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ABSTRACT

In this paper, we propose a new approach for efficient multiview
stereo matching and virtual view generation, which are key technolo-
gies for 3DTV. We propose semi N -view & N -depth framework to
estimate disparity maps efficiently and correctly. This framework
reduces the redundancy on disparity estimation by using the infor-
mation of neighboring views. The proposed method provides a user
2D/3D freeview video, and the user can select 2D/3D modes of free-
view video. Experimental results show that the proposed method
yields the accurate disparity maps and the synthesized novel view is
satisfactory enough to provide user seamless freeview videos.

Index Terms— Stereo matching, semi N -view & N -depth frame-
work, virtual view rendering.

1. INTRODUCTION
By recent advance in the multimedia processing fields, 3DTV is ex-
pected to become one of the most dominant products of markets
in the next generation broadcasting system. The basic concept of
3DTV is to provide user interactivity and 3D depth feeling. User
interactivity means that 3DTV can provide a user the freedom of se-
lecting viewpoint. 3DTV can also provide a user 3D impression as if
he is really over there. Development of 3DTV requires the ability of
capturing and analyzing the multiview images and compressing and
transmitting huge amount of data in communication network [1].

Novel view rendering is one of the most important techniques
in the 3DTV. Since various viewpoints are provided with a limited
number of cameras, it is useful to reduce an amount of data and a cost
for constructing 3DTV system. It is also necessary in the aspects of
compensating for discordances between 3D capturing and display
formats. There is the rendering approach with implicit geometry
among image-based rendering. A number of view interpolation ap-
proaches have been proposed to improve the performance [2]. Zhang
et al proposed the method of reconstructing intermediate views from
stereoscopic images [3]. Kauff et al introduced an advanced ap-
proach for 3DTV system based on the concept of video-plus-depth
data representation [4]. In this paper, video-plus-depth data repre-
sentation method is called N -view & N -depth framework, where
N is the number of cameras. Zitnick et al proposed the method
for performing high-quality novel view interpolation using multiple
synchronized video streams [5].

In this paper, we propose a new method for synthesizing novel
views from the virtual camera. We reduce the redundancy of esti-
mating the disparity maps in semi N -view & N -depth framework,
while the conventional method estimates the disparity maps in the
same manner for N images in N -view & N -depth framework. We
can provide user 2D/3D freeview videos in the proposed method.
Most conventional methods provide a user 2D freeview video [5] or
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Fig. 1. Overview of 3DTV system.

3D video at one fixed viewpoint when stereo images are given [3].
We propose more flexible system for 3DTV by making it possible
that the user selects 2D/3D modes of freeview videos.

2. OVERVIEW OF 3DTV SYSTEM
Fig. 1 shows the overall framework of 3DTV system. The multi-
view images and the associated depth maps estimated by the stereo
matching method are transmitted through communication network.
In receiver side, the user can select the modes of videos according to
his preference, which are 2D video, 2D freeview video and 3D free-
view video. In this paper, we propose a new approach for efficient
multiview depth estimation and virtual view generation, which are
key technologies for 3DTV system.

3. MULTIVIEW STEREO MATCHING

We use the multiview camera configuration for estimating dispar-
ity maps and rendering virtual view. An extensive review of stereo
matching algorithms can be found in [6]. In this paper, we use mul-
tiview camera system where 3 cameras are disposed in 1D parallel
structure (N = 3). Our aim is to develop 2D/3D freeview video
generation system. Thus, the parallel camera structure is used, since
multiview camera configuration with toed-in structure may cause a
number of holes in the synthesis of 3D freeview video. We assume
that the baseline distances between captured cameras are same to B.

