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Abstract. We propose a new stereo matching algorithm through
energy-based regularization using color segmentation and visibility con-
straint. Plane parameters in the entire segments are modeled by robust
least square algorithm, which is LMedS method. Then, plane parame-
ter assignment is performed by the cost function penalized for occlusion,
iteratively. Finally, disparity regularization which considers the smooth-
ness between the segments and penalizes the occlusion through visibility
constraint is performed. For occlusion and disparity estimation, we in-
clude the iterative optimization scheme in the energy-based regulariza-
tion. Experimental results show that the proposed algorithm produces
comparable performance to the state-of-the-arts especially in the object
boundaries, un-textured regions.

1 Introduction

Stereo matching is one of the most important problems in computer vision. Dense
disparity map acquired by stereo matching can be used in many applications
including view synthesis, image-based rendering, 3D object modeling, etc. The
goal of stereo matching is to find corresponding points in the different images
taken from same scene by several cameras.

An extensive review of stereo matching algorithms can be found in [1]. Gener-
ally, stereo matching algorithms can be classified into two categories based on the
strategies used for the estimation: local and global approaches. Local approaches
use some kind of correlation between color or intensity patterns in the neigh-
boring windows. The approaches can easily acquire correct disparity in highly
textured regions. However, they often tend to produce noisy results in large un-
textured region. Moreover, it assumes that all pixels in a matching window have
similar disparities resulting in blurred object borders and the removal of small
details. Global approaches define energy model which applies various constraints
for reducing the uncertainties of the disparity map and solve it through various
minimization technique, such as graph cut, belief propagation [2][3].

Recently, many stereo matching algorithms use color segmentation for
large untextured regions handling and accurate localization of object bound-
aries [4][5][6]. The algorithms have the assumption that the disparity vectors
vary smoothly inside homogeneous color segments and change abruptly on
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the segment boundaries. Thus, segment-based stereo matching can produce
smooth disparity fields while preserving the discontinuities resulting from the
boundaries.

Variational regularization approaches have been increasingly applied to stereo
matching method. The regularization method used by B. Horn and B. Schunck
introduces the edge-preserving smoothing term to compute the optical flow [7].
In addition, L. Alvarez modified the regularization model to improve the perfor-
mance of edge-preserving smoothness [8]. In this paper, we propose a segment-
based stereo matching method, which yields accurate and dense disparity vector
fields by using energy-based regularization with visibility constraint.

2 Disparity Plane Estimation

2.1 Color Segmentation

Our approach is based on the assumption that the disparity vectors vary
smoothly inside homogeneous color segments and change abruptly on the seg-
ment boundaries. By using this assumption, we can acquire the planar model of
the disparity inside each segment [4][5][6]. We strictly enforce disparity continu-
ity inside each segment, therefore it is proper to oversegment the image. In our
implementation, we use the algorithm proposed in [9].

2.2 Initial Matching

In a rectified stereo images, the determination of disparity from I1 to I2 becomes
finding a function d(x, y) such that:

I1(x, y) = I2(x − d(x, y), y) (1)

Initial dense disparity vectors are estimated hierarchically using region-
dividing technique [10]. The criterion of determining disparity map is sum-
of-absolute-difference (SAD). The region-dividing technique performs stereo
matching in the order of feature intensities to simultaneously increase the effi-
ciency of the process and the reliability of the results. In order to reject outliers,
we perform a cross-check method for the matching points.

2.3 Robust Plane Fitting

The initial disparity map is used to derive the initial planar equation of each
segment [4]. We model the disparity of a segment, i.e. d(x, y) = ax+by+c, where
P = (a, b, c) are the plane parameters and d is the corresponding disparity of
(x, y). (a, b, c) is the least square solution of a linear system [4]. Although we
eliminate the outliers by cross-check explained in 2.2, there may be a lot of un-
reliable valid points in occluded and untextured regions. In order to decrease the
effects of outliers, we compute the plane parameters by using LMedS method,
which is one of the robust least square methods [11]. Given m valid points in the
segment, we select n random subsamples of p valid points. For each subsample
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indexed by j, we compute the plane parameter Pj = (aj , bj , cj). For each Pj , we
can compute the median value of the square residuals, denoted by Mj , with re-
spect to the whole set of valid points. We retain the Pj for which Mj is minimal
among all n Mj ’s.

