
Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 4.621 0.189 0.113  0.741 0.862 0.960 0.986
Luo et al. [20] (Sythetic) Stereo + GT Sup. K 4.681 0.200 0.102 0.700 0.872 0.954 0.978
Our Method Left + Pseudo GT Semi-sup K 4.599 0.183 0.099 0.748 0.880 0.959 0.983
Our Method Left + Pseudo GT Semi-sup K + Ours 4.333 0.181 0.098 0.644 0.881 0.963 0.984
Our Method Left + Pseudo GT Semi-sup K+ CS 4.286 0.177 0.097 0.641 0.882 0.963 0.984
Our Method Left + Pseudo GT Semi-sup K + CS + Ours 4.129 0.175 0.095 0.613 0.884 0.964 0.986
cap S0m
Garg et al. [373] Stereo Unsup. K 5.104 0.273 0.169  1.080 0.740 0.904 0.962
Godard et al. [21] Stereo Unsup. K 4.471 0.232 0.140  0.976 0.818 0.931 0.969
Godard et al. + pp [21] Stereo Unsup. K+ CS 3.729 0.194 0.108  0.657 0.873 0.954 0.979
Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 3.518 0.179 0.108  0.595 0.875 0.964 0.988
Luo et al. [20] (Sythetic) Stereo + GT Sup. K 3.503 0.187 0.097 0.539 0.885 0.960 0.981
Our Method Left + Pseudo GT Semi-sup K + CS + Ours 3.162 0.162 0.091 0.505 0.901 0.969 0.986
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For training dataset, K = KITTI, CS = Cityscapes, and Ours = DIML/CVL

Test dataset: Eigen split [17]

Sup.: Supervised approach
Unsup.: Unsupervised approach
Semi-sup.: Semi-supervised approach

[20] Single view stereo matching, CVPR, 2018.
[21] Unsupervised monocular depth estimation with left-right consistency, CVPR, 2016.
[22] Semi-supervised deep learning for monocular depth map prediction, CVPR, 2017.

1. Our approach outperforms state-of-the-arts.

Method Training data Approach Training RMSE(lin) RMSE(log) Absrel Sqrrel < 125 §<1.252 §<1.25°
Dataset Lower is better Higher is better
cap 80m
Eigen et al. [17] Left + LiDAR Sup. K 7.156 0.270 0.215  1.515 0.692 0.899 0.967
Godard et al. [21] Stereo Unsup. K 5.927 0.247 0.148 1.344 0.803 0.922 0.964
Godard et al. + pp [2] Stereo UnSup. K+ CS 4.935 0.206 0.114  0.898 0.861 0.949 0.976
Kuznietsov er al. [27] Left + LiDAR Sup. K 4.815 0.194 0.122  0.763 0.845 0.957 0.987
Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 4.621 0.189 0.113  0.741 0.862 0.960 0.986
Luo et al. [20] (Sythetic) Stereo + GT Sup. K 4.681 0.200 0.102 0.700 0.872 0.954 0.978
Our Method Left + Pseudo GT Semi-sup K 4.599 0.183 0.099 0.748 0.880 0.959 0.983
Our Method Left + Pseudo GT Semi-sup K + Ours 4.333 0.181 0.098 0.644 0.881 0.963 0.984
Our Method Left + Pseudo GT Semi-sup K+ CS 4.286 0.177 0.097 0.641 0.882 0.963 0.984
Our Method Left + Pseudo GT Semi-sup K + CS + Ours 4.129 0.175 0.095 0.613 0.884 0.964 0.986
cap S0m
Garg et al. [373] Stereo Unsup. K 5.104 0.273 0.169  1.080 0.740 0.904 0.962
Godard et al. [21] Stereo Unsup. K 4.471 0.232 0.140  0.976 0.818 0.931 0.969
Godard et al. + pp [21] Stereo Unsup. K+ CS 3.729 0.194 0.108  0.657 0.873 0.954 0.979
Kuznietsov et al. [27] Stereo + LiDAR Semi-sup K 3.518 0.179 0.108  0.595 0.875 0.964 0.988
Luo et al. [20] (Sythetic) Stereo + GT Sup. K 3.503 0.187 0.097 0.539 0.885 0.960 0.981
Our Method Left + Pseudo GT Semi-sup K + CS + Ours 3.162 0.162 0.091 0.505 0.901 0.969 0.986
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Visual Comparison

(a) (b) (c) (d) (e)

(b) Unsupervised approach [21] trained with stereo image pairs of the KITTI + Cityscapes

(c) Kuznietsov et al. [22] trained with stereo image pairs and ground truth depth map of KITTI

(d) Luo et al. [20] trained with left image and ground truth depth map of Flying Things synthetic dataset [9]
(e) the proposed method trained with KITTI + Cityscapes + DIML/CVL dataset.

