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Abstract

We propose an energy-based joint motion and disparity
estimation algorithm with an anisotropic diffusion operator
to yield correct and dense displacement vectors. The model
estimates the left and right motions simultaneously in or-
der to increase accuracy. We use the Euler-Lagrange equa-
tion with variational methods and solve the equation with
the finite difference method (FDM). Then, the method com-
putes the initial disparity in the current frame with joint es-
timation constraint, and regularizes this disparity by using
our energy model. Experimental results show that the pro-
posed algorithm provides accurate motion-disparity maps,
and preserve the discontinuities of the object boundaries
well.

1 Introduction

There has been considerable interest in recovering 3D

motion flow in image sequences. Most research has in-

volved 3D voxel data sets or image sequences from a

monocular camera [1][2]. The voxel data sets are used in

specific fields such as medical imaging. Estimating 3D mo-

tions from a monocular sequence is limited only when the

objects show rigid motions and only contain simple depth

information. 3D motion interpretation from stereo image

sequences has recently been studied and used to achieve

better results and applications [3]. However, most of these

algorithms compute motion and depth information sepa-

rately and do not consider the constraints between motion

and disparity in the stereoscopic image sequences. One of

the most pressing problems in 3D motion estimation is to

locate corresponding points in the images. The resulting

motion and disparity can be converted into a 3D motion

flow system which consists of x, y and z motion parame-

ters. A number of studies have been reported on the corre-

spondence problem [4]. In order to produce smooth dispar-

ity fields while preserving the discontinuities resulting from

the boundaries, we propose the energy model to regularize

the fields. Much research has been performed in the field

of edge-preserving regularization. For example, the reg-

ularization method used by Horn and Schunck introduces

the edge-preserving smoothing term to compute the optical

flow [5]. In addition, Nagel and Enkelmann modified the

model to improve edge-preserving smoothing performance

[6]. In this paper, we propose an energy model that is useful

for correspondence estimation in stereo image sequences.

The model also presents an efficient way to solve the en-

ergy minimization problem. To reduce computational load

and improve performance, we estimate the disparity in the

current frame using joint estimation constraints [7], and it is

used as the initial disparity in the frame. Moreover, by in-

cluding the relation in the energy model, we propose the si-

multaneous joint energy model which can estimate left and

right motions simultaneously. In the energy model, we can

acquire more correct displacement vectors and reduce the

number of displacement vectors to be found.

2. Simultaneous estimation with regularization

2.1. Joint estimation constraint

Joint estimation is an efficient and accurate way to es-

timate motion and disparity in stereo image sequences. A

coherence condition between motion and disparity in stereo

sequences may be expressed as a linear combination of four

vectors (two motion vectors and two disparity vectors) in

two successive frame pairs, as shown in Fig. 1 and Eq. (1).

d2(ml2) = −ul(ml2) + d1(ml1) + ur(mr1) (1)

2.2. Energy-based motion and disparity es-
timation

General motion and disparity fields should be smooth in

the object area while preserving discontinuities at the ob-

ject’s boundaries in the frame. In order to preserve dis-

continuities and overcome a classic ill-posed problem, we

add the regularization term proposed by Nagel-Enkelmann

[6][8]. We can estimate the motion and disparity fields by
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Figure 1. Simultaneous estimation model

minimizing the energy model, which consists of fidelity and

regularization terms.

ED(d) =
∫

Ω

(Il1(x, y) − Ir1(x + d, y))2dxdy

+ λ

∫
Ω

(∇d)T D(∇Il1)(∇d)dxdy

EM (u, v) =
∫

Ω

(Il1(x, y) − Il2(x + u, y + v))2dxdy

+ λ

∫
Ω

trace((∇h)T D(∇Il1)(∇h))dxdy

(2)

where h(x, y) = (u(x, y), v(x, y))

D(∇I) =
1

|∇I|2 + 2σ2

[( ∂I
∂y

− ∂I
∂x

)( ∂I
∂y

− ∂I
∂x

)T

+ σ2I

]
(3)

ED, EM refer to the energy functional of motion and dis-

parity, respectively. Ω is an image plane, λ is a weighting

factor. D(∇Il1) is an anisotropic linear operator, which is

a regularized projection matrix in the perpendicular aspect

of ∇Il1. An energy model that uses the diffusion operator

inhibits blurring of the fields across the boundaries of I1.