3.1. Per-pixel cost computation
When estimating the disparity field, two or more images are used.
Let i − 1th, ith and i + 1th images left, center and right images,
respectively. Since the multiple images are rectified into horizontal
direction, we obtain the difference image of center image by shift-
ing the left (or right) image to the right (or left) direction, and the
subtracting the center and shifted left (or right) images. The differ-
ence image ei,j(p, d) for ith image is computed with the ith and jth

images, as follows.

ei,i+1(p, d) = min{|Ii(x, y) − Ii+1(x + d, y)|, T}
ei,i−1(p, d) = min{|Ii(x, y) − Ii−1(x − d, y)|, T} (1)

p and d represent the 2D locations of pixels and disparity, respec-
tively. I is the intensity with RGB color, and T is the threshold that
defines the upper bound of matching cost. We compute the per-pixel
cost ei(p, d) with the ei,i+1, ei,i−1. When computing the per-pixel
cost, we should consider whether pixels in the center image are vis-
ible or occluded. We assume that all the pixels in the center im-
age have at least one corresponding point. The assumption is useful

978-1-4244-1755-1/08/$25.00 ©2008 IEEE 3DTV-CON'08, May 28-30, 2008, Istanbul, Turkey
249



for handling occlusion, although it is invalid in a few pixels. Based
on the principle which matching cost of visible pixel is generally
smaller than that of occluded pixel, we compute the per-pixel cost
ei(p, d) on the center (ith) image as follows:

ei(p, d) = min(ei,i+1(p, d), ei,i−1(p, d)) (2)

3.2. Cost aggregation with weighted least square
In order to estimate the optimal cost Ei(p, d) on the ith image, we
use a prior knowledge that costs should vary smoothly, except at
object boundaries. From this observation, we are able to estimate
the cost function by minimizing the following energy model with
weighted least square:

ε(E) =
Ω

(E(p) − e(p))2 dp

+λ
Ω

n∈N1

wp,p+n(E(p) − E(p + n))2

+wp,p+n⊥(E(p) − E(p + n⊥))2
dp

N1 = {(xn, yn)|0 < xn ≤ M, 0 ≤ yn ≤ M}
,

(3)
where w represents the weighting function between corresponding
neighbor pixels. We simplify Ei(p, d) to E(p), since the same pro-
cess is performed for each disparity. n and n⊥ represent the 2D
vectors, which are perpendicular to each other. M represents the
size of a set of neighbor pixels. Taking the first derivative of Eq. (3)
with respect to E, we obtain the following equation:

E(p)−e(p)+λ
n∈N1

wp,p+n(E(p) − E(p + n))
−wp−n,p(E(p − n) − E(p))
+wp,p+n⊥(E(p) − E(p + n⊥))
−wp−n⊥,p(E(p − n⊥) − E(p))

= 0

(4)
To simplify the above equation, we redefine the set of neighbor

pixels. When p is (x, y), the set can be expressed as:

N(p) = {(x + xn, y + yn)| − M ≤ xn, yn ≤ M, xn + yn �= 0}

By using the above notation, Eq. (4) is expressed as:

E(p) − e(p) + λ
m∈N(p)

wp,m(E(p) − E(m)) = 0 (5)

The solution of the (k +1)th iteration is obtained by the follow-
ing equation:

Ek+1(p) = ē(p) + Ēk(p) =

e(p) + λ
m∈N(p)

wp,mEk(m)

1 + λ
m∈N(p)

wp,m
(6)

Eq. (6) consists of two parts: normalized per-pixel matching
cost and weighted neighboring pixel cost. By running the iteration
scheme, the cost function E is regularized with the weighted neigh-
boring pixel cost. The iteration scheme is similar to the adaptive
weight approach [7] when the number of iterations is 1. In the pro-
posed method, we use the asymmetric Gaussian weighting function
with the CIE-Lab color space in Eq. (7). rc and rs are weighting
constants for the color and geometric distances, respectively. When
Ci is the color distance that is computed with ith image, the weight-
ing function can be defined as follows.

w(p,m) = exp − Ci(p,m)

2r2
c

+ S(p,m)

2r2
s

Ci(p,m) = (Li
p − Li

m)2 + (ai
p − ai

m)2 + (bi
p − bi

m)2

S(p,m) = (p − m)2
(7)
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Fig. 2. Overall framework of the cost aggregation.