[20] Single view stereo matching, CVPR, 2018.

[21] Unsupervised monocular depth estimation with left-right consistency, CVPR, 2016.

[22] Semi-supervised deep learning for monocular depth map prediction, CVPR, 2017. —
) O| RfO{ x| oty
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Recap: Our Monocular Depth Network is Just a Simple Encoder-decoder!
* Even with such a simple baseline architecture using an encoder-decoder, we achieve

outstanding performance.

* [tis expected that using more sophisticate networks produces more accurate depth maps.

[] Conv + Batch Normalization + ReLU Il Pooling M Upsampling

Pooling Indices

P

312 512 512 512

256 256
‘- 128 128 L.

Encoder Decoder

&3 O puRa el
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3. Effect of Confidence Map

Pseudo ground truth depth maps + Confidence maps

_ P t
Stereo Confidence i - _J
Matching T * —| Measure |—> R ) )
Network L Network ~ ) y

Disparity Map D
Teacher Network with Data Ensemble

Stereo Image

[ Student Network ]l

— "

Question SO,
1. How much does the confidence map C(p) P ’
. 5 |1, ifC(p) >
have on the final performance: LIMC(P) -

2. Only confident depth values are used.
What is the best way to set the
confidence threshold?

C(p): confidence at pixel p
T: Confidence threshold (0 < 7 < 1)

(=) oloixiy et
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3. Effect of Confidence Map

W
o
T

N
o
T

—
o —
— -
e —
. —
e —

Density of pseudo
GT depth

. . . I A — Trade-off between Density vs. Accuracy
"""" in pseudo GT depth maps

Accuracy of pseudo
GT depth

Loss function for monocular depth network

= sur > My D)~ D)

Density of Ground Truth ]
——Density of Pseudo Ground Truth M. — 1, if C(p) > T
————— Percentage of Correct Pixel i p 0, if C(p) < T

C(p): confidence at pixel p

0.35

0.4

' ' ' ' ' ' 7: Confidence threshold (0 < 7 < 1)
0.45 0.5 0.55 0.6 0.65 0.7 0.75

The higher 1, the better the accuracy of pseudo ground truth depth maps.
However, this reduces the density of the depth maps.

(#) O| 3o xjrfj oty
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3. Effect of Confidence Map

90 — T T Trade-off between Density vs. Accuracy
""""" in pseudo GT depth maps

——
- —
— -
e
o
o

Accuracy of pseudo
GT depth

Density of pseudo

60 Loss function for monocular depth network
- GT depth 1
=50 ~ ~
Z ECZZM ZMp"D(p)—D(p) ,
R 40 i . P 1
I Density of Ground Truth ]
30 ——Density of Pseudo Ground Truth M. — 1, if C'(p) > T
ot |7 Percentage of Correct Pixel i p 0, if C(p) < T
10 - ] C(p): confidence at pixel p
0 ' ' ' : : : : ' 7: Confidence threshold (0 <7 < 1)
03 035 04 045 05 055 06 065 07 0.75
T

The lower T, the higher the density of pseudo ground truth depth maps.
However, this decreases the accuracy of the depth maps.