Pmin
S = argmin

j=1.2.···n

(
med

i=1,2,···m
|ajxi + bjyi + cj |2

)
, (2)

where xi and yi are the coordinates of valid points. The number of subsamples
m is determined according to the following probability model. For given values
of p and outlier’s probability ε, the probability Pb that at least one of the n
subsamples is good is given by, [11]

Pb = 1 − [1 − (1 − ε)p]n (3)

When we assume ε = 0.3, p = 10 and require Pb = 0.99, thus n = 170. The
estimation is performed in the entire segment in the same manner. In order to
enhance the robustness of the algorithm, the segment which has very small reli-
able valid points is skipped as they do not have sufficient data to provide reliable
plane parameter estimation. The plane parameters of the skipped segments are
estimated by using the plane parameter of the neighbor segments. Though we
estimate the plane parameters through robust LMedS method, there may be
still erroneous points due to the error of initial matching. Moreover, the plane
model estimation does not consider the occluded part of the segment, especially,
in the case for which all parts of the segment is occluded by a foreground object.
It is necessary to handle the occluded part in the segment for improvement of
the performance. We perform the plane parameter assignment for each segment
with the plane parameter of neighbor segment. The cost function for assignment
process is given by

C(S, P ) =
∑

(x,y)∈S−O

e1− s
n

∣∣I1(x, y) − I2(x − dP (x, y), y)
∣∣ +

∑
(x,y)∈O

λOCC (4)

dP (x, y) = aP x + bP y + cP ,

where S is a segment, P = (aP , bP , cP ) is a plane parameter, O is an occluded
part in the segment, and λOCC is a constant penalty for occlusion. In order to
classify the segment into occluded and non-occluded part, we use a crosscheck
method. However, the cross-check method may consider the non-occluded point
as occluded in textureless regions. Thus, we perform the cross-check method and
determine whether the valid point is occluded or not, only in the vicinity of the
segment boundary, because only the vicinity of the segment boundary can be
occluded part, in the assumption that a segment is the section of a same object.
q is the number of pixels that are non-occluded in the segment and have initial
disparity value estimated in 2.2, and s is the number of supporting pixels to
a disparity plane P in the non-occluded part of the segment S [5]. Supporting
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means that the distance between the disparity computed by a plane parameter
and initial estimated disparity is smaller than dth(The threshold is set to 1 here.).
The cost function is similar to that of [5], however, we use occlusion penalty and
segment boundary as occlusion candidate region. The final plane parameter is
determined as follows;

PS = argmin
Si∈N(S)+S

C(Si, PSi) (5)

N(S) is the set of neighbor segments, and PS is the computed plane parameter
in the segment S. The assignment process is repeated until the plane parameter
does not change in the entire segment. In order to avoid error propagation,
all the plane parameters are updated after all the segments are checked in each
iteration. Moreover, we only check the segments in which their neighbor segments
change in the previous iteration for the reduction of computational load [4]. In
the experiment, the process is usually terminated in the 3th iterations.

3 Regularization by Color Segmentation and Visibility
Constraint

In the disparity plane estimation, we can estimate the reliable and accurate
disparity vectors which have good performance in large untextured regions and
object boundaries. However, spatial correlation between neighbor segments
is not considered. Moreover, detecting and penalizing the occlusion through
cross-check method have limitation in the untextured region, and uniqueness
constraint is not appropriate when there is correspondence between unequal
numbers of pixels. Thus, we propose an energy-based regularization which con-
siders the smoothness between the segments and penalizes the occlusion through
visibility constraint.

ED(d) =
∫

Ω

c(x, y)(Il(x, y) − Ir(x + d, y))2dxdy

+ λ

∫
Ω

(∇d)T DS(∇Ils)(∇d)dxdy (6)

ED refers to the energy functional of disparity. Ω is an image plane, λ is a
weighting factor. ∇Ils is the gradient of Il, which considers the color segment.

∇Ils(x, y) =
{∇Il(x, y) if (x, y) is segment boundary

0 otherwise
(7)

DS(∇Ils) is an anisotropic linear operator, which is a regularized projection
matrix in the perpendicular aspect of ∇Ils[8]. The operator is based on the seg-
ment boundary and can be called by segment-based diffusion operator. An energy
model that uses the diffusion operator inhibits blurring of the fields across the
segment boundaries of I1. This model suppresses the smoothing at the segment
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Fig. 1. Occlusion detection with a Z-buffer proposed in [6]

boundaries according to the gradients for both the disparity field and reference
image. c(x, y) is an occlusion penalty function and is given by

c(x, y) =
1

1 + k(x, y)
k(x, y) =

{
0 if (x, y) is non − occluded
K otherwise

(8)

c(x, y) is similar to that proposed in [12], but it is different in the sense that
our penalty function uses visibility constraint, and the function in [12] uses
uniqueness constraint by cross-check method. In order to detect the occlusion
through visibility constraint, we use Z-buffer that represents the second view in
the segment domain [6]. Fig. 1 shows the occlusion detection with Z-buffer. By
using disparity plane information estimated in 2.3, we warp the reference image
to the second view. If a Z-buffer cell contains more than one pixel, only the pixel
with the highest disparity is visible and the others are occluded in the second
view. Empty Z-buffer cells represent occlusions in the reference image. In our
energy function, we penalize the occlusions for the second image, i.e., in the case
that is visible in the reference image and not visible in the second image.