3.3. Acceleration Scheme

3.3.1. Gauss-Seidel Acceleration
One reason for slowing down the convergence in Eq. (6) is that the
updated components in each pixel are used only after one iteration
is complete. We compensate for this problem by using the updated
components in each pixel intermediately after they are computed.
We divide a set of neighbor pixels N(p) into two parts: the causal
part Nc(p) and the non-causal part Nn(p). Eq. (6) is expressed as
follows, based on this relationship:

Ek+1(p) =
e(p)+λ

m∈Nc(p)
wp,mEk+1(m)+λ

m∈Nn(p)
wp,mEk(m)

1+λ
m∈N(p)

wp,m

(8)

3.3.2. Multiscale Approach
As previously mentioned, it is necessary to gather pixel informa-
tion at a large distance to ensure reliable matching. This implies
that a number of iterations are required to estimate the correct cost
function. We use a multiscale approach to solve this problem. Our
method is different from the conventional approaches in the sense
that it is applied in the cost domain. We can initialize the value close
to the optimal cost in each level by using the final value in the coarser
level. Using Eq. (8), the proposed method performs cost aggregation
independently in each section with the same disparity of the 3D cost
volume. We first compute the 3D cost volume and then perform the
proposed multiscale scheme in each 2D cost function. The proposed
multiscale method runs the iterative scheme at the coarsest level by
initializing the cost function to e(p, d). After K iterations, the re-
sulting cost function is used to initialize the cost function in the finer
level, and this process is repeated until the finest level is reached.
The proposed multiscale scheme is shown in Fig. 2, which includes
adaptive interpolation.

When the cost function on the (l + 1)th level is defined as
El+1(p), we can refine the resolution of the cost function El(p) on
the finer level by using bilinear interpolation. However, if bilinear
interpolation is used, the error can be propagated into the neigh-
borhood regions, especially on the boundary region. To avoid this
problem, we propose an adaptive interpolation method based on the
weighted least square:

El(p) =

el(p) + λa
pm∈N(pi)

wp,pmEl+1(pm)

1 + λa
pm∈N(pi)

wp,pm

, (9)

where pi = (xi, yi) represents a pixel on the coarser level, and
N(pi) on the (l + 1)th level is a set of 4-neighboring pixels. In
Eq. (9), w represents the weighting function, equivalent to that in
Eq. (6). We set the weighting factor to λa = 15. The adaptive
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Fig. 3. semi N -view & N -depth framework with warping techniques: (a) semi N -view & N -depth framework, (b) Several cases of forward
warping: when occluded pixels on the reference are blocked by visible pixels, and when occluded pixels on the reference block visible pixels.

interpolation by the intensity values on two successive levels leads
to the up-sampling scheme, which preserves the discontinuities on
the boundary region. Thus, it is not necessary to perform the cost
aggregation scheme on the finest level, and this makes the proposed
method faster.

3.4. Warping of aggregated cost
Most approaches have acquired the disparity maps for N images in-
dependently in the same manner. They have huge redundancy of
estimating the disparity maps. In this section, we propose a new ap-
proach for eliminating the redundancy of estimating disparity maps
in the cost aggregation scheme. Fig. 3 (a) shows semi N -view & N -
depth framework, when N is 3. Color and white views are reference
and target views, respectively. The cost functions in the reference
images are estimated by using the proposed cost aggregation method
with weighted least square. The cost functions in the target images
are estimated through warping of those in the reference images. It
is based on the assumption that the corresponding pixels on neigh-
boring images have generally the similar cost functions. The cost
functions of reference images are transferred into those of target im-
ages with the corresponding disparity maps of the reference images.
Since asymmetric warping is performed only, the occluded parts in
cost function remain. For assigning reasonable cost function into the
occluded pixels, we use the method of handling occluded pixels with
reliable neighboring pixels in the cost aggregation scheme.