(#) O| 3o xjrfj oty
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3. Effect of Confidence Map

T T T 1 I | I I I 0.16
RMSE(lin): Monocular Depth Accuracy
5 - Abs rel: Monocular Depth Accuracy
- ® =RMSE(lin): Pseudo GT 10.14
N | [ ——— Abs rel: Pseudo GT
10.12
—
101
i 41 0.08
I e 10.06
- W o> = - - ’.ﬂ"-’
- "
o= - --_,..-"'"--
_______________________ 1 0.04
50 55 60 65 70 75 80 85 90 95 100
Density

Abs rel

48

Accuracy of the monocular depth network
w.r.t. the density of the pseudo GT depth
maps

Accuracy of the monocular
depth network

Accuracy of Pseudo Ground
Truth (GT) depth maps

(=) O|oix|ljoty
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3. Effect of Confidence Map

Accuracy of the monocular depth network

6 T T T 1 I | I I I 0.16 °
RMSE (lin): Monocular Depth Accuracy w.r.t. the density of the pseudo GT depth
55| - Abs rel: Monocular Depth Accuracy maps
- ® =RMSE(lin): Pseudo GT 10.14
s N\. [T Abs rel: Pseudo GT
1012 Accuracy of the monocular
=457 depth network
= —O o
S 101 —
= 4t 72
) O
= <
35t _ 4{008
_==7 Accuracy of Pseudo Ground
3+ e~ = 10.06 Truth (GT) depth maps
_e--—-%"" - _...---"""-’
25— - --_’_-"""
___________________________ 40.04
2 ;;:-- | | | 1 1 TN ] | | 7~
@ 55 60 65 70 75 @ 85 90 95 @
Density
More accurate pseudo Full density, but pseudo GT
GT depth maps yet with depth maps become worse.
too low density (Not using confidence map)

)

A

5

=) O| O X} St

QJ)/‘ EWHA WOMANS UNIVERSITY
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3. Effect of Confidence Map

Accuracy of the monocular depth network

6 T T T 1 I | I I I 0.16 °
RMSE(lin): Monocular Depth Accuracy w.r.t. the dens'ty of the pseUdO GT depth
55 ==©-— Abs rel: Monocular Depth Accuracy maps
= ® =RMSE(lin): Pseudo GT 0.14
5la N\L [T Abs rel: Pseudo GT
10.12
—~ 45
3= 4., B Conclusion
il oz 1. The monocular depth network achieves
E 35| Joos < the best accuracy when the density is
| - about 80% (7 =0.3)
31 PRSEST 2y B 10.06 2. More accurate pseudo GT depth maps
- __e=-=—%"" I do NOT necessarily lead to better
Lol - - . .
--------------------------- 10.04 training for monocular depth network.
73 G — l | | TN ‘ ‘ O Density also matters.
@ 55 60 65 70 75 @ 85 90 95 100
Density

More accurate pseudo
GT depth maps yet with
too low density

Full density, but pseudo GT
depth maps become worse.
(Not using confidence map)

50

r—
=

(&) olstoixjcotu

G55/ EWHA WOMANS UNIVERSITY




4. Why do we choose a semi-supervised approach?

Pseudo ground truth depth maps + Confidence maps

Stereo
Matching

Confidence B | u

Measure 3 ) ?«—‘—\
- ¥

Network Network o)
Disparity Map -~ - Stereo Confidence measure
Teacher Network with Data Ensembﬁe - .
e . i
N
[ Student Network ] P
’ D=fb/D
/ -
/ -
/ \‘E
’ -~ .
e _ | MBrocular Depth Network Depth Map [ Loss function for monocular depth network
’ -
7 - - 1 A ~
=T L= > M -|D(p)—D(p)
P - c D )
» a4~ > M, > 1
p

Stereo matching network & confidence estimation
network are trained using training data in a
supervised manner.

However,

- Smaller training data is needed

- Less sensitive to the domain adaption problem

51

_ )L ifC(p) =7
MP_{O, ifC(p) <
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Our observation:

__ The stereo matching network is relatively

% e free from the domain adaption problem.

Left image patch Right image patch

0 Stereo matching aims to find similar patches.
-2 It is enough to train the network with similar patches and

9 9
[t‘ » F & dissimilar patches [7].
L1: 5 5
y v
‘ v

To additionally leverage a global context, some methods train
the stereo matching network using two images at once [11, 32],

L2: 200 200

L3: 200 200

"o concatenate p the underlying principle is to locally explore the patch-level

| 400 .« e . . .
I similarity for two-view matching.

