
Basic Linear Algebra
for AI and Computer Vision

Dongbo Min
Department of Computer Science and Engineering

Ewha Womans University, Korea
E-mail: dbmin@ewha.ac.kr

영상신호처리연구회 여름학교 2019

2

Contents

1. Basics for linear algebra
– Eigenvalue/Eigenvector and Linear regression
– Applications for classical computer vision tasks

(Homography, camera calibration, epipolar geometry)

2. Partial derivatives and chain rules
– Feed-forward/backpropagation of multi-layer perceptron (MLP)

3

Eigenvalue and Eigenvector
• Heterogeneous linear system

– with a non-zero vector ࢈ ≠ ૙
– If an inversion of ۯ or ۯ୘ۯ exists, an unique solution for ࢞ can be obtained simply.

• Homogeneous linear system

– Trivial solution: ࢞ = ૙
– Q: Can we obtain any meaningful solution for the homogeneous linear system?

࢞ۯ = ࢈

࢞ۯ = ૙

4

Eigenvalue and Eigenvector
• Eigenvalue and eigenvector of ݊ × ݊ matrix ۯ

– A set of ߪand ݔ satisfying ࢞ۯ = ࢞ߪ
– Eigenvalue: ߪ௜|݅ = 1,2, … , ݊
– Eigenvector: ࢞௜|݅ = 1,2, … , ݊
– Eigenvector is orthonormal as below.

௜࢞
௝்࢞ = ቊ1 ݂݅ ݅ = ݆

0 ݁ݏ݅ݓݎℎ݁ݐ݋

• When ݊ × ݊ matrix ܣ is full rank, ݊ non-zero eigenvalues exist
݇݊ܽݎ ܣ = the number of non-zero ߪ௜ (݅ = 1,2, … , ݊)

5

Eigenvalue and Eigenvector
• For a full-rank ݊ × ݊ matrix ۯ, i.e., ݇݊ܽݎ ۯ = ݊

෍ ௜ݔ௜ݔ௜ߪ
்

௡

௜ୀଵ

= ଵݔଵݔଵߪ
் + ଶݔଶݔଶߪ

் + ⋯ + ௡ݔ௡ݔ௡ߪ
்

Independent space

Generalizing this form for a non-rectangular matrix ۯ (݉ × ݊)
 Singular Value Decomposition (SVD)

6

Singular Value Decomposition (SVD)
• Any ݉ × ݊ matrix ۯ can be written as the product of three matrices

• ݉ :܃ × ݉ orthonormal matrix
(columns are mutually orthogonal unit vectors)

• ݊ :܄ × ݊ orthonormal matrix
(columns are mutually orthogonal unit vectors)

• ۲: ݉ × ݊ diagonal matrix (its diagonal elements ߪ௜: singular values, ߪଵ ≥ ଶߪ ≥ ⋯ ≥ ௡ߪ ≥ 0)

• Note) both ܃ and ܄ are not unique, but ۲ is fully determined by ۯ

ۯ = ୘܄۲܃

7

Properties of the SVD
• Property 1

– The singular values provide the info on the singularities of a square matrix ۯ.
– Square matrix ۯ is nonsingular iff all singular values are different from zero

– ఙభ
ఙ೙

: condition number (measuring the degree of singularity of ۯ)

• Property 2
– For a rectangular matrix ۯ,

݇݊ܽݎ ۯ = the number of non-zero ߪ௜ (݅ = 1, … , ݊)
– With a fixed tolerance ߳ (typically of the order of 10ି଺),

the effective ݇݊ܽݎ ۯ = the number of nonzero ߪ௜ (݅ = 1, … , ݊) which is greater than ߳

8

Properties of the SVD
• Property 3

– For a square, nonsingular matrix ۯ = ,୘܄۲܃
ଵିۯ = ୘܃۲ିଵ܄

– For a square matrix ۯ = ୘܄۲܃ (i.e., singular or nonsingular)
the pseudo-inverse matrix ۯା = ۲଴܄

ିଵ܃୘

۲଴
ିଵ is equal to ۲ିଵ for all non-zero singular values and zero otherwise.

