
Basic Linear Algebra
for AI and Computer Vision

Dongbo Min
Department of Computer Science and Engineering

Ewha Womans University, Korea
E-mail: dbmin@ewha.ac.kr

영상신호처리연구회 여름학교 2019



2

Contents

1. Basics for linear algebra
– Eigenvalue/Eigenvector and Linear regression
– Applications for classical computer vision tasks

(Homography, camera calibration, epipolar geometry)

2. Partial derivatives and chain rules
– Feed-forward/backpropagation of multi-layer perceptron (MLP)



3

Eigenvalue and Eigenvector
• Heterogeneous linear system

– with a non-zero vector ࢈ ≠ 
– If an inversion of ۯ or ۯۯ exists, an unique solution for ࢞ can be obtained simply.

• Homogeneous linear system

– Trivial solution: ࢞ = 
– Q: Can we obtain any meaningful solution for the homogeneous linear system?

࢞ۯ = ࢈

࢞ۯ = 



4

Eigenvalue and Eigenvector
• Eigenvalue and eigenvector of ݊ × ݊ matrix ۯ

– A set of ߪand ݔ satisfying ࢞ۯ = ࢞ߪ
– Eigenvalue: ߪ|݅ = 1,2, … , ݊
– Eigenvector: ࢞|݅ = 1,2, … , ݊
– Eigenvector is orthonormal as below.

࢞
்࢞ = ቊ1 ݂݅ ݅ = ݆

0 ݁ݏ݅ݓݎℎ݁ݐ

• When ݊ × ݊ matrix ܣ is full rank, ݊ non-zero eigenvalues exist
݇݊ܽݎ ܣ = the number of non-zero ߪ (݅ = 1,2, … , ݊)



5

Eigenvalue and Eigenvector
• For a full-rank ݊ × ݊ matrix ۯ, i.e., ݇݊ܽݎ ۯ = ݊

 ݔݔߪ
்



ୀଵ

= ଵݔଵݔଵߪ
் + ଶݔଶݔଶߪ

் + ⋯ + ݔݔߪ
்

Independent space

Generalizing this form for a non-rectangular matrix ۯ (݉ × ݊)
 Singular Value Decomposition (SVD)



6

Singular Value Decomposition (SVD)
• Any ݉ × ݊ matrix ۯ can be written as the product of three matrices

• ݉ :܃ × ݉ orthonormal matrix
(columns are mutually orthogonal unit vectors)

• ݊ :܄ × ݊ orthonormal matrix
(columns are mutually orthogonal unit vectors)

• ۲: ݉ × ݊ diagonal matrix (its diagonal elements ߪ: singular values, ߪଵ ≥ ଶߪ ≥ ⋯ ≥ ߪ ≥ 0)

• Note) both ܃ and ܄ are not unique, but ۲ is fully determined by ۯ

ۯ = ܄۲܃



7

Properties of the SVD
• Property 1

– The singular values provide the info on the singularities of a square matrix ۯ.
– Square matrix ۯ is nonsingular iff all singular values are different from zero

– ఙభ
ఙ

: condition number (measuring the degree of singularity of ۯ)

• Property 2
– For a rectangular matrix ۯ, 

݇݊ܽݎ ۯ = the number of non-zero ߪ (݅ = 1, … , ݊)
– With a fixed tolerance ߳ (typically of the order of 10ି), 

the effective ݇݊ܽݎ ۯ = the number of nonzero ߪ (݅ = 1, … , ݊) which is greater than ߳



8

Properties of the SVD
• Property 3

– For a square, nonsingular matrix ۯ = ,܄۲܃
ଵିۯ = ܃۲ିଵ܄

– For a square matrix ۯ = ܄۲܃ (i.e., singular or nonsingular)
the pseudo-inverse matrix ۯା = ۲܄

ିଵ܃

۲
ିଵ is equal to ۲ିଵ for all non-zero singular values and zero otherwise.