L4: 300

i / o [7]J. Zbontar, Y. LeCun, “Computing the stereo matching cost with a convolutional neural network,” CVPR, 2015.

L5: ‘ ‘ 300 [11]JR. Chang, and YS. Chen, “Pyramid stereo matching network,” CVPR, 2018.
# [32] J. Pang, W. Sun, JSJ. Ren, C. Yang, and Q. Yan, “Cascade Residual Learning: A Two-Stage Convolutional Neural

L6: 300 Network for Stereo Matching,” CVPR, 2017.

L7: 300

Ls: 2 s (%) o|goixcotm
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The stereo matching network is relatively free from the domain adaption problem,
while the monocular depth estimation network often suffers from it.

Stereo matching Monocular depth estimation
* Finding a pair of similar patches e Estimating an overall 3D layout requires
is a local inference process. seeing an entire image.

e Global context does matters.

Local matching
(inference) process

Depth prediction from single
image using global context

53




Cityscapes (Novel) KITTI (Target)

DIML/CVL (Novel)

- i

(e)

(k)

(h)

(1)

54

(b) (f) (j) Depth maps of deep stereo
matching network [32],

Training data: KITTI LiDAR
Test data: KITTI, Cityscape, DIML/CVL

The stereo matching network
is relatively free from the domain
adaption problem.

[32]J. Pang, W. Sun, JSJ. Ren, C. Yang, and Q. Yan, “Cascade Residual
Learning: A Two-Stage Convolutional Neural Network for Stereo
Matching,” CVPR, 2017.

Similarly, the confidence measure
network is less sensitive to the
domain adaptation problem,

as it is trained with a pair of patches.

[
rx

(=) 0| 2foy x| ot
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Transfer Learning using Monocular Depth Network

* Pre-trained model for road detection and semantic segmentation

Our pre-trained monocular depth network can be transferred as a
pretext task for training road detection and semantic segmentation

-
",
e
.

/

Roadlnpuf-

- 1 Feature Representation

Segmentation Input Semantic Segmentation

N 6%) olgjoixjcyerm
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Transfer Learning using Monocular Depth Network

* Semantic segmentation

Random initialization of training weights

b J
Semantic Segmentation S
Tnitialization Protext ean ToU 1. Stcartmg'wnh ImageNet pr.e—tralned model
Scratch - 5227 - __--¥| 2. Finetuning the network with small amount
ImageNet pre-trained model [47]  Classification 6627 of semantic segmentation training data
K Depth 62.82
K + Ours Depth 64.54 . . .
K + CS Degth 6502 - 1. Starting with our pre-trained model
K + CS + Ours Depth 65.47 ~*1 2. Finetuning the network with small amount
of semantic segmentation training data
Training data for finetuning Remarks)
Semantic segmentation: Cityscapes dataset 1. Our dataset (DIML/CVL) is complementary to
(a small amount of manually annotated training data) other dataset.

2. Our pre-trained model is comparable to the
ImageNet pre-trained model.

56 (%) o|gtojxjcyetm
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(b) From scratch
(c) Using ImageNet pre-trained model
(d) Using our pre-trained model

(1

fx) O| ofoy || B}
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Transfer Learning using Monocular Depth Network

e Road detection

Fmax: Fl1-measurement

AP: average precision B Random initialization of training weights
Road Detection ///
Initialization Pretext Fmax AP // 1. Starting with ImageNet pre-trained model
Scratch o 9382 90877 | 2. Finetuning the network with small amount
ImageNet pre-trained model [4/]  Classification  94.28  92.25 -~ : .
of road detection training data
K Depth 94.41 92.04
K + Ours Depth 9492  92.28
. KC:SI_ CSO Beptﬁ gg-ég gi-gg S~ 1. Starting with our pre-trained model
+ + t . . o~ . . .
- P A1 2. Finetuning the network with small amount
of road detection training data

Training data for finetuning
Road detection: KITTI road benchmark
(a small amount of manually annotated training data)

s 63 oltoixicyetm
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Results learned
from scratch

Using ImageNet
pre-trained model

Our pre-trained model

(by UMM

UM: single lane road with markings
UU: single lane road without markings
UMM: multi-lane road with markings (F) olgtoixitetm
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Conclusion
 DIML/CVL RGB+D dataset