The cost functions of visible pixels on two images should only
be transferred through forward/backward warping. To determine
whether a pixel on the reference image is visible or not, we use geo-
metric and photometric constraints. At first, we explain the process
of forward warping. We can estimate the visibility of pixels by eval-
uating the disparity values of the neighboring pixels. The disparity
of the occluding pixels is generally larger than that of the occluded
pixels. Before we define the visibility function of the pixels based
on this principle, we describe the function St(j) for target image as
a set of pixels in the reference image:

St(j) = {i|i − dr(i) = j, all i with 0 ≤ i ≤ W − 1} ,

where i and j represent the x coordinates of the reference and tar-
get images, respectively. W represents the width of the image and d
represents the disparity of the pixel. When there are multiple match-
ing points at pixels in the target image, that is, #(St(j)) ≥ 1, the
pixel with the largest disparity among St(j) is considered as visi-
ble and the remaining pixels as occluded. This is valid only if the
occluding pixels have reliable disparities. Fig. 3 (b) shows several
cases of forward warping. If the disparities in the occluded pixels
are smaller than those of the visible pixels, we are able to accurately
detect the occluded region. Otherwise, the occluded pixels block the
other visible pixels. We use the photometric constraint to evaluate
the reliability of the occluding pixels. We determine a set of occlu-
sion candidates instead of a set of occlusions on the target image by
using this constraint. The costs at the occluded pixels are generally
larger than those of the visible pixels. If the cost at the pixel, which
is determined as occluding pixels by geometric constraints, is not

smaller than that of the remaining occluded pixels, we can not guar-
antee the reliability of the occluding pixels. Therefore, all the pixels
in St(j) are used as occlusion candidates as shown in Fig. 3 (b), and
#(St(j)) is reset to 0. The visibility function Ot(j) on the target
image is set to 0 when #(St(j)) = 0, and otherwise, Ot(j) = 1.
By using the visibility function Ot on the target image, we warp cost
functions of reference image as follows:

Et(i − dr, dr) = Er(i, dr), if Ot(i − dr) = 1 (10)

In Eq. (10), the y coordinate is omitted, since the same process
is performed for each scanline. The process of backward warping
is also similar to that of forward warping. Note that the cost func-
tions of reference images are transferred into those of target images
through the warping, not disparity values. The occluded parts in
target images are handled in the cost aggregation. By using the vis-
ibility function Ot on the target image, we can redefine the iterative
scheme in Eq. (8) as follows:

Ek+1
t (p) =

Ot(p)e(p) + λ
m∈Nc

Ot(m)wp,mEk+1
t (m)

+λ
m∈Nn

Ot(m)wp,mEk
t (m)

Ot(p) + λ
m∈N(p)

Ot(m)wp,m
(11)

It is different from the extrapolation technique widely used for
occlusion handling. While the extrapolation technique is just filling
by using the disparities of the visible pixels, the proposed method
propagates the information of the visible pixels into that of the oc-
cluded pixels. The proposed occlusion handling is similar to the
concept of edge-preserving nonlinear diffusion. In this paper, we
use WTA (Winner-Takes-All) method as optimization method for
disparity estimation. Other optimization techniques such as graph
cut and belief propagation can be used to perform disparity estima-
tion.

4. VIRTUAL VIEW RENDERING
4.1. Virtual view generation
Given N images and the associated disparity maps, the virtual view
can be synthesized by warping each image with its disparity map.
All the images are warped and the novel view is generated by per-
forming the weighted-interpolation. The rotation of the virtual cam-
era is not considered in the novel view rendering, since the rotation
of the virtual camera may cause a number of holes in the novel view
and it is not appropriate in 3DTV or video-conferencing. Given
a novel viewpoint, the nearest two images (camera i and i + 1)
are selected and projected into virtual view. The relation between
mi(x, y) in the ith image and mv

i (xv
i , yv

i ) in the novel view can be
computed as follows [10]:

xv
i − x0 = f (xi−x0)B/di+Tx

fB/di+Tz
= xi−x0+diαx

1+diαz/f

yv
i − y0 = f

(yi−y0)B/di+Ty

fB/di+Tz
=

yi−y0+diαy

1+diαz/f

, (12)

where (x0, y0) is the center of the image plane and (Tx, Ty, Tz) rep-
resents translation between the real and virtual cameras. To sim-
plify the notation, we use a normalized coordinate (αx, αy , αz) =
(Tx, Ty , Tz)/B, and set the baseline distance to 1. Let Ii and Iv

i
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Fig. 4. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’, ‘Teddy’
and ‘Cone’ image pairs: (a)(e) Disparity maps on target images 0 and
2 before occlusion handling, (b)(d) Disparity maps on target images
0 and 2 after occlusion handling, (c) Disparity maps on reference
image.