2.3. Simultaneous joint estimation model

By applying the joint constraint to the energy model,

we propose the simultaneous joint estimation model. The

model can acquire more correct vectors and reduce the num-

ber of vectors to be found. The model for simultaneous joint

estimation is shown in Fig. 1. To apply the constraints to

the motion and disparity in the energy model, we define the

new data term EJ as follows:

EJ(ul, vl, ur, vr; d1) =
∫

Ω

(Il2(x + ul, y + vl)

− Ir2(x + d1 + ur, y + vr))2dxdy

(4)

The energy functional is the cost between the point (x +
ul, y + vl) estimated by the left motion from the (x, y) and

the point (x+d1+ur, y+vr) estimated by the right motion

from the (x + d1, y). The more correct the joint estimation,

the smaller the energy functional EJ . By adding the term,

we propose the simultaneous joint energy model which can

estimate left and right motions simultaneously. The simul-

taneous joint estimation model is as follows.

ED(d1) = EDP (d1)
ESM (ul, vl, ur, vr; d1) = EML(ul, vl) + EMR(ur, vr)

+ EJ(ul, vl, ur, vr; d1)
(5)

EDP , EDC are the energy functional of disparity in the pre-

vious and current frames, and EML, EMR are the energy

functional of motion in left and right image sequences in Eq.

(2). ESM refers to the energy functional of left and right

motions in the simultaneous joint estimation model. The

functional also consists of the data term and the smoothing

term. The data term refers to the data term for the left and

right motions, and the data term EJ for the joint estima-

tion constraint. The smoothing term refers to the smoothing

term for the left and right motions. The smoothing term

is the same as that in Eq. (2), apart from the fact that the

smoothing term for the right motion is (x + d1, y). This is

because the four corresponding points starting from (x, y)
are the same points in the 3D space. Simultaneous joint es-

timation should be executed using the corresponding points.

By adding the EJ , the error generated by joint estimation is

reduced, and we can acquire a more correct solution. Since

the estimation uses a disparity vector in the previous frame

d1(x, y), the disparity vector must be estimated correctly at

first. In the model, since the joint estimation constraint is

considered, the value of the vertical disparity in the current

frame is reduced. Therefore, we can obtain the y-motion in

the right sequence as follows:

d2y(x + ul, y + vl) = vr(x + d1, y) − vl(x, y) ∼= 0
vr(x + d1, y) = vl(x, y)

(6)

In general, the local minimum problem is one of the most

serious problems when using energy-based methods be-

cause of the non-convexity of the functional. Therefore, in

order to minimize the local minimum problem, initial field

estimation should be performed before the proposed esti-

mation is applied. We use hierarchical area-based motion

estimation and a region-dividing technique for the initial

motion and disparity field in the previous frame [9]. For

the initial disparity field in the current frame, we simply use

Eq. (1), which is also refined by the proposed energy model.

The simultaneous joint estimation is performed as

follows:

1. Compute the initial motion and disparity vectors of the

previous frame.

2. Estimate the disparity vector of the previous frame

d1(x, y) using the initial disparity vector.

3. Estimate the left and right motion vectors using the

initial motion vector and regularized disparity vector.

0-7695-2521-0/06/$20.00 (c) 2006 IEEE



4. Compute the initial disparity vector of the current frame

by using Eq. (1).

5. Estimate the disparity of current frame using initial

disparity computed in step 4.

The minimization of Eq. (5) yields the following as-

sociated Euler-Lagrange equation with Neumann boundary

conditions. We obtain the solutions to the Euler-Lagrange

equations by calculating the asymptotic state (t→ ∞) of the

parabolic system. The equation form for disparity in left

and right is same.