— 1 million outdoor scenes

— Consisting of left and right color images, disparity maps, depth maps, confidence maps

* Semi-supervised learning approach for monocular depth estimation

Training Test
1. Left & Right image -> Left depth map & Confidence map
2. Left image -> Left depth map (assisted confidence map)

Confldence f_‘:‘ . _ u
Measure Ty 3
Network ~ o

Disparity Map D
with Data Ensemble Stereo Confidence measure

Left image -> Left depth map

Stereo
Matching
Network

Teacher Network

Stereo Image

[ Student Network ]

Monocular Depth Network Depth Map f)

o £F) olgfot oyt
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Conclusion

 Remarks on the proposed semi-supervised method
— Our DIML/CVL dataset is complementary to other datasets.

— Our strategy to construct massive training data
(acquiring stereo images and estimating depth maps) is effective.

— Our approach outperforms state-of-the-arts.

— Confidence map is effective in addressing estimation errors of pseudo ground truth
depth maps

61 (Z) o|gtoixiryotam
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Stereo Confidence Estimation

1. Deep learning based approach for confidence estimation
LAF-Net: Locally Adaptive Fusion Networks for Stereo Confidence Estimation, IEEE CVPR 2019 (oral presentation)
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Stereo Confidence Estimation

Challenges on Stereo Matching

: textureless regions
: reflection regions

: occlusion regions

. illumination variations

Right image Disparity

— Stereo Matching remains still an unsolved problem due to its inherent challenging
elements, e.g., textureless, reflection, occlusion regions, and illumination variations

o (=) O|oix|ljoty
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Stereo Confidence Estimation

e Confidence estimation

— Confidence map indicates whether an estimated depth is reliable or not

' Initial Disparity . -

(0: unreliable <-> 1: reliable)

) i 3m)
64 é’f;g) O 24O X} O 1l
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Related Work: Learning Approach based Confidence Estimation

Goal: designing a confidence classifier "stimated it aepth map

Confidence ‘
Classifier \ Training confidence

., 1 classifier by

n, o e' ot ngma 9) ,’ minimizing the loss
wi" 3
'3 Tﬁ } ) 4

o :*ﬁ%
G. T. Confidence map Estlmated Confldence map u

Training Phase

Training data

G.T. Leftdepthmap -—----—--

arg min(

S

Estimated left depth map igh Confidence
Low confidence
Testing Phase
Test data

Confidence
— Classifier ity b
Estimated left depth map Estlmated confldence map

- (%) olgoixiiotm
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Related Work: Learning Approach based Confidence Estimation

Stereo Pair

Disparity N Confidence
Estimation Estimation
y‘ -

1) Confidence Feature Design:
— How to extract robust and discriminative confidence features?

2) Confidence Estimator Learning:
— How to learn confidence features effectively?

(—

7F) o|Bjoxirot

R
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Related Work: Learning Approach based Confidence Estimation

Handcrafted approach for learning confidence classifier [20, 27]

/

Confidence Feature Design Confidence Estimator Learning
Inrstanfe
Initial Multi-scale Confidence Final ranlom Forfif«f"// f HH%HH
Confidence Map Aggregation Confidence Map m pﬁ q;%??&

i 5 P
\ R e X

@ é o édb'd b dbdbdde

Tree-1 Tree-2 Tree-n
ML Class-A clalss_B Class-B

Pixel-level  Superpixel-level @ Confidence map | | Majority-Voting | ‘

K Final-Class | /

[20] S. Kim, D. Min, S. Kim, and K. Sohn, “Feature augmentation for learning confidence measure in stereo matching,” IEEE Trans. Image Processing, 2017.
[27] M. Park and K. Yoon, “Leveraging stereo matching with learning-based confidence measures,” CVPR 2015

. (=) O|oix|ljoty
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Related Work: Learning Approach based Confidence Estimation

Handcrafted Confidence Features [12]

— Entire cost curve / Local properties of the cost curve

. } From Matching Cost
— Local minima of the cost curve

— The consistency between the left and right disparity maps

: .. : : } From Disparity
— Median deviations of disparity values

— Image gradients

, }- From Color Image
— Zero mean sum of absolute differences

— Etc.