The occlusion penalty function c(x, y) is determined by the disparity informa-
tion which should be estimated. Therefore, we propose the iterative optimization
scheme for occlusion and disparity estimation, as shown in Fig 2. We compute
occlusion penalty function c(x, y) with Z-buffer, given current disparity infor-
mation. Then, we perform the disparity regularization process in Eq. (6), and
estimate the occluded region with the updated disparity information, iteratively.
The minimization of Eq. (6) yields the following associated Euler-Lagrange equa-
tion. We obtain the solutions to the Euler-Lagrange equations by calculating the
asymptotic state (t → ∞) of the parabolic system.

∂d(x, y)
∂t

= λdiv(DS(∇Ils(x, y))∇d(x, y))

+ c(x, y)(Il(x, y) − Ir(x + d, y))
∂Ir(x, y)

∂x
(9)

We also discretize Eq. (9) using a finite difference method. All the spatial
derivatives are approximated by forward differences. The final solution can be
found in a recursive manner.
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Fig. 2. Iterative optimization scheme

4 Simulation Results

To evaluate the performance of our approach, we used a test bed proposed
by Scharstein and Szeliski [1]. We evaluated the proposed algorithm on these
test data sets with ground truth disparity maps. The parameters used in the
experiment are shown in Table 1.

Fig. 3 shows the results of stereo matching for the standard stereo images
provided on Scharstein and Szeliskis homepage. We compared the performance
of the proposed algorithm with other algorithms which use energy-based regular-
ization. The results show that the proposed algorithm achieves good performance
in conventionally challenging areas such as object boundaries, occluded regions
and untextured regions. Especially, in the object boundaries, the proposed al-
gorithm has the good discontinuities localization of disparity map, because it
performs the segment-preserving regularization.

For the objective evaluation, we follow the methodology proposed in [1]. The
performance of the proposed algorithm is measured by the percentages of bad
matching (where the absolute disparity error is greater than 1 pixel). Occluded
pixels are excluded from the evaluation. The quantitative comparison in Table
2 presents that the proposed algorithm is superior to other algorithms. In the
‘Tsukuba’ data, proposed algorithm has relatively high error percentage to graph
cut algorithm, because the disparity consists of a planar surface.

Fig. 4 shows the results for new standard stereo images, ‘Teddy’ and ‘Cone’
data sets. The results include the occlusion detection of proposed algorithm.
These images has very large disparity whose maximum value is 50 pixels. Though
the occluded region is very large, proposed algorithm performed the occlusion
detection very well. However, the error of occlusion detection in the ‘Cone’ image
is due to an iterative scheme for disparity and occlusion estimation.

Table 1. Parameters used in simulation

Parameter Values

Weighting factor λ=50
Constant occlusion penalty λOCC=30
Occlusion penalty function K=100
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Fig. 3. Results for standard images; (a)(e) Tsukuba, Venus images, (b)(f) [13]’s results,
(c)(g) [10]’s results, (d)(h) proposed results

Table 2. Comparative performance of algorithms

Tsukuba (%) Venus
nonocc all disc nonocc all disc

Shao [13] 9.67 11.9 37.1 6.01 7.03 44.2
Hier+Regul[10] 6.17 7.98 28.9 22.1 23.4 43.4
Graph cut[2] 1.94 4.12 9.39 1.79 3.44 8.75
Proposed 3.38 3.83 14.8 1.21 1.74 13.9

Fig. 4. Results for ’Teddy’ and ’Cone’ images; (a)(e) original images, (b)(f) disparity
maps, (c)(g) occlusion maps, (d)(h) true occlusion maps
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5 Conclusion

We proposed a new stereo matching algorithm which uses disparity regular-
ization through segment and visibility constraint. By using the initial dispar-
ity vectors, we extracted the plane parameter in each segment through robust
plane fitting method. Then, we regularized the disparity vector through segment-
preserving regularization with visibility constraint. We confirmed the perfor-
mance of the algorithm by applying it to several standard stereo image sequences.
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