∂d1(ml1)
∂t

= λdiv(D(∇Il1(ml1))∇d1(ml1))

+ (I1(ml1) − I2(mr1))
∂I2(ml1)

∂x
∂ul(ml1)

∂t
= λdiv (D(∇Il1(ml1))∇ul(ml1))

+ (Il1(ml1) − 2Il2(ml2) + Ir2(mr2))
∂Il2(ml2)

∂x
∂vl(ml1)

∂t
= λdiv (D(∇Il1(ml1))∇vl(ml1))

+ (Il1(ml1) − 2Il2(ml2) + Ir2(mr2))
∂Il2(ml2)

∂y

∂ur(mr1)
∂t

= λdiv (D(∇Il1(mr1))∇ur(mr1))

+ (Ir1(mr1) − 2Ir2(mr2) + Il2(ml2))
∂Ir2(mr2)

∂x

(7)

We also discretize Eq. (7) using a finite difference method.

All spatial derivatives are approximated by forward differ-

ences, and the computationally expensive solution of the

nonlinear system is avoided by using the first-order Taylor

expansion. The final solution can be found in a recursive

manner.

3. Experimental Results

The experiment was performed on the stereoscopic se-

quences, which is ”Boy” of size 320×240 and ”Man” of

size 256× 256 in Fig. 2. The stereoscopic sequences ”Boy”

were captured with a DigiclopsTM of Point Gray Research

Inc. The parameters used in the experiment for motion and

disparity estimations are shown in Table 1. The values of

the weighting factor λ were defined differently to the mo-

tion and disparity estimations in each model. Fig. 3 shows

the disparity fields in the previous and current frames, the

x and y motions in the ”Boy” and ”Man” images. We can

see that the simultaneous model estimates smooth and edge-

preserving displacement vectors. Moreover, because the

initial disparity vector was computed using accurate dispar-

ity and motion vectors, the initial disparity vector acquired

by joint estimation converges faster to the true solution than

Figure 2. Test sequences in previous frame

Table 1. Parameters used in joint estimation
Parameter Values

Weighting factor(disparity, motion) λD,λM =2000,10000

Number of iteration T=600

the original estimation. Although ”Man” images have very

large disparity, maximum value of which is 64 pixels, the

model yields a correct disparity map and preserves the dis-

continuities. Moreover, though the motion of the man is

large, the model yields a correct motion map and the initial

wrong disparity vector produced by the occlusion of motion

is eliminated in the regularization process. Fig. 4 shows the

energy of the regularization term of the disparity and motion

according to λ. In the disparity, as λ increases, the conver-

gence rate also increases, and it shows a maximum value

when λ=2000. However, when λ is 3000, the regularization

term diverges and this causes the solution to become trapped

in the local minima. In the motion, as λ increases, the con-

vergence rate also increases. Large λ causes the motion to

become over-smoothed because the model overemphasizes

the regularization term, thus we define λ as 10000.

4. Conclusion

We proposed an energy-based joint correspondence es-

timation algorithm to be used in stereo image sequences,

and confirmed the performance of the model by applying

it to several stereo image sequences. At first, we used an

anisotropic diffusion operator to improve edge-preserving

performance. Secondly, to increase efficiency, we estimated

the motion and disparity using joint constraints. Since the

model did not require time-consuming initial disparity es-

timation, the processing time was reduced. Finally, we

proposed the joint data term to increase reliability and es-

timated the motion vectors in the left and right sequences

simultaneously. As a conclusion, the proposed method

showed good edge-preserving performance and a fast con-

vergence rate.
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Figure 3. Disparity and Motion maps in ”Boy” and ”Man”images: (a) (f) disparity in the previous
frame, (b) (g) x motion and (c) (h) y motions in the left image sequences (d) (i) Initial disparity and (e)
(j) regularized disparity in current frame

Figure 4. Energy of regularization term of disparity and motion varying with lambda in ”Boy” images
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