• Property 4
– The columns of U corresponding to non-zero singular values = A’s range
– The columns of V corresponding to zero singular values = A’s null space



9

Properties of the SVD
• Property 5

– ݊ × ݊ matrix ۯۯ
non-zero eigenvalues = the squares of non-zero singular values ߪ

eigenvectors = columns of ܄

– ݉ × ݉ matrix ۯۯ

non-zero eigenvalues = the squares of non-zero singular values ߪ

eigenvectors = columns of ܃

– For ࢛ and ࢜ (columns of ܃ and ܄ corresponding to ߪ)
࢛ۯ = ࢜ߪ

்࢜ۯ = ࢛ߪ



10

Properties of the SVD
• Property 6

– Frobenius norm ۯ ி of matrix ۯ
– ۯ ி = ∑ ܽ

�
,

– ۯ ி = ∑ ߪ
�




11

Solving non-homogeneous and homogeneous linear system

• ࢞ۯ = ࢈  ࢞ = ܊܂ۯି(ۯ܂ۯ)
– This solution is known to be optimal in the least square sense.
– Namely, it is equivalent to minimizing ࢞ۯ − ࢈ ଶ

• ࢞ۯ = 
– ݉ :ۯ × ݊ matrix, ݉ ≥ ݊ − (ۯ)݇݊ܽݎ ,1 = ݊ − 1
– Its trivial solution is 
– To find a non-trivial solution, we can find the solution up to a scale factor through Singular Value 

Decomposition (SVD).
– As the norm of the solution is arbitrary, we impose a unit norm constraint on the solution

min
࢞

࢞ۯ ଶ − )ߣ ࢞ ଶ − 1)

min
࢞

࢞ۯ ଶ subject to ࢞ ଶ = 1

Introducing the Lagrange multiplier ߣ



12

Solving non-homogeneous and homogeneous linear system

min


࢞ۯ ଶ − )ߣ ࢞ ଶ − 1)

• Equating to zero the derivative with respect to f gives

• This equation tells 
ߣ = eigenvalue of ۯۯ and ࢞ = ܍ corresponding eigenvector.

• Then, with this solution the objective becomes
࢞ۯ ଶ − ߣ ࢞ ଶ − 1 = ߣ

• In short, 
the solution = the column of ܄ corresponding to the null (non-zero) singular value of ۯ

࢞ۯۯ − ࢞ߣ = 0



13

Solving non-homogeneous and homogeneous linear system - Rayleigh quotient

• For a given complex Hermitian matrix ۻ and nonzero vector ࢞, the Rayleigh quotient 
,ܯ)ܴ (ݔ is defined as follows.

• For covariance matrix ۻ = ߣ let us denote ,ۯۯ and ݒ as eigenvalue and eigenvector of ۻ

ܴ ,ۻ ࢞ =
࢞ۻ∗࢞
࢞∗࢞

࢜ۻ = ࢜ۯۯ = ࢜ߣ

࢜
ۯ࢜ۯ = ࢜

ߣ࢜ |ݒ| ݐ ݐ݆ܾܿ݁ݑݏ = 1

࢜ۯ
ଶ = ߣ ࢜

ଶ

࢜ۯ
ଶ

࢜
ଶ = ߣ



14

Solving non-homogeneous and homogeneous linear system

Problem statementProblem statement Solution

(in matlab)

࢞ = ܊܂ۯି(ۯ܂ۯ)

࢞ = ࢈\ۯ

Minimize ࢞ۯ − ࢈ ଶ

Least square solution to ࢞ۯ = ࢈

Problem statementProblem statement Solution

,࢜] [ߣ  = eig(ۯ܂ۯ)

࢞ = :ଵ࢜ ଵߣ  < ଶ,…,ߣ

Minimize ࢞ۯ࢞ۯ s.t. ࢞࢞ = 1

Non-trivial solution to ࢞ۯ = 

Minimize
࢞ۯۯ࢞

࢞࢞



15

Applications: Estimating Geometric Transformation
• General form of geometric transformation

– Including translation, rotation, scale, skew, and so on.

p. 35-38 of Computer Vision: Algorithms and Applications (Richard Szeliski)
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf



16

Applications: Estimating Geometric Transformation
• 2D parametric transformation

– Translation
– Rigid (Euclidean) transformation
– Similarity transformation
– Affine transformation
– Projective transformation

p. 35-38 of Computer Vision: Algorithms and Applications (Richard Szeliski)
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf



17

Applications: Estimating Geometric Transformation

ᇱ࢞ = ℎ ࢞ = ࢞ۻ where ࢞ = ࢞
1



18

Estimating Affine Transformation

 =
ݔ
ݕ ᇱ = ᇱݔ

ᇱݕ

ᇱݔ

ᇱݕ = ܽ ܾ ܿ
݀ ݁ ݂

ݔ
ݕ
1

For a pair of corresponding pixels

ଵܫ

For ܰ ≥ 3 pairs of corresponding pixels, affine transform 
for ܫଵ → ଶܫ can be computed as follows.

'

'

1 0 0 0
0 0 0 1

a
b

x y c x
x y d y

e
f

 
 
 
    

    
    

 
  
 

'
1 1 1

'
1 1 1

'
2 2 2

'
2 2 2

'

'

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1
N N N

N N N

x y x
a

x y y
b

x y x
c

x y y
d
e

x y x
f

x y y

  
    
    
    
    

    
    
    
     
         

 

࢞ۯ = ࢈
 ࢞ = ࢈ۯଵି(ۯۯ)

ۯ ࢞ ࢈

ଶܫ



19

Homography

Question
Given a set of point correspondences between two views,
can we match an arbitrary point in a view to another view?

Note: All the points should be on the same planar surface.



20

Homography
• Relationship between two views

– They have same directions.
– ݔܪ are collinear: ݔᇱ × ݔܪ = 0

ᇱݔ ≅ ݔܪ



21

Estimating Homography
• How to compute homography matrix

ᇱݔ

ᇱݕ

1
≅

ℎଵଵ ℎଵଶ ℎଵଷ
ℎଶଵ ℎଶଶ ℎଶଷ
ℎଷଵ ℎଷଶ ℎଷଷ

ݔ
ݕ
1

11

12
' ' '

131 1 1 1 1 1 1
' ' '

211 1 1 1 1 1 1

22
' ' '

23
' ' '

31

32

33

01 0 0 0
00 0 0 1

01 0 0 0
00 0 0 1

N N N N N N N

N N N N N N N

h
h
hx y x x x y x
hx y y x y y y
h
hx y x x x y x
hx y y x y y y
h
h

 
 
 
      
           
    
    

       
         

 
  
 



For ܰ ≥ 4 pairs of corresponding pixels

Solving ܐۯ =  requires using SVD.



22

Image Stitching using Homography

Stitched image using 
the estimated homography



23

Neural Networks
Simple Example: Multi-Layer Perceptron (MLP)



24

Derivative

• Optimization using derivative
– 1st order derivative

– ݂ᇱ(ݔ): The slope of the function, indicating the direction in which the value increases
 The minima of the objective function may exist in the direction of −݂ᇱ(ݔ).
 Gradient descent algorithm: ݀ߠ ← −݂ᇱ(ݔ)



25

Partial Derivative

• Partial derivative
– Derivatives of functions with multiple variables
– Gradient: the vector of the partial derivative

,݂ߘ
߲݂
ܠ߲

,
߲݂
ଵݔ߲

,
߲݂
ଶݔ߲



Ex)



26

Chain Rule
• Chain rule

• Multi-layer perceptron (MLP)
– Example of composite function
– Error back propagation:

use the chain rule to compute డ
డ௨మయ

భ

݂ ݔ = ݃(ℎ ݔ )
݂ ݔ = ݃(ℎ (ݔ)݅ )

Ex)



27

Jacobian Matrix and Hessian Matrix

• Jacobian matrix
– 1st order partial derivative matrix for : ℝௗ ↦ ℝ

• Hessian matrix
– 2nd order partial derivative matrix

Ex)

Ex)

2 × 3 or 3 × 2 matrix can be used. 
Here, we define it as 2 × 3 matrix.



