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Abstract. We propose a fast disparity estimation algorithm using back-
ground registration and object segmentation for stereo sequences from
fixed cameras. Dense background disparity information is calculated in
an initialization step so that only disparities of moving object regions
are updated in the main process. We propose a real-time segmentation
technique using background subtraction and inter-frame differences, and
a hierarchical disparity estimation using a region-dividing technique and
shape-adaptive matching windows. Experimental results show that the
proposed algorithm provides accurate disparity vector fields with an av-
erage processing speed of 15 frames/sec for 320x240 stereo sequences on
a common PC.

1 Introduction

One of the most important problems in 3D image processing is to locate cor-
responding points in the images, a process referred as disparity estimation. As
shown in Fig. 1, stereo imaging involves two separate image views of a single
world point w. The objective is to find the corresponding pair I1 and I2 in the

Fig. 1. Stereo geometry
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Fig. 2. Block diagram of the proposed algorithm

image pair. If we assume that the cameras are identical and the coordinate sys-
tems of both cameras are aligned in parallel, the determination of disparity from
I1 to I2 becomes finding a function d(x,y) such that:

I2(x, y) = I1(x + d(x, y), y) (1)

A number of studies have been reported on the correspondence problem since
the 1970’s. D. Scharstein and R. Szeliski recently discussed the taxonomy of
existing stereo algorithms [1] and a test bed for the quantitative evaluation of the
algorithms [2]. However, most of them have serious limitations on being applied
to common applications since they do not work in real-time. Several real-time
methods were recently proposed [3][4][5], but they were implemented on DSP
for acceleration or show poor quality to be used for wide-ranging applications.

We have previously proposed a two-stage algorithm to find smooth and pre-
cise disparity vector fields in a stereo image pair [6]. The algorithm has consisted
of a dense disparity estimation and edge-preserving regularization. It results in
such a clean disparity map with good discontinuity localization, but the com-
putational cost is so high that it does not work in real-time. In this paper, we
propose a fast disparity estimation algorithm using background registration and
object segmentation. We assume that a stereo camera set does not move, and
there is no moving object for a few seconds in an initialization step for gener-
ating background information. Accurate and detailed disparity information for
background is estimated in advance, then only disparities of moving foreground
regions are calculated and merged into background disparity fields.

Fig. 2 shows a block diagram of the proposed system. As a preprocessing,
acquired image sequences are low-pass filtered to reduce noise effect and rectified
since we assume that stereo images are captured in parallel stereo cameras in
disparity estimation. We use a real-time stereo rectification function provided
by Triclops SDK [7].
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2 Foreground Segmentation

Real-time foreground segmentation is one of the most important components of
the proposed system, since the performance of the segmentation decides the effi-
ciency and quality of the final disparity fields. We propose a foreground segmen-
tation technique using background subtraction and inter-frame differences based
on the technique which we have previously proposed [8]. Fig. 3 shows overall seg-
mentation process. At first, the background masks Imin(x,y)and Imax(x,y) are
modeled with minimum and maximum intensities of the first N frames, respec-
tively, because the background information is very sensitive to noise and change
of illumination. Then, the frame difference mask Ifd(x,y) is calculated by the dif-
ference between two consecutive frames. In the third step, an initial foreground
mask is constructed from the frame difference and background difference masks
by the OR process, that is, if a pixel of current frame satisfies one of Eq. (2),
it is determined to be belonged to an initial foreground region. Thtol and Thfd

mean threshold values for background and frame difference regions, respectively.

Icur(x, y) < Imin(x, y) − Thtol

Icur(x, y) > Imax(x, y) + Thtol (2)
Ifd(x, y) > Thfd

However, due to the camera noise and irregular object motion, there exist
some noise regions in the initial mask. One of the conventional ways to eliminate
the noise regions is using the morphological operations to filter out small regions.
Therefore, we refine the initial mask by a closing process and eliminate small
regions with a region-growing technique.