• Property 4
– The columns of U corresponding to non-zero singular values = A’s range
– The columns of V corresponding to zero singular values = A’s null space

9

Properties of the SVD
• Property 5

– ݊ × ݊ matrix ۯ୘ۯ
non-zero eigenvalues = the squares of non-zero singular values ߪ௜

eigenvectors = columns of ܄

– ݉ × ݉ matrix ۯۯ୘

non-zero eigenvalues = the squares of non-zero singular values ߪ௜

eigenvectors = columns of ܃

– For ࢛௞ and ࢜௞ (columns of ܃ and ܄ corresponding to ߪ௞)
௞࢛ۯ = ௞࢜௞ߪ

௞்࢜ۯ = ௞࢛௞ߪ

10

Properties of the SVD
• Property 6

– Frobenius norm ۯ ி of matrix ۯ
– ۯ ி = ∑ ܽ௜௝

�
௜,௝

– ۯ ி = ∑ ௞ߪ
�
௞

11

Solving non-homogeneous and homogeneous linear system

• ࢞ۯ = ࢈  ࢞ = ܊܂ۯ૚ି(ۯ܂ۯ)
– This solution is known to be optimal in the least square sense.
– Namely, it is equivalent to minimizing ࢞ۯ − ࢈ ଶ

• ࢞ۯ = ૙
– ݉ :ۯ × ݊ matrix, ݉ ≥ ݊ − (ۯ)݇݊ܽݎ ,1 = ݊ − 1
– Its trivial solution is ૙
– To find a non-trivial solution, we can find the solution up to a scale factor through Singular Value

Decomposition (SVD).
– As the norm of the solution is arbitrary, we impose a unit norm constraint on the solution

min
࢞

࢞ۯ ଶ −)ߣ ࢞ ଶ − 1)

min
࢞

࢞ۯ ଶ subject to ࢞ ଶ = 1

Introducing the Lagrange multiplier ߣ

12

Solving non-homogeneous and homogeneous linear system

min
܎

࢞ۯ ଶ −)ߣ ࢞ ଶ − 1)

• Equating to zero the derivative with respect to f gives

• This equation tells
ߣ = eigenvalue of ۯ୘ۯ and ࢞ = ஛܍ corresponding eigenvector.

• Then, with this solution the objective becomes
࢞ۯ ଶ − ߣ ࢞ ଶ − 1 = ߣ

• In short,
the solution = the column of ܄ corresponding to the null (non-zero) singular value of ۯ

࢞ۯ୘ۯ − ࢞ߣ = 0

13

Solving non-homogeneous and homogeneous linear system - Rayleigh quotient

• For a given complex Hermitian matrix ۻ and nonzero vector ࢞, the Rayleigh quotient
,ܯ)ܴ (ݔ is defined as follows.

• For covariance matrix ۻ = ௜ߣ let us denote ,ۯ୘ۯ and ݒ௜ as eigenvalue and eigenvector of ۻ

ܴ ,ۻ ࢞ =
࢞ۻ∗࢞
࢞∗࢞

௜࢜ۻ = ௜࢜ۯ୘ۯ = ௜࢜௜ߣ

௜࢜
୘ۯ୘࢜ۯ௜ = ௜࢜

୘ߣ௜࢜௜ |௜ݒ| ݋ݐ ݐ݆ܾܿ݁ݑݏ = 1

௜࢜ۯ
ଶ = ௜ߣ ௜࢜

ଶ

௜࢜ۯ
ଶ

௜࢜
ଶ = ௜ߣ

14

Solving non-homogeneous and homogeneous linear system

Problem statementProblem statement Solution

(in matlab)

࢞ = ܊܂ۯ૚ି(ۯ܂ۯ)

࢞ = ࢈\ۯ

Minimize ࢞ۯ − ࢈ ଶ

Least square solution to ࢞ۯ = ࢈

Problem statementProblem statement Solution

,࢜] [ߣ = eig(ۯ܂ۯ)

࢞ = :ଵ࢜ ଵߣ < ଶ,…,௡ߣ

Minimize ࢞୘ۯ୘࢞ۯ s.t. ࢞୘࢞ = 1

Non-trivial solution to ࢞ۯ = ૙

Minimize
࢞ۯ୘ۯ୘࢞

࢞୘࢞

15

Applications: Estimating Geometric Transformation
• General form of geometric transformation

– Including translation, rotation, scale, skew, and so on.

p. 35-38 of Computer Vision: Algorithms and Applications (Richard Szeliski)
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

16

Applications: Estimating Geometric Transformation
• 2D parametric transformation

– Translation
– Rigid (Euclidean) transformation
– Similarity transformation
– Affine transformation
– Projective transformation

p. 35-38 of Computer Vision: Algorithms and Applications (Richard Szeliski)
http://szeliski.org/Book/drafts/SzeliskiBook_20100903_draft.pdf

17

Applications: Estimating Geometric Transformation

ᇱ࢞ = ℎ ࢞ = ෥࢞ۻ where ࢞෥ = ࢞
1

18

Estimating Affine Transformation

݌ =
ݔ
ݕ ᇱ݌ = ᇱݔ

ᇱݕ

ᇱݔ

ᇱݕ = ܽ ܾ ܿ
݀ ݁ ݂

ݔ
ݕ
1

For a pair of corresponding pixels

ଵܫ

For ܰ ≥ 3 pairs of corresponding pixels, affine transform
for ܫଵ → ଶܫ can be computed as follows.