28

Applications: Neural Networks
• Activation function

– Softmax, Sigmoid, ReLU, Leaky ReLU

• Loss function
– Regression loss, Hinge loss, Cross-entropy loss, Log likelihood loss



29

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ߪ ݔ =
1

1 + ݁ି௫

tanh ݔ =
݁௫ − ݁ି௫

݁௫ + ݁ି௫

max 0, ݔ

max ,ݔ0.1 ݔ

max ଵݓ
ݔ் + ܾଵ, ଶݓ

ݔ் + ܾଶ

ቊ ݔ ݔ ≥ 0
௫݁)ߙ − 1) ݔ < 0



30

Softmax Activation Function
• Softmax activation function

scores = unnormalized log probabilities of the classes.

Probability can be computed using scores as below.

Probability of class label being ݇ for an image ࢞

ܲ ܻ = ݇ ܺ = ࢞ =  =
݁௦ೖ

∑ ݁௦ೕ
ୀଵ

Softmax activation 
function

: image࢞
: class label (integer, 1ݕ ≤ ݕ ≤ (ܥ

࢙ = ࢞܅ + ࢈

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்



31

Loss function
• Loss function

– quantifies our unhappiness with the scores across the training data.

• Type of loss function
– Regression loss
– Hinge loss
– Cross-entropy loss
– Log likelihood loss



32

Loss Function: Log Likelihood Loss
• Log likelihood loss

Example
Suppose ݅௧ image belongs to class 2 and ܥ = 10.

ࢠ =

0
1
0
⋮
0

 =

0.1
0.7
0
⋮

0.2

ܮ = −log 0.7

class label for ݅௧ :ࢠ image
ܥ) × 1 vector, ݖ = 1 when ݆ = ݕ and 0 otherwise)

 =

ଵ
ଶ
⋮



probability for ݅௧ image 
(It is assumed to be normalized,  i.e.  = 1.)

: class label (integer, 1ݕ ≤ ݕ ≤ (ܥ

ܮ = −log  where ݆ satisfies ݖ = 1



33

Softmax + Log Likelihood Loss
• Log likelihood loss

ܮ = −log
݁௦

∑ ݁௦ೕ
ୀଵ

ܮ = −log  where ݆ satisfies ݖ = 1

class label for ݅௧ :ࢠ image
ܥ) × 1 vector, ݖ = 1 when ݆ = ݕ and 0 otherwise)

 =

ଵ
ଶ
⋮



probability for ݅௧ image 
(It is assumed to be normalized,  i.e.  = 1.)

This can be interpreted as minimizing the negative log likelihood of the correct class.
Maximum Likelihood Estimation (MLE)

: class label (integer, 1ݕ ≤ ݕ ≤ (ܥ



34

Softmax + Log Likelihood Loss

ܮ = −log
݁௦

∑ ݁௦ೕ
ୀଵ

Softmax + Log likelihood loss: 
is often called ‘softmax classifier’



35

Loss Function: Regression Loss
• Regression loss

– Using L1 or L2 norms
– Widely used in pixel-level prediction (e.g. image denoising)