Finally, in order to smooth the boundaries of foreground and to eliminate
holes inside the regions, we propose a profile extraction technique. This tech-
nique is remodeled from Kumar’s profile extraction technique [9]. A weighted
one pixel thick drape moves from one side to the opposite side. The adjacent
pixels of the drape are connected by elastic spring, so it covers object but does

Fig. 3. Real-time segmentation algorithm
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Fig. 4. Profile extraction process

Fig. 5. Segmentation results

not infiltrate into gaps whose widths are smaller than a threshold M. This process
is performed from all quarters and the region wrapped by four drapes is decided
as a final foreground region. Fig. 4 shows the profile extraction process applied
to an initial object.

Segmentation results by the proposed method are shown in Fig. 5. The image
is captured in typical office environment without any special lighting equipment.
Fig. 5 (b) is the result of initial object detection from Fig. 5 (a). Main object are
detected well, but they include noises on background and object boundaries. In
Fig. 5 (c), we can see that noises are eliminated and object surfaces are smoothed
by a morphological process. However, many holes still exist inside the objects.
Fig. 5 (d) is the final segmentation result. After applying the profile extraction
technique, good semantic foreground regions are obtained.

3 Disparity Estimation

3.1 Background Disparity Estimation

In windows-based algorithms, the reliability and efficiency depend on the size of
a matching window. Large window sizes provide reliable but not detailed results.
Moreover, employing a large window for each pixel in dense disparity estimation
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Fig. 6. Behavior of the diffusivity function

increases the computational load. Therefore, in the proposed algorithm, dense
disparity information of background is initially estimated in a hierarchical way.

The first step in hierarchical estimation is a BxB block-based initial dis-
parity estimation. In the second step, dense disparity vectors for each pixel are
estimated based on the initial block vectors. In order to cover all the proba-
ble disparity candidates, 9 initial vectors (1 from the current block and 8 from
neighboring blocks) are tested within a small search range α from the vector.
In order to improve computational efficiency in disparity estimation, we use a
region-dividing technique which we have previously proposed [6]. The technique
performs point matching in the order of the possibility of correct matching and
divides the region into sub-regions at the true matching point. After the region
splits into two sub-regions in matching process, the search ranges of points in
each sub-region are restricted to the corresponding sub-region.

However, in the disparity vectors estimated by the above-described method,
spatial correlation of the estimated vector fields is not considered. In order to
provide more accurate and reliable background disparity fields, we refine the
fields by regularizing them by means of the following nonlinear diffusion equation
with an additional fidelity term [6].

∂d

∂t
= λ div

(
g(| �Il(x, y) |2)�d(x, y)

)

+ (Il(x, y) − Ir(x + d, y))
∂Ir(x + d, y)

∂x
(3)

where g(s2) = 1/(1 + s2)2

g(|�Il|2) is a diffusivity function which plays the role of discontinuity marker.
Fig. 6 shows the behavior of the function g(|�Il|2). Therefore, this function
reduces smoothing on object boundaries to preserve their discontinuities. In
order to solve Eq. (3), we discretize the parabolic system by finite differences,
and find the regularized disparity field in recursive manner by updating the field
using Eq. (4).



Real-Time Stereo Using Foreground Segmentation 389

dk+1(x, y) − dk(x, y)
τ

= λ

{
∂

∂x

(

g

(∣
∣
∣
∣
∂Il(x, y)

∂x

∣
∣
∣
∣

2
)

× ∂dk(x, y)
∂x

)

+
∂

∂y

(

g

(∣∣
∣
∣
∂Il(x, y)

∂y

∣∣
∣
∣

2
)

× ∂dk(x, y)
∂y

)}

+
(
Il(x, y) − Ir(x + dk, y)

)
× ∂Ir(x + dk, y)

∂x
(4)

+
(
dk(x, y) − dk+1(x, y)

)
×

(
∂Ir(x + dk, y)

∂x

)2

3.2 Foreground Disparity Estimation

The most important requirement of foreground disparity estimation is a process-
ing speed because the fields of foreground must be updated in every frame. Hier-
archical disparity estimation used in background disparity estimation is applied
to the blocks which include foreground regions except a regularization step. Ini-
tial search ranges are also restricted by the neighbor background disparities since
the foreground objects always exist in front of background region. Eq. (5) shows
the search range decision where SRMax and SRMin mean maximum and mini-
mum search range, respectively, and dln and drn are left and right neighboring
background disparities of the foreground region on the same scanline.

for L → R disparity

SRmax = Min(dln, drn) (5)
for R → L disparity

SRmin = Max(dln, drn)

As a result, search ranges are restricted by three factors: background dispar-
ity, region-dividing technique and hierarchical estimation. Thus, the processing
time of foreground estimation is greatly reduced.