Matching cost Disparity

[12] X. Hu and P. Mordohai. A quantitative evaluation of confidence measures for stereo vision. IEEE Trans. Pattern Anal. Mach. Intell.,, 2012. %@ O| OO X} O 11
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Related Work: Learning Approach based Confidence Estimation

Combination of Handcrafted Confidence Features
[Haeusler et al. CVPR’13, Spyropoulos et al. CVPR’14, Park et al. CVPR’15, Poggi et al. 3DV’16]

Training data Regression forest I Selection of Regression forest II
- [ PKR ] confidence measures
| PKRN OOB samples
B [PKRN] f
o 1 | PKRN “ [ RN
L A > me | I € R* Selected - ‘
- . PER : i
ST o o ' ;E:a l - : f eR’ o
- i‘l-.’; | B e} | 5 RF I - -
Matchlng cogs . 17;3 J ted | MD | l
Selected [RE II )= - f
nT e c:‘ri:::lec: T confidence rpQIf) = épr(Ql )
> Or Compute permutation importance | — | SecSec3l |

(%) o|gloyx}fotm
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Related Work: Learning Approach based Confidence Estimation

Handcrafted confidence features — NOT optimall!
— Convolutional Neural Networks (CNNs)-based Approaches

:} Learning confidence features from disparity and/or color image

ﬁ RelLU RellU
|-> ) |m-> |ﬂ->
&XIXIXI

15x15 2ch 13x13 6ch 11x11 4ch
Disparity patch 1st conv. layer 2nd conv,

Carrect

N\
9x9x1 7x7x64 5x5x64 3x3x64 100 1

conv(3x3s1,64) conv(3x3s1,64) conv(3x3s1,64) nv(3x3s1,64) R LU RelLU B

RelU RelU RelU ReLU Erarm 20 eafty Wrong

9x9 4ch 7x7 4ch match
3 conv. 4™ conv. FC Softmax

CCNN [Poggi et al., BMVC’16] PBCP [Seki et al., BMVC’16] LFN [Fu et al., WACV’18]

. () o|sjolxjciotm
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Related Work: Learning Approach based Confidence Estimation

Handcrafted confidence features — NOT optimall!
— Convolutional Neural Networks (CNNs)-based Approaches

:} Learning confidence features from matching cost and disparity

- -
- -
- -
- -
- -
- -
P R
- -
- s
- -
- o
.- -7
.4’ -
A
M t h.

Probability COI}ﬁde‘nCe
SN . Estimation
Construction Network
Network / /
Raw Top-K bisp. Con.
cost m.p.v.
l

[21] S. Kim, D. Min, S. Kim, and K. Sohn, “Unified confidence estimation networks for robust stereo matching,” IEEE Trans. Image Processing, 2019.
N £3) Ol 2foIxIh ot
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Proposed Method

First confidence estimation approach that makes full use of tri-modal input
(matching cost, disparity, and color image)

Key issue
How to fuse such heterogeneous inputs well
(matching cost, disparity, and color image)

Matching Cost

Disparity

Confidence

Attention Nlenfwor&n
Scale I nference N

Color image

(=) O|oix|ljoty
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tri-modal input tri-modal features confidence features

— tri-modal features — confidence features i )
— refined confidence features
Extract features from Infer locally-varying _ _ _
tri-modal input v o vl of Determine optimal receptive

(Top-K matching cost, disparity, the tri-modal features fields for confidence features

color image) \ ‘ ‘

Feature Extraction Networks Attention Inference Networks Scale Inference Networks
2 = 3 3 3
2 2 2 2 - & z
o + + + + [} + o 'g
& ztlz 2z Z i > B2 6
r : : : X¢ : 8 Y 3 S 2
5 5 5 5 i refined confidence features
%’ %’ c% oﬂf = >< Bilinear sampler & Conv. + current confidence map
z zl szl z s 2L + > E ) — confidence map
= om om [a) o = &
a + + + b + 5 > . .
2 = = 2 X 2 © Recursive Refinement Networks : :
sl 18l |8 S Estimate the confidence
map in a recursive manner
ST EINE > ZAE s
[] [] [] [} 4 : [7] =
o o x o = { i o = Q
+ + + + & ' : + @ 2 =
5 Zl> Z>{ 2> > Z > e i -l—): z - ‘é > £ §
3 Z Z p X! : 8 i Q) : S ®
5 5 5 5 VS 5
Qo Qo ] ] L/ O
O—— Z mmmmmmmmmmmmmmmmmmmmmmmmooo -
23 (=) O|Btox}rfi Sty
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Disparity Top-K Cost