'

'

1 0 0 0
0 0 0 1

a
b

x y c x
x y d y

e
f

 
 
 
    

    
    

 
  
 

'
1 1 1

'
1 1 1

'
2 2 2

'
2 2 2

'

'

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1

1 0 0 0
0 0 0 1
N N N

N N N

x y x
a

x y y
b

x y x
c

x y y
d
e

x y x
f

x y y

  
    
    
    
    

    
    
    
     
         

 

࢞ۯ = ࢈
 ࢞ = ࢈୘ۯଵି(ۯ୘ۯ)

ۯ ࢞ ࢈

ଶܫ

19

Homography

Question
Given a set of point correspondences between two views,
can we match an arbitrary point in a view to another view?

Note: All the points should be on the same planar surface.

20

Homography
• Relationship between two views

– They have same directions.
– ݔܪ are collinear: ݔᇱ × ݔܪ = 0

ᇱݔ ≅ ݔܪ

21

Estimating Homography
• How to compute homography matrix

ᇱݔ

ᇱݕ

1
≅

ℎଵଵ ℎଵଶ ℎଵଷ
ℎଶଵ ℎଶଶ ℎଶଷ
ℎଷଵ ℎଷଶ ℎଷଷ

ݔ
ݕ
1

11

12
' ' '

131 1 1 1 1 1 1
' ' '

211 1 1 1 1 1 1

22
' ' '

23
' ' '

31

32

33

01 0 0 0
00 0 0 1

01 0 0 0
00 0 0 1

N N N N N N N

N N N N N N N

h
h
hx y x x x y x
hx y y x y y y
h
hx y x x x y x
hx y y x y y y
h
h

 
 
 
      
           
    
    

       
         

 
  
 



For ܰ ≥ 4 pairs of corresponding pixels

Solving ܐۯ = ૙ requires using SVD.

22

Image Stitching using Homography

Stitched image using
the estimated homography

23

Neural Networks
Simple Example: Multi-Layer Perceptron (MLP)

24

Derivative

• Optimization using derivative
– 1st order derivative

– ݂ᇱ(ݔ): The slope of the function, indicating the direction in which the value increases
 The minima of the objective function may exist in the direction of −݂ᇱ(ݔ).
 Gradient descent algorithm: ݀ߠ ← −݂ᇱ(ݔ)

25

Partial Derivative

• Partial derivative
– Derivatives of functions with multiple variables
– Gradient: the vector of the partial derivative

,݂ߘ
߲݂
ܠ߲

,
߲݂
ଵݔ߲

,
߲݂
ଶݔ߲

୘

Ex)

26

Chain Rule
• Chain rule

• Multi-layer perceptron (MLP)
– Example of composite function
– Error back propagation:

use the chain rule to compute డ௢೔
డ௨మయ

భ

݂ ݔ = ݃(ℎ ݔ)
݂ ݔ = ݃(ℎ (ݔ)݅)

Ex)

27

Jacobian Matrix and Hessian Matrix

• Jacobian matrix
– 1st order partial derivative matrix for ܎: ℝௗ ↦ ℝ௠

• Hessian matrix
– 2nd order partial derivative matrix

Ex)

Ex)

2 × 3 or 3 × 2 matrix can be used.
Here, we define it as 2 × 3 matrix.

28

Applications: Neural Networks
• Activation function

– Softmax, Sigmoid, ReLU, Leaky ReLU

• Loss function
– Regression loss, Hinge loss, Cross-entropy loss, Log likelihood loss

29

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ߪ ݔ =
1

1 + ݁ି௫

tanh ݔ =
݁௫ − ݁ି௫

݁௫ + ݁ି௫

max 0, ݔ

max ,ݔ0.1 ݔ

max ଵݓ
ݔ் + ܾଵ, ଶݓ

ݔ் + ܾଶ

ቊ ݔ ݔ ≥ 0
௫݁)ߙ − 1) ݔ < 0

30

Softmax Activation Function
• Softmax activation function

scores = unnormalized log probabilities of the classes.

Probability can be computed using scores as below.