In matching process, however, conventional rectangular window yield false re-
sult around object boundaries because the result is highly influenced by strong
feature. In background disparity estimation, wrong disparities around the re-
gions are corrected by regularization, but it can result in errors in foreground
estimation. For example, in the cases of points A and B in Fig. 7, although they
belong to different regions, the same disparity vectors are assigned because of
the strong edge between them. In order to avoid this type of problem, we propose
a new matching window which provides a high degree of reliability around the
boundary region by deforming its shape according to the flow of the features. Let
Ω denote the contour of the matching window. Starting from a sufficiently small
contour Ω0, the contour expands in the direction of non-increasing |�I| until a
maximum size NxN is reached. Fig. 8 shows an example of window generation
in the 1D case. The window does not cross strong feature so that the correct
sharp boundary of disparity vectors can be obtained, as shown in Fig. 9, where
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Fig. 7. Rectangular window and the proposed window

Fig. 8. Window generation in 1D case

Fig. 9. Matching results using a rectangular window and the proposed window

white lines represent the real edges of the object. However, the adaptive window
may decrease the matching power in highly textured regions. Thus, the shape-
adaptive window is applied only for pixels in the block, where the maximum
difference of disparity to other surrounding blocks is larger than ε.

Finally, estimated foreground disparity fields are merged into background
disparity fields. We check the reliability of the disparity for the pixels in bound-
ary blocks which include the boundary between background and foreground in
order to compensate errors induced by wrong foreground segmentation. Final
disparities of the pixels in boundary blocks are determined by the following
conditions.
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if(|Ir(x,y) − Il(x + dfore,y)| < |Ir(x,y) − Il(x + dback,y)|)
dfinal(x, y) = dfore(x, y) (6)

else

dfinal(x, y) = dback(x, y)

4 Simulation Results

The proposed algorithm is applied to stereoscopic sequences captured by Digi-
clops which provides a rectified stereo sequence with a speed of 30 frames/sec
[7]. The size of images is 320x240 and we used a PC with a Pentium IV 3.0
GHz CPU and 512 Mbytes memories. The parameters used in the simulation
are listed in Table 1.

At first, we compared the performance of the proposed algorithm with other 4
fast algorithms in Table 2. For the objective evaluation, we applied the algorithm
to the still images of Fig. 10 provided on Scharstein’s homepage with ground
truth disparity maps [2], and compared accuracy of the estimated disparity fields.
We used two measures of quality. The first is BMP (bad matching percentage)
of the estimated disparity map employed by Zitnick and Kanade [10], which is
defined as:

Table 1. Parameters used in simulation

Stage Parameter Values

Foreground segmentation
Background generation N = 50
Background difference Thtol = 10

Frame difference Thfd = 5

Disparity estimation
Block size B = 8

Dense disparity range α = 2
Shape-adaptive window ε = 2

Disparity regularization
Lagrange multiplier λ = 2000

Time step size τ = 0.0001
Number of iteration T = 150

Fig. 10. Test images and true disparity fields
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Table 2. Comparative performance of algorithms

Bad Matching Percentage (%) RMSE (pixel)
Head and lamp Sawtooth Head and lamp Sawtooth

Multi-window [11] 4.48 2.18 1.3980 1.2973
Max-Surface [12] 9.25 6.72 1.5294 1.6933
Real-time-DP [4] 4.22 6.11 1.1255 1.7542
MMHM [5] 8.00 3.03 1.6242 1.3069
Hierarchical 5.22 2.46 1.1047 1.3028
Final disparity 4.07 2.25 0.9193 0.9094

B =
1
N

∑

x,y

δ (de(x, y), dT (x, y)) (7)

where δ(a, b) =
{

1 , if |a − b| > 1
0 , else

The second is RMSE (Root-Mean-Squared Error) of the estimated map. The
RMSE between the estimated map de(x,y) and the ground truth map dT (x,y)
can be calculated by:

RMSE =

(
1
N

∑

x,y

(de(x, y) − dT (x, y))2
)1/2

(8)

The proposed algorithm does not deal with a boundary problem, thus a
border of 20 pixels was excluded from the evaluation.