࢟ =

0
1
0
⋮
0

࢙ =

0.1
0.7
0
⋮

0.2

ܮ = ࢟ − ࢙ = 0 − 0.1 + 1 − 0.7 + |0 − 0.2|

ܮ = ࢟| − |࢙

ܮ = ࢟) − )ଶ࢙



36

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ
࢙ = ࢞܅ + ࢈

ଵݏ = ଵ࢝
࢞ + ܾଵ

ଶݏ = ଶ࢝
࢞ + ܾଶ
⋮

ݏ = ࢝
࢞ + ܾ

ଵݏ߲

ଵ߲࢝
= ࢞

ଶݏ߲

ଵ߲࢝
= 

ݏ߲

ଵ߲࢝
= 

⋮

࢙߲
ଵ߲࢝

= ⋯   ࢞] ] ∈ ℜௗ× ࢙߲
߲࢝

= [  ࢞ ⋯ ] ∈ ℜௗ×

jth column

Partial Derivative (Jacobian Matrix) of Linear Equation

࢈ =

ܾଵ
ܾଶ
⋮

ܾ

࢙߲
࢈߲

=
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= ۷ ∈ ℜ×



37

ଵݏ߲

߲࢞
= ଵ࢝

ଶݏ߲

߲࢞
= ଶ࢝

ݏ߲

߲࢞
= ࢝

⋮

࢙߲
߲࢞

= ࢝ ଵ࢝  ⋯ ࢝ = ܅ ∈ ℜௗ×

Partial Derivative (Jacobian Matrix) of Linear Equation

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ
࢙ = ࢞܅ + ࢈

ଵݏ = ଵ࢝
࢞ + ܾଵ

ଶݏ = ଶ࢝
࢞ + ܾଶ
⋮

ݏ = ࢝
࢞ + ܾ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



38

Partial Derivative (Jacobian Matrix) of Sigmoid Function

ߪ ݔ =
1

1 + ݁ି௫

Sigmoid function

(ݔ)ߪ߲
ݔ߲

=
݁ି௫

(1 + ݁ି௫)ଶ =
1 + ݁ି௫ − 1

1 + ݁ି௫
1

1 + ݁ି௫ = (1 − ߪ ݔ ߪ( ݔ

 = ߪ ࢙ =
1

1 + ࢙ି݁

For a scalar ݔ

→

Similarly, for a vector ࢙ ∈ ℜ×ଵ

→ ߲
࢙߲

= ݀݅ܽ݃ (1 − (ݏ)ߪ((ݏ)ߪ =
(1 − (ଵݏ)ߪ((ଵݏ)ߪ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (1 − (ݏ)ߪ((ݏ)ߪ

for ݆ = 1, … , ݊



39

Partial Derivative (Jacobian Matrix) of Softmax Activation Function

• Softmax function

• 1st order derivative of softmax function 

 =
݁௦ೖ

∑ ݁௦ೕ
ୀଵ

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

score function
 =

ଵ
ଶ
⋮



probability

߲
࢙߲

=
݀݅ܽ݃ ࢙݁ ȉ ∑ ݁௦ೕ�

� − ࢙݁ ࢙݁ 

∑ ݁௦ೕ�
�

ଶ =

in vector form =
࢙݁

∑ ݁௦ೕ
ୀଵ

1
∑ ݁௦ೕ�

�
ଶ

݁௦భ∑݁௦ೕ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ݁௦∑݁௦ೕ

−
݁௦భ݁௦భ ⋯ ݁௦భ݁௦

⋮ ⋱ ⋮
݁௦݁௦భ ⋯ ݁௦݁௦

 



40

Partial Derivative (Jacobian Matrix) of Softmax Activation Function

۲ =
߲
࢙߲

=
݀݅ܽ݃ ࢙݁ ȉ ∑ ݁௦ೕ�

� − ࢙݁ ࢙݁ 

∑ ݁௦ೕ�
�

ଶ =
1

∑ ݁௦ೕ�
�

ଶ

݁௦భ∑݁௦ೕ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ݁௦∑݁௦ೕ

−
݁௦భ݁௦భ ⋯ ݁௦భ݁௦

⋮ ⋱ ⋮
݁௦݁௦భ ⋯ ݁௦݁௦

 

For ܽ = ܾ

݁௦ೌ(∑ ݁௦ೕ�
� − ݁௦ೌ)