Probability of class label being ݇ for an image ࢞௜

ܲ ܻ = ݇ ܺ = ௜࢞ = ௞݌ =
݁௦ೖ

∑ ݁௦ೕ஼
௝ୀଵ

Softmax activation
function

௜: image࢞
௜: class label (integer, 1ݕ ≤ ௜ݕ ≤ (ܥ

࢙ = ௜࢞܅ + ࢈

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
஼࢝

்

31

Loss function
• Loss function

– quantifies our unhappiness with the scores across the training data.

• Type of loss function
– Regression loss
– Hinge loss
– Cross-entropy loss
– Log likelihood loss

32

Loss Function: Log Likelihood Loss
• Log likelihood loss

Example
Suppose ݅௧௛ image belongs to class 2 and ܥ = 10.

࢏ࢠ =

0
1
0
⋮
0

࢖ =

0.1
0.7
0
⋮

0.2

௜ܮ = −log 0.7

class label for ݅௧௛ :࢏ࢠ image
ܥ) × 1 vector, ݖ௜௝ = 1 when ݆ = ௜ݕ and 0 otherwise)

࢖ =

ଵ݌
ଶ݌
⋮

஼݌

probability for ݅௧௛ image
(It is assumed to be normalized, i.e. ࢖ = 1.)

௜: class label (integer, 1ݕ ≤ ௜ݕ ≤ (ܥ

௜ܮ = −log ݌௝ where ݆ satisfies ݖ௜௝ = 1

33

Softmax + Log Likelihood Loss
• Log likelihood loss

௜ܮ = −log
݁௦೤೔

∑ ݁௦ೕ஼
௝ୀଵ

௜ܮ = −log ݌௝ where ݆ satisfies ݖ௜௝ = 1

class label for ݅௧௛ :࢏ࢠ image
ܥ) × 1 vector, ݖ௜௝ = 1 when ݆ = ௜ݕ and 0 otherwise)

࢖ =

ଵ݌
ଶ݌
⋮

஼݌

probability for ݅௧௛ image
(It is assumed to be normalized, i.e. ࢖ = 1.)

This can be interpreted as minimizing the negative log likelihood of the correct class.
Maximum Likelihood Estimation (MLE)

௜: class label (integer, 1ݕ ≤ ௜ݕ ≤ (ܥ

34

Softmax + Log Likelihood Loss

௜ܮ = −log
݁௦೤೔

∑ ݁௦ೕ஼
௝ୀଵ

Softmax + Log likelihood loss:
is often called ‘softmax classifier’

35

Loss Function: Regression Loss
• Regression loss

– Using L1 or L2 norms
– Widely used in pixel-level prediction (e.g. image denoising)