In Table 2, the “Hierarchical” row means the results before regularization,
that is, we can regard them as a performance of foreground estimation though
the effect from the segmentation is not considered. In the BMP evaluation, the
results of applying the proposed algorithm are somewhat inferior to several algo-
rithms in the “Head and lamp” images, and it is a good second to the graph cut
algorithm in the “Sawtooth.” However, the proposed algorithm gives the best
results in the RMSE category. Figs. 11 and 12 show the disparity maps of the
“Sawtooth” and the “Head and lamp,” respectively. In examining the results, the
multi-window and the real-time DP algorithms are superior in terms of finding
discontinuities, but they have problems in error propagation in the horizontal
direction. The max-surface and the MMHM algorithms show a good result with
the “Sawtooth,” but produces prominent errors in some regions in the case of the
“Head and lamp.” The proposed algorithm results in reasonably clean maps with
good discontinuity localization. However, the algorithm fails to find disparity in
a narrow background such as the area between the arms of the lamp.

Table 3 shows the average running time analysis of our algorithm when
one person moves in a scene. The system requires about 6-7 seconds for ini-
tialization before it works. After that, our algorithm shows an average speed
of 15 frames/sec. According to referenced papers, Multi-window shows about
5 frames/sec, Max-Surface 2 frames/sec, Real-time-DP 8 frames/sec without
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Table 3. Processing speed (msec)

Stage Step Time

Initialization
Background generation 1852

Background disparity Estimation 5156

Main processing

Capturing and rectification 28.26
Initial segmentation 9.69

Morphological process 4.64
Silhouette extraction 6.45
Disparity estimation 17.81

Total 66.85

MMX optimization, and MMHM 5 frames/sec. Considering both processing
speed and quality of disparity fields, the proposed algorithm shows the best
results.

Fig. 13 is the snapshot of test sequence and estimated background dispar-
ity fields. The image sequences are captured in natural condition without any
special lighting equipment or any arrangement of objects for extracting good re-
sults. We can see that the proposed algorithm results in such a clean map with
good discontinuity localization. Fig. 14 show several frames from the resulting
sequences; the left one is segmented foregrounds and the right one final dispar-
ity fields in each pair. In the final disparity fields, we can easily imagine a 3D
structure of the scene.

5 Conclusion

In this paper, we propose a real-time disparity estimation algorithm using back-
ground registration and foreground segmentation. Dense background disparity

Fig. 11. Disparity fields of “Head and lamp”
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Fig. 12. Disparity fields of “Sawtooth”

Fig. 13. Test sequence and estimated background disparity

Fig. 14. Results of foreground segmentation and final disparity

information is calculated in advance and only disparities of moving object re-
gions are updated in the main process. For efficient and accurate estimation, a
real-time segmentation algorithm, hierarchical disparity estimation and shape-
adaptive windows are proposed. The performance of the proposed algorithm was
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evaluated in objective and subjective ways. Computation time mainly depends
on the image size, and it was about 15 frames/sec for image pairs having a
resolution of 320x240 on a common PC.

As a future work, we have to develop more powerful segmentation algorithm.
The performance of the segmentation decides the efficiency and quality of the
final disparity fields. Especially, foreground regions classified into background
due to wrong segmentation make serious errors in final fields since the fields are
not updated. The second perspective of our work will be to improve accuracy
of disparity fields at object boundary regions. It is also planned to develop a
complete 3D modeling algorithm from multiple stereo cameras. We are currently
investigating a depth fields merging algorithm with camera calibration.
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