∑ ݁௦ೕ�
�

ଶ = (1 − (

For ܽ ≠ ܾ

−
݁௦ೌ݁௦್

∑ ݁௦ೕ�
�

ଶ = − ܦ = ߜ) − (
ߜ = ቊ1 ܽ = ܾ

0 otherwise



41

Partial Derivative (Jacobian Matrix) of Regression Loss

• 1st order derivative

ܮ = ࢟) − =ଶ(࢙ ࢟) − ࢞܅ − ଶ(࢈
࢙ =

ଵݏ
ଶݏ
⋮

ݏ

࢙ = ࢞܅ + ࢈
܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

ݏ் = ࢝
்࢞ + ܾ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ

For simplicity of notation, i is omitted here

ܮ߲
߲࢝

= ݕ)2− − ࢝
்࢞ − ܾ)࢞

ܮ߲
࢈߲

= ࢟)2− − ࢞܅ − (࢈

= (ݕ − ࢝
்࢞ − ܾ)ଶ



ୀଵ

ܮ߲
܅߲

= ࢟)2− − ࢞܅ − ࢞(࢈



42

Partial Derivative (Jacobian Matrix) of Regression Loss

• 1st order derivative

ܮ = ࢟) − =ଶ(࢙ ࢟) − ଶ(࢞܅
࢙ =

ଵݏ
ଶݏ
⋮

ݏ

࢙ = ࢞܅ ܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

ݏ = ࢝
்࢞

For simplicity of notation, i is omitted here

ܮ߲
߲࢝

= ݕ)2− − ࢝
࢞(்࢞

= (ݕ − ࢝
ଶ(்࢞



ୀଵ

ܮ߲
܅߲

= ࢟)2− − ࢞(࢞܅



43

Neural Networks: Architectures

(Before) Linear score function:    ࢌ = ࢞܅ + ࢈

(Now) 2-layer Neural Network:      ࢌ = ,ଶmax(܅ ࢞ଵ܅ + (ଵ࢈ + ଶ࢈
3-layer Neural Network:      ࢌ = ଷmax܅ , ଶmax܅ , ࢞ଵ܅ + ଵ࢈ + ଶ࢈ + ଷ࢈



44

Neural Networks: Architectures

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers



45

Derivative of Neural Net using Chain Rules
• Example

1. 1-layer Neural Net (L2 regression loss)
2. 2-layer Neural Net (L2 regression loss)

3. 1-layer Neural Net (Softmax classifier)
4. 2-layer Neural Net (Softmax classifier)



46

1. 1-layer Neural Net (L2 regression loss)

Output layer

࢞

࢙ = ࢞܅ + ࢈

 = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score 

2. Activation function

3. Loss

ݏ = ࢝
்࢞ + ܾ

ܮ = ࢠ) − ଶ(

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



47

Output layer

ଵݏ ଵ

ଵݖ Ground truth

࢞

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

 = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score 

2. Activation function

3. Loss

ݏ = ࢝
்࢞ + ܾ

ܮ = ࢠ) − ଶ(

ଵ =
1

1 + ݁ି௦భ
ଵݏ = ଵ࢝

࢞ + ଵܾ =  ݔଵݓ

ௗ

ୀଵ

+ ଵܾ ଵݖ) − ଵ)ଶ

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



48

ݏ 

ݖ
⋮

Ground truth
Output layer

࢞

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

 = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score 

2. Activation function

3. Loss

ݏ = ࢝
்࢞ + ܾ

ܮ = ࢠ) − ଶ(

 =
1

1 + ݁ି௦
ݏ = ࢝

࢞ + ܾ =  ݔݓ

ௗ

ୀଵ

+ ܾ ݖ) − )ଶ

ଵݏ ଵ

ଵݖ Ground truth

ଵ =
1

1 + ݁ି௦భ
ଵݏ = ଵ࢝

࢞ + ଵܾ =  ݔଵݓ

ௗ

ୀଵ

+ ଵܾ ଵݖ) − ଵ)ଶ

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



49

Output layer

࢞

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

 = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score 

2. Activation function

3. Loss

ݏ = ࢝
்࢞ + ܾ

ܮ = ࢠ) − ଶ(

We need to compute 
gradients of ܅, ,࢈ ,࢙  with 
respect to the loss function ܮ.