࢏࢟ =

0
1
0
⋮
0

࢏࢙ =

0.1
0.7
0
⋮

0.2

௜ܮ = ௜࢟ − ௜࢙ = 0 − 0.1 + 1 − 0.7 + |0 − 0.2|

௜ܮ = ௜࢟| − |௜࢙

௜ܮ = ௜࢟) − ௜)ଶ࢙

36

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ
࢙ = ࢞܅ + ࢈

ଵݏ = ଵ࢝
୘࢞ + ܾଵ

ଶݏ = ଶ࢝
୘࢞ + ܾଶ
⋮

௡ݏ = ௡࢝
୘࢞ + ܾ௡

ଵݏ߲

ଵ߲࢝
= ࢞

ଶݏ߲

ଵ߲࢝
= ૙

௡ݏ߲

ଵ߲࢝
= ૙

⋮

࢙߲
ଵ߲࢝

= ⋯ ૙ ૙ ࢞] ૙] ∈ ℜௗ×௡ ࢙߲
௝߲࢝

= [૙ ૙ ࢞ ⋯ ૙] ∈ ℜௗ×௡

jth column

Partial Derivative (Jacobian Matrix) of Linear Equation

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

࢙߲
࢈߲

=
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= ۷ ∈ ℜ௡×௡

37

ଵݏ߲

߲࢞
= ଵ࢝

ଶݏ߲

߲࢞
= ଶ࢝

௡ݏ߲

߲࢞
= ௡࢝

⋮

࢙߲
߲࢞

= ૛࢝ ଵ࢝ ⋯ ௡࢝ = ୘܅ ∈ ℜௗ×௡

Partial Derivative (Jacobian Matrix) of Linear Equation

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ
࢙ = ࢞܅ + ࢈

ଵݏ = ଵ࢝
୘࢞ + ܾଵ

ଶݏ = ଶ࢝
୘࢞ + ܾଶ
⋮

௡ݏ = ௡࢝
୘࢞ + ܾ௡

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

38

Partial Derivative (Jacobian Matrix) of Sigmoid Function

ߪ ݔ =
1

1 + ݁ି௫

Sigmoid function

(ݔ)ߪ߲
ݔ߲

=
݁ି௫

(1 + ݁ି௫)ଶ =
1 + ݁ି௫ − 1

1 + ݁ି௫
1

1 + ݁ି௫ = (1 − ߪ ݔ ߪ(ݔ

࢖ = ߪ ࢙ =
1

1 + ࢙ି݁

For a scalar ݔ

→

Similarly, for a vector ࢙ ∈ ℜ௡×ଵ

→ ࢖߲
࢙߲

= ݀݅ܽ݃ (1 − (௝ݏ)ߪ((௝ݏ)ߪ =
(1 − (ଵݏ)ߪ((ଵݏ)ߪ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ (1 − (௡ݏ)ߪ((௡ݏ)ߪ

for ݆ = 1, … , ݊

39

Partial Derivative (Jacobian Matrix) of Softmax Activation Function

• Softmax function

• 1st order derivative of softmax function

௞݌ =
݁௦ೖ

∑ ݁௦ೕ௡
௝ୀଵ

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

score function
࢖ =

ଵ݌
ଶ݌
⋮

௡݌

probability

࢖߲
࢙߲

=
݀݅ܽ݃ ࢙݁ ȉ ∑ ݁௦ೕ�

� − ࢙݁ ࢙݁ ୘

∑ ݁௦ೕ�
�

ଶ =

in vector form࢖ =
࢙݁

∑ ݁௦ೕ௡
௝ୀଵ

1
∑ ݁௦ೕ�

�
ଶ

݁௦భ∑݁௦ೕ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ݁௦೙∑݁௦ೕ

−
݁௦భ݁௦భ ⋯ ݁௦భ݁௦೙

⋮ ⋱ ⋮
݁௦೙݁௦భ ⋯ ݁௦೙݁௦೙

40

Partial Derivative (Jacobian Matrix) of Softmax Activation Function

۲ =
࢖߲
࢙߲

=
݀݅ܽ݃ ࢙݁ ȉ ∑ ݁௦ೕ�

� − ࢙݁ ࢙݁ ୘

∑ ݁௦ೕ�
�

ଶ =
1

∑ ݁௦ೕ�
�

ଶ

݁௦భ∑݁௦ೕ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ݁௦೙∑݁௦ೕ

−
݁௦భ݁௦భ ⋯ ݁௦భ݁௦೙

⋮ ⋱ ⋮
݁௦೙݁௦భ ⋯ ݁௦೙݁௦೙

For ܽ = ܾ

݁௦ೌ(∑ ݁௦ೕ�
� − ݁௦ೌ)

∑ ݁௦ೕ�
�

ଶ = ௔(1݌ − (௔݌

For ܽ ≠ ܾ

−
݁௦ೌ݁௦್

∑ ݁௦ೕ�
�

ଶ = ௕݌௔݌− ௔௕ܦ = ௔௕ߜ)௔݌ − (௕݌
௔௕ߜ = ቊ1 ܽ = ܾ

0 otherwise

41

Partial Derivative (Jacobian Matrix) of Regression Loss

• 1st order derivative

ܮ = ࢟) − =ଶ(࢙ ࢟) − ࢞܅ − ଶ(࢈
࢙ =

ଵݏ
ଶݏ
⋮

஼ݏ

࢙ = ࢞܅ + ࢈
܅ =

ଵ࢝
்

ଶ࢝
்

⋮
஼࢝

௝ݏ் = ௝࢝
்࢞ + ௝ܾ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ஼

For simplicity of notation, i is omitted here

ܮ߲
௝߲࢝

= ௝ݕ)2− − ௝࢝
்࢞ − ௝ܾ)࢞

ܮ߲
࢈߲

= ࢟)2− − ࢞܅ − (࢈

= ෍(ݕ௝ − ௝࢝
்࢞ − ௝ܾ)ଶ

஼

௝ୀଵ

ܮ߲
܅߲

= ࢟)2− − ࢞܅ − ୘࢞(࢈

42

Partial Derivative (Jacobian Matrix) of Regression Loss

• 1st order derivative

ܮ = ࢟) − =ଶ(࢙ ࢟) − ଶ(࢞܅
࢙ =

ଵݏ
ଶݏ
⋮

஼ݏ

࢙ = ࢞܅ ܅ =

ଵ࢝
்

ଶ࢝
்

⋮
஼࢝

்

௝ݏ = ௝࢝
்࢞

For simplicity of notation, i is omitted here

ܮ߲
௝߲࢝

= ௝ݕ)2− − ௝࢝
࢞(்࢞

= ෍(ݕ௝ − ௝࢝
ଶ(்࢞

஼

௝ୀଵ

ܮ߲
܅߲

= ࢟)2− − ୘࢞(࢞܅

43

Neural Networks: Architectures

(Before) Linear score function: ࢌ = ࢞܅ + ࢈

(Now) 2-layer Neural Network: ࢌ = ,ଶmax(૙܅ ࢞ଵ܅ + (ଵ࢈ + ଶ࢈
3-layer Neural Network: ࢌ = ଷmax܅ ૙, ଶmax܅ ૙, ࢞ଵ܅ + ଵ࢈ + ଶ࢈ + ଷ࢈