Color

Attention Inference Networks

Locally varying
attention map

Attention Inference Networks

- - - )
— — — —l
(] (] (] (5]
o [ o 2 =
+ + + + =)
= 5 = 5 = o~ = 5 T 5
+ + + + o
> > > xc > O
c C C e
o o o o
O O O Q
-} -} ) )
- -l — -
(] (] (] ()
o o o o = <
+ + + + ) x
Z > Zl> 2> HE i E
+ + + + o 2
> > > XD > O
| C C fo
o o o o
O O O Q
) ) ) )
- - — —l
(] (] (] [F]
o o o [a's8 =z
+ + + + )

+
E > % > % > > % > =
+ + + + 5
> > > XI > o
C C = c
o o o o
O ) O O

Element-wise multiplication
of feature and attention map

74

* Several methods to fuse tri-modal input

1.

Direct concatenation of tri-modal input

This yields a poor performance due to their
heterogeneous attributes of tri-modal input.

Concatenation of tri-modal features

Fusion weights are always fixed so it
does not fuse them optimally.

The proposed method

Attention inference networks:

- Infer locally-varying attention map
of the tri-modal feature.

- Attention map is determined dynamically
conditioned on input tri-modal features.

() o|gloixiy ot
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Attention Inference Networks

Attention maps for different input modalities

The attention of top-K matching cost is high
for pixels with high matching probability.

Attention map of Attention map of Attention map of
matching cost disparity color image

[8] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for confidence measures in stereo vision,” CVPR 2013

. fF) olgtoixichom
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Attention Inference Networks

Attention maps for different input modalities

The attention of top-K matching cost is high
for pixels with high matching probability.

The attention of disparity is high in noisy
region, indicating informative features can
be extracted from the different disparity

assignments.
(similar to VAR or MDD [2] in handcrafted features)

Attention map of Attention map of Attention map of
matching cost disparity color image

[8] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for confidence measures in stereo vision,” CVPR 2013
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Attention Inference Networks

Attention maps for different input modalities

The attention of top-K matching cost is high
for pixels with high matching probability.

The attention of disparity is high in noisy
region, indicating informative features can
be extracted from the different disparity

assignments.
(similar to VAR or MDD [8] in handcrafted features)

Disparity

The attention of color image is high near
image boundary, indicating that a image
texture gives a useful cue.

Attention map of Attention map of Attention map of
matching cost disparity color image

[8] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for confidence measures in stereo vision,” CVPR 2013
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fields for confidence features
Scale Inference Networks

Determine optimal receptive

confidence features
— refined confidence features

Attention Inference Networks

Scale Inference Network
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Scale Inference Networks

Y

Conv + BN + RelLU

Conv + BN

A 4

Sigmoid

YS

Bilinear sampler & Conv.
A

Conv.

Scale Inference Network

The optimal receptive fields for confidence features
vary at each pixel.

-> Scale inference networks are used to determine
optimal receptive fields for confidence features.

Optimal scale is
inferred for each pixel

2. (Y - Ys)Using locally-varying sampling
grid, the convolution activations Y are
resampled into Ys.

3. (Ys—-2Z)Convolution is applied with a
stride of N. (N=3, in this example)
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Recursive Refinement Networks

(b)

80

e (a) Left color image

(b) Initial disparity

(c) Estimated confidence without recursive module
(d) Thresholded disparity with (c)

(e) Estimated confidence with recursive module

(f) Thresholded disparity with (e).