࢞܅ sigmoid
࢙ 

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



50

ܮ߲
࢙߲

=
߲
࢙߲

ܮ߲
߲

= ݀݅ܽ݃ (1 − (ݏ)ߪ((ݏ)ߪ
ܮ߲
߲

= −2

(1 − ଵݖ)(ଵݏ)ߪ((ଵݏ)ߪ − (ଵ
(1 − ଶݖ)(ଶݏ)ߪ((ଶݏ)ߪ − (ଶ

⋮
(1 − ݖ)(ݏ)ߪ((ݏ)ߪ − (

ܮ߲
߲

= ࢠ)2− − (

ܮ߲
߲࢝

=
࢙߲

߲࢝

ܮ߲
࢙߲

= ܆
ܮ߲
࢙߲

= [  ࢞ ⋯ ]
ܮ߲
࢙߲

=
ܮ߲
࢙߲ 

࢞

jth column

ܮ߲
܅߲

=
ܮ߲

ଵ߲࢝

ܮ߲
ଶ߲࢝

⋯
ܮ߲

߲࢝



=
ܮ߲
࢙߲

࢞

= (1 − ((࢙)ߪ ⊗ ߪ ࢙ ⊗ 
ܮ߲
߲

⊗: element-wise multiplication

ࢇ : jth element at vector ࢇ

1. 1-layer Neural Net (L2 regression loss)

ܮ߲
࢈߲

=
࢙߲
࢈߲

ܮ߲
࢙߲

=
ܮ߲
࢙߲

࢞܅ sigmoid
࢙ 

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1



51

Summary

ܮ߲
܅߲

=
ܮ߲
࢙߲

࢞

ܮ߲
߲

= ࢠ)2− − (

ܮ߲
࢙߲

=
߲
࢙߲

ܮ߲
߲

= (1 − ((࢙)ߪ ⊗ ߪ ࢙ ⊗ 
ܮ߲
߲

1. 1-layer Neural Net (L2 regression loss)

ܮ߲
߲࢞

=
࢙߲
߲࢞

ܮ߲
࢙߲

= ܅ ܮ߲
࢙߲

Note that the following derivative can also be 
computed, but here ࢞ is an input data that is 
fixed during training. Thus, it is not necessary 
to compute its derivative.߲ܮ

࢈߲
=

ܮ߲
࢙߲

࢞܅ sigmoid
࢙ 

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1



52

࢞ଵ܅ sigmoid
ଵ࢙ ଵ

L2 Loss

ࢠ

ଶ܅ sigmoid
ଶ࢙ 

ܮ߲
ଶ࢙߲

=
ଶ߲

ଶ࢙߲

ܮ߲
ଶ߲

= ݀݅ܽ݃ (1 − (ଶ,ݏ)ߪ((ଶ,ݏ)ߪ
ܮ߲

ଶ߲

ܮ߲
ଵ߲

=
ଶ࢙߲

ଵ߲

ܮ߲
ଶ࢙߲

= ଶ܅
 ܮ߲

ଶ࢙߲

ܮ߲
߲

= ࢠ)2− − (

ܮ߲
ଵ࢙߲

=
ଵ߲

ଵ࢙߲

ܮ߲
ଵ߲

= ݀݅ܽ݃ (1 − (ଵ,ݏ)ߪ((ଵ,ݏ)ߪ
ܮ߲

ଵ߲

ܮ߲
ଵ܅߲

=
ܮ߲
ଵ࢙߲

࢞

݀ × 1

݊ × ݀

݊ × 1 ݊ × 1

݉ × ݊

݉ × 1 ݉ × 1

݉ × 1Ground truth2. 2-layer Neural Net (L2 regression loss) In a vector form

࢞ଶ

ܮ߲
ଶ܅߲

=
ܮ߲
ଶ࢙߲

ଵ


ଵ࢈
݊ × 1

ଶ࢈
݉ × 1

ܮ߲
ଶ࢈߲

=
ܮ߲
ଶ࢙߲

ܮ߲
ଵ࢈߲

=
ܮ߲
ଵ࢙߲



53

1. Linear score 

2. Activation function

3. Loss

 =
࢙݁

∑ ݁௦ೕ
ୀଵ

ܮ = −log ௬ where ݕ satisfies ݖ௬ = 1
For ࢠ = ଶݖ ଵݖ) ௬ݖ ,்(ݖ … = 1 and ݖஷ௬ = 0

3. 1-layer Neural Net (Softmax classifier)

Output layer

࢞

࢞܅ softmax
࢙ 

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

We need to compute 
gradients of ܅, ,࢈ ,࢙  with 
respect to the loss function ܮ.