44

Neural Networks: Architectures

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

45

Derivative of Neural Net using Chain Rules
• Example

1. 1-layer Neural Net (L2 regression loss)
2. 2-layer Neural Net (L2 regression loss)

3. 1-layer Neural Net (Softmax classifier)
4. 2-layer Neural Net (Softmax classifier)

46

1. 1-layer Neural Net (L2 regression loss)

Output layer

࢞࢖

࢙ = ࢞܅ + ࢈

࢖ = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score

2. Activation function

3. Loss

௝ݏ = ௝࢝
்࢞ + ௝ܾ

ܮ = ࢠ) − ଶ(࢖

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

47

Output layer

ଵݏ ଵ݌

ଵݖ Ground truth

࢞࢖

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

࢖ = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score

2. Activation function

3. Loss

௝ݏ = ௝࢝
்࢞ + ௝ܾ

ܮ = ࢠ) − ଶ(࢖

ଵ݌ =
1

1 + ݁ି௦భ
ଵݏ = ଵ࢝

୘࢞ + ଵܾ = ෍ ௞ݔଵ௞ݓ

ௗ

௞ୀଵ

+ ଵܾ ଵݖ) − ଵ)ଶ݌

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

48

௡ݏ ௡݌

௡ݖ
⋮

Ground truth
Output layer

࢞࢖

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

࢖ = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score

2. Activation function

3. Loss

௝ݏ = ௝࢝
்࢞ + ௝ܾ

ܮ = ࢠ) − ଶ(࢖

௡݌ =
1

1 + ݁ି௦೙
௡ݏ = ௡࢝

୘࢞ + ܾ௡ = ෍ ௞ݔ௡௞ݓ

ௗ

௞ୀଵ

+ ܾ௡ ௡ݖ) − ௡)ଶ݌

ଵݏ ଵ݌

ଵݖ Ground truth

ଵ݌ =
1

1 + ݁ି௦భ
ଵݏ = ଵ࢝

୘࢞ + ଵܾ = ෍ ௞ݔଵ௞ݓ

ௗ

௞ୀଵ

+ ଵܾ ଵݖ) − ଵ)ଶ݌

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

49

Output layer

࢞࢖

1. 1-layer Neural Net (L2 regression loss)

࢙ = ࢞܅ + ࢈

࢖ = ߪ ࢙ =
1

1 + ࢙ି݁

1. Linear score

2. Activation function

3. Loss

௝ݏ = ௝࢝
்࢞ + ௝ܾ

ܮ = ࢠ) − ଶ(࢖

We need to compute
gradients of ܅, ,࢈ ,࢙ ࢖ with
respect to the loss function ܮ.

࢞܅ sigmoid
࢙ ࢖

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

50

ܮ߲
࢙߲

=
࢖߲
࢙߲

ܮ߲
࢖߲

= ݀݅ܽ݃ (1 − (௝ݏ)ߪ((௝ݏ)ߪ
ܮ߲
࢖߲

= −2

(1 − ଵݖ)(ଵݏ)ߪ((ଵݏ)ߪ − (ଵ݌
(1 − ଶݖ)(ଶݏ)ߪ((ଶݏ)ߪ − (ଶ݌

⋮
(1 − ௡ݖ)(௡ݏ)ߪ((௡ݏ)ߪ − (௡݌

ܮ߲
࢖߲

= ࢠ)2− − (࢖

ܮ߲
௝߲࢝

=
࢙߲

௝߲࢝

ܮ߲
࢙߲

= ௝܆
ܮ߲
࢙߲

= [૙ ૙ ࢞ ⋯ ૙]
ܮ߲
࢙߲

=
ܮ߲
࢙߲ ௝

࢞

jth column

ܮ߲
܅߲

=
ܮ߲

ଵ߲࢝

ܮ߲
ଶ߲࢝

⋯
ܮ߲

௡߲࢝

୘

=
ܮ߲
࢙߲

୘࢞

= (1 − ((࢙)ߪ ⊗ ߪ ࢙ ⊗
ܮ߲
࢖߲

⊗: element-wise multiplication

ࢇ ௝: jth element at vector ࢇ

1. 1-layer Neural Net (L2 regression loss)