Mismatched pixels in the red boxes are
reliably detected with the proposed
recursive confidence refinement
networks.
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Experimental Setup

Implementation Details
— Raw matching cost: Census-SGM [Hirschmuller, TPAMI’08],
MC-CNN [Zbontar et al., CVPR’15]
Datasets

— Training: MPI Sintel dataset and KITTI 2012 dataset
— Test: Middlebury 2006 (MID 2006), Middlebury 2014 (MID 2014), and KITTI 2015 dataset

Comparison with other methods

— Handcrafted approaches: Haeusler et al. [8], Spyropoulos et al. [38], Park and Yoon [27],
Poggi and Mattoccia [29], Kim et al. [20]

— CNN-based approaches: CCNN [30], PBCP [36], Kim et al. [21], LFN [7], ConfNet [39],
LGC-Net [39]

For references, refer to “LAF-Net: Locally Adaptive Fusion Networks for Stereo Confidence Estimation”, CVPR 2019
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Ablation study

Ablation study of input tri-modal data
Area Under Curve (AUC): The lower, the better

Match. cost v v v

Disparity v v v ' i

Color p P P Using three inputs and three
MID 2006 [ 0.0431 0.0392 0.0381 0.0375 0.0364 --~~" sub-networks leads to a

MID 2014 | 0.0762 0.0703 0.0687 0.0685 0.0683 substantial performance gain.
KITTI 2015 | 0.0347 0.0245 0.0237 0.0231 0.0225

Ablation study of three sub-networks
Area Under Curve (AUC)

Attention v v v
Scale v v v
Recursive v v
MID 2006 0.0374 0.0375 0.0372 0.0371 0.0364

MID 2014 0.0686 0.0688 0.0685 0.0685 0.0683
KITTI 2015 | 0.0235 0.0236 0.0231 0.0229 0.0225

Evaluation metric: AUC?

Sparsification curve: draws a bad pixel rate while
successively removing pixels in descending order of
confidence values in the disparity map

Area under curve (AUC): area of the sparsification curve
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Comparison with state-of-the-arts

Average AUC

Matching cost: census-based SGM and MC-CNN
Test data: Middlebury 2006 (MID 2006), Middlebury 2014 (MID 2014), and KITTI 2015 datasets

Datasets MID 2006 [34] MID 2014 [53] KITTT 2015 [24]
T Census-SGM  MC-CNN | Census-SGM  MC-CNN | Census-SGM  MC-CNN

Haeusler et al. [¥] 0.0454 0.0417 0.0841 0.0750 0.0585 0.0308
Spyropoulos et al. [3%] 0.0447 0.0420 0.0839 0.0752 0.0536 0.0323
Park and Yoon [27] 0.0438 0.0426 0.0802 0.0734 0.0527 0.0303
Poggi et al. [29] 0.0439 0.0413 0.0791 0.0707 0.0461 0.0263
Kim et al. [20] 0.0430 0.0409 0.0772 0.0701 0.0430 0.0294
CCNN [30] 0.0454 0.0402 0.0769 0.0716 0.0419 0.0258
PBCP [30] 0.0462 0.0413 0.0791 0.0718 0.0439 0.0272
Shaked et al. (Conf) [37] 0.0464 0.0495 0.0806 0.0736 0.0531 0.0292
Kim et al. (conf) [2 1] 0.0419 0.0394 0.0749 0.0694 0.0407 0.0250
LEN [7] 0.0416 0.0393 0.0752 0.0692 0.0405 0.0253
ConfNet [39] 0.0451 0.0428 0.0783 0.0721 0.0486 0.0277
LGC-Net [39] 0.0413 0.0389 0.0735 0.0685 0.0392 0.0236
LAF-Net 0.0405 0.0364 0.0718 0.0683 0.0385 0.0225
Optimal 0.0340 0.0323 0.0569 0.0527 0.0348 0.0170
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Comparison with state-of-the-arts

Color images Initial disparity Kime
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Our method  GT confidence
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Conclusion

Using tri-modal input leads to a substantial performance gain.

— Matching cost, disparity, and color image

Attention and scale inference networks are used to fuse the heterogeneous
tri-modal input

Recursive refinement networks improves the accuracy.

Further study

— How confidence estimation networks could be learned in an unsupervised manner

- £F) olgfot oyt

5% EWHA WOMANS UNIVERSITY
I3 4



Experimental Setup

* The sparsification curve draws a bad pixel rate while successively removing
pixels in descending order of confidence values in the disparity map
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