࢙ = ࢞܅ + ࢈ ݏ = ࢝
்࢞ + ܾ

࢙ =

ଵݏ
ଶݏ
⋮

ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
ଵݓ ଶݓ ⋯ ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ



54

ܮ߲
࢙߲

=
߲
࢙߲

ܮ߲
߲

= ۲
ܮ߲
߲

= −
1

௬

ଵ௬ܦ
ଶ௬ܦ

⋮
௬ܦ

=  − ࢠ

ܮ߲
߲

=

0
0

௬/1−
⋮
0

ܮ߲
߲࢝

=
࢙߲

߲࢝

ܮ߲
࢙߲

= ܆
ܮ߲
࢙߲

=   ࢞ ⋯ 
ܮ߲
࢙߲

=
ܮ߲
࢙߲ 

࢞

yth row

ܦ = ߜ) − (

ߜ = ቊ1 ܽ = ܾ
0 otherwise

ܮ߲
܅߲

=
ܮ߲

ଵ߲࢝

ܮ߲
ଶ߲࢝

⋯
ܮ߲

߲࢝



=
ܮ߲
࢙߲

࢞

ࢇ : jth element at vector ࢇ

jth column

3. 1-layer Neural Net (Softmax classifier)

࢞܅ softmax
࢙ 

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

ܮ߲
࢈߲

=
࢙߲
࢈߲

ܮ߲
࢙߲

=
ܮ߲
࢙߲



55

ܮ߲
࢙߲

=
߲
࢙߲

ܮ߲
߲

= ۲
ܮ߲
߲

= −
1

௬

ଵ௬ܦ
ଶ௬ܦ

⋮
௬ܦ

=  − ࢠ

ܮ߲
߲

=

0
0

௬/1−
⋮
0

ܮ߲
܅߲

=
ܮ߲
࢙߲

࢞

yth row

Summary

3. 1-layer Neural Net (Softmax classifier)

ܮ߲
߲࢞

=
࢙߲
߲࢞

ܮ߲
࢙߲

= ܅ ܮ߲
࢙߲

Note that the following derivative can also be 
computed, but here ࢞ is an input data that is 
fixed during training. Thus, it is not necessary 
to compute its derivative.

࢞܅ softmax
࢙ 

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

ܮ߲
࢈߲

=
ܮ߲
࢙߲



56

ܮ߲
ଶ࢙߲

=
ଶ߲

ଶ࢙߲

ܮ߲
ଶ߲

= ۲
ܮ߲

ଶ߲

ܮ߲
ଵ߲

=
ଶ࢙߲

ଵ߲

ܮ߲
ଶ࢙߲

= ଶ܅
 ܮ߲

ଶ࢙߲

ܮ߲
ଵ࢙߲

=
ଵ߲

ଵ࢙߲

ܮ߲
ଵ߲

= ݀݅ܽ݃ (1 − (ଵ,ݏ)ߪ((ଵ,ݏ)ߪ
ܮ߲

ଵ߲

4. 2-layer Neural Net (Softmax classifier)

࢞ଶ

ܦ = ߜ) − (

ߜ = ቊ1 ܽ = ܾ
0 otherwise

ܮ߲
ଶ߲

=

0
0

௬/1−
⋮
0

yth row

ܮ߲
ଵ܅߲

=
ܮ߲
ଵ࢙߲

࢞

ܮ߲
܅߲

=
ܮ߲
ଶ࢙߲

ଵ


࢞ଵ܅ sigmoid
ଵ࢙ ଵ

ࢠ

ଶ܅ softmax
ଶ࢙ 

݀ × 1

݊ × ݀

݊ × 1 ݊ × 1

݉ × ݊

݉ × 1 ݉ × 1

݉ × 1Ground truthIn a vector form

ଵ࢈
݊ × 1

ଶ࢈ ݉ × 1

Log
likelihood

ܮ߲
ଵ࢈߲

=
ܮ߲
ଵ࢙߲

ܮ߲
ଶ࢈߲

=
ܮ߲
ଶ࢙߲



57

Full implementation of training a 2-layer Neural Network
N: batch size
D_in: input feature size
H: input feature size of the second layer
D_out: output feature size

1000

࢞ଵ܅ sigmoid
ࢎ

࢟

ଶ܅
࢙

Ground truth

L2 loss