ܮ߲
࢈߲

=
࢙߲
࢈߲

ܮ߲
࢙߲

=
ܮ߲
࢙߲

࢞܅ sigmoid
࢙ ࢖

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

51

Summary

ܮ߲
܅߲

=
ܮ߲
࢙߲

୘࢞

ܮ߲
࢖߲

= ࢠ)2− − (࢖

ܮ߲
࢙߲

=
࢖߲
࢙߲

ܮ߲
࢖߲

= (1 − ((࢙)ߪ ⊗ ߪ ࢙ ⊗
ܮ߲
࢖߲

1. 1-layer Neural Net (L2 regression loss)

ܮ߲
߲࢞

=
࢙߲
߲࢞

ܮ߲
࢙߲

= ୘܅ ܮ߲
࢙߲

Note that the following derivative can also be
computed, but here ࢞ is an input data that is
fixed during training. Thus, it is not necessary
to compute its derivative.߲ܮ

࢈߲
=

ܮ߲
࢙߲

࢞܅ sigmoid
࢙ ࢖

L2 Loss

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

52

࢞ଵ܅ sigmoid
ଵ࢙ ଵ࢖

L2 Loss

ࢠ

ଶ܅ sigmoid
ଶ࢙ ૛࢖

ܮ߲
ଶ࢙߲

=
ଶ࢖߲

ଶ࢙߲

ܮ߲
ଶ࢖߲

= ݀݅ܽ݃ (1 − (ଶ,௝ݏ)ߪ((ଶ,௝ݏ)ߪ
ܮ߲

ଶ࢖߲

ܮ߲
ଵ࢖߲

=
ଶ࢙߲

ଵ࢖߲

ܮ߲
ଶ࢙߲

= ଶ܅
୘ ܮ߲

ଶ࢙߲

ܮ߲
૛࢖߲

= ࢠ)2− − (૛࢖

ܮ߲
ଵ࢙߲

=
ଵ࢖߲

ଵ࢙߲

ܮ߲
ଵ࢖߲

= ݀݅ܽ݃ (1 − (ଵ,௝ݏ)ߪ((ଵ,௝ݏ)ߪ
ܮ߲

ଵ࢖߲

ܮ߲
ଵ܅߲

=
ܮ߲
ଵ࢙߲

୘࢞

݀ × 1

݊ × ݀

݊ × 1 ݊ × 1

݉ × ݊

݉ × 1 ݉ × 1

݉ × 1Ground truth2. 2-layer Neural Net (L2 regression loss) In a vector form

࢞ଶ࢖

ܮ߲
ଶ܅߲

=
ܮ߲
ଶ࢙߲

ଵ࢖
୘

ଵ࢈
݊ × 1

ଶ࢈
݉ × 1

ܮ߲
ଶ࢈߲

=
ܮ߲
ଶ࢙߲

ܮ߲
ଵ࢈߲

=
ܮ߲
ଵ࢙߲

53

1. Linear score

2. Activation function

3. Loss

࢖ =
࢙݁

∑ ݁௦ೕ௡
௝ୀଵ

ܮ = −log ݌௬ where ݕ satisfies ݖ௬ = 1
For ࢠ = ଶݖ ଵݖ) ௬ݖ ,்(௡ݖ … = 1 and ݖ௞ஷ௬ = 0

3. 1-layer Neural Net (Softmax classifier)

Output layer

࢞࢖

࢞܅ softmax
࢙ ࢖

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

We need to compute
gradients of ܅, ,࢈ ,࢙ ࢖ with
respect to the loss function ܮ.

࢙ = ࢞܅ + ࢈ ௝ݏ = ௝࢝
்࢞ + ௝ܾ

࢙ =

ଵݏ
ଶݏ
⋮

௡ݏ

܅ =

ଵ࢝
்

ଶ࢝
்

⋮
௡࢝

்

=

ଵଵݓ ଵଶݓ ⋯ ଵௗݓ
ଶଵݓ ଶଶݓ ⋯ ଶௗݓ

⋮
௡ଵݓ ௡ଶݓ ⋯ ௡ௗݓ

࢞ =

ଵݔ
ଶݔ
⋮

ௗݔ

࢈ =

ܾଵ
ܾଶ
⋮

ܾ௡

54

ܮ߲
࢙߲

=
࢖߲
࢙߲

ܮ߲
࢖߲

= ۲
ܮ߲
࢖߲

= −
1

௬݌

ଵ௬ܦ
ଶ௬ܦ

⋮
௡௬ܦ

= ࢖ − ࢠ

ܮ߲
࢖߲

=

0
0

௬݌/1−
⋮
0

ܮ߲
௝߲࢝

=
࢙߲

௝߲࢝

ܮ߲
࢙߲

= ௝܆
ܮ߲
࢙߲

= ૙ ૙ ࢞ ⋯ ૙
ܮ߲
࢙߲

=
ܮ߲
࢙߲ ௝

࢞

yth row

௔௕ܦ = ௔௕ߜ)௔݌ − (௕݌

௔௕ߜ = ቊ1 ܽ = ܾ
0 otherwise

ܮ߲
܅߲

=
ܮ߲

ଵ߲࢝

ܮ߲
ଶ߲࢝

⋯
ܮ߲

௡߲࢝

୘

=
ܮ߲
࢙߲

୘࢞

ࢇ ௝: jth element at vector ࢇ

jth column

3. 1-layer Neural Net (Softmax classifier)

࢞܅ softmax
࢙ ࢖

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

ܮ߲
࢈߲

=
࢙߲
࢈߲

ܮ߲
࢙߲

=
ܮ߲
࢙߲

55

ܮ߲
࢙߲

=
࢖߲
࢙߲

ܮ߲
࢖߲

= ۲
ܮ߲
࢖߲

= −
1

௬݌

ଵ௬ܦ
ଶ௬ܦ

⋮
௡௬ܦ

= ࢖ − ࢠ

ܮ߲
࢖߲

=

0
0

௬݌/1−
⋮
0

ܮ߲
܅߲

=
ܮ߲
࢙߲

୘࢞

yth row

Summary

3. 1-layer Neural Net (Softmax classifier)

ܮ߲
߲࢞

=
࢙߲
߲࢞

ܮ߲
࢙߲

= ୘܅ ܮ߲
࢙߲

Note that the following derivative can also be
computed, but here ࢞ is an input data that is
fixed during training. Thus, it is not necessary
to compute its derivative.

࢞܅ softmax
࢙ ࢖

In a vector formࢠ

݀ × 1
݊ × ݀

݊ × 1 ݊ × 1

݊ × 1Ground truth

࢈
݊ × 1

Log
likelihood

ܮ߲
࢈߲

=
ܮ߲
࢙߲

56

ܮ߲
ଶ࢙߲

=
ଶ࢖߲

ଶ࢙߲

ܮ߲
ଶ࢖߲

= ۲
ܮ߲

ଶ࢖߲

ܮ߲
ଵ࢖߲

=
ଶ࢙߲

ଵ࢖߲

ܮ߲
ଶ࢙߲

= ଶ܅
୘ ܮ߲

ଶ࢙߲

ܮ߲
ଵ࢙߲

=
ଵ࢖߲

ଵ࢙߲

ܮ߲
ଵ࢖߲

= ݀݅ܽ݃ (1 − (ଵ,௝ݏ)ߪ((ଵ,௝ݏ)ߪ
ܮ߲

ଵ࢖߲

4. 2-layer Neural Net (Softmax classifier)

࢞ଶ࢖

௔௕ܦ = ௔௕ߜ)௔݌ − (௕݌

௔௕ߜ = ቊ1 ܽ = ܾ
0 otherwise

ܮ߲
ଶ࢖߲

=

0
0

௬݌/1−
⋮
0

yth row

ܮ߲
ଵ܅߲

=
ܮ߲
ଵ࢙߲

୘࢞

ܮ߲
૛܅߲

=
ܮ߲
ଶ࢙߲

ଵ࢖
୘

࢞ଵ܅ sigmoid
ଵ࢙ ଵ࢖

ࢠ

ଶ܅ softmax
ଶ࢙ ૛࢖

݀ × 1

݊ × ݀

݊ × 1 ݊ × 1

݉ × ݊

݉ × 1 ݉ × 1

݉ × 1Ground truthIn a vector form

ଵ࢈
݊ × 1

ଶ࢈ ݉ × 1

Log
likelihood

ܮ߲
ଵ࢈߲

=
ܮ߲
ଵ࢙߲

ܮ߲
ଶ࢈߲

=
ܮ߲
ଶ࢙߲

57

Full implementation of training a 2-layer Neural Network
N: batch size
D_in: input feature size
H: input feature size of the second layer
D_out: output feature size

1000

࢞ଵ܅ sigmoid
ࢎ

࢟

ଶ܅
࢙

Ground truth

L2 loss