the reference and projected images, respectively, then Iv
i (xv, yv) =

Ii(x, y). The virtual camera can move with x and z-axes, which
consists of left, right, forward and backward movements. The move-
ment with y-axis is limited since this may cause some holes in the
novel view. We can generate 2D or 3D freeview video by synthesiz-
ing one or two novel views, respectively. When V (p) is a visibility
function whether a pixel in the novel view is visible in the reference
views, the final reconstructed novel view is computed by interpola-
tion with the projected images as follows.

Iv(p) = V i(p)(1− αx)Ii
v(p) + V i+1(p)αxIi+1

v (p) (13)

4.2. Virtual 3D view generation
The synthesis of stereoscopic novel view can be generated by syn-
thesizing two novel views - one for left view and one for right view.
The distance between two novel views is defined as Bs. To establish
the zero parallax setting (ZPS), the CCD sensor of the stereoscopic
cameras in the parallel structure are translated by a small shift h
relative to the position of the lenses [8]. It makes us choose the con-
vergence distance Zc in the 3D scene. The sensor shift can be simply
formulated as a displacement of a camera’s principal point. When a
horizontal shift of the principal point is defined as h, the point in the
novel view can be computed in Eq. (14). ±h means the shifted right
and left images of novel stereoscopic views, respectively. Please re-
fer to [8] for more detailed explanation.

xv
i − (x0 ± h) = xi−x0+diαx

1+diαz/f

yv
i − (y0 ± h) =

yi−y0+diαy

1+diαz/f

(14)

5. EXPERIMENTAL RESULTS

To validate the performance of semi N -view & N -depth frame-
work, we performed the experiments with the Middlebury test se-
quences [9]. We use the following test data sets: ‘Tsukuba’, ‘Venus’,
‘Teddy’, and ‘Cone’. We perform the experiments with multiview
images which N is 3. The proposed method is tested using the same
parameters for all the test images. The two parameters in the weight-
ing function are rc = 8.0, rs = 8.0, and the weighting factor is
λ = 1.0. We use the multiscale approach at four levels, and the
number of iterations is (3, 2, 2,×), on a coarse to fine scale. The
iteration number of the finest level is not defined since we use the
adaptive interpolation technique in the up-sampling step. The sizes
of the sets of neighbor pixels are 5 × 5, 7 × 7, 9 × 9, and 9 × 9.

Fig. 5. Synthesized virtual view for ‘Teddy’ and ‘Cone’ image pairs:
(from left to right) (a) αx = 0.75, αz = 0.0 (b) αx = 0.75, αz =
−0.5 (c) αx = 0.9, αz = 0.0 (d) αx = 1.35, αz = 0.0 (e) αx =
1.35, αz = 1.0.

The estimated disparity maps for multiview image pairs are shown
in Fig. 4. Fig. 4 (c) shows the disparity map estimated with cost ag-
gregation method on the reference image. Fig. 4 (a) and (e) show the
disparity maps of the target images before occlusion handling. They
were acquired by warping the cost function of reference image. Fig.
4 (b) and (d) show the disparity maps after occlusion handling. We
could find that the disparity maps of the target images were accurate
and had good localization on the object boundary, although these
were acquired by warping technique. Fig. 5 shows the synthesized
novel views from the virtual camera. The quality of the synthesized
images was satisfactory enough to provide user the natural freeview
videos for 3DTV. We show 2D novel views for ‘Teddy’ and ‘Cone’
image pairs only due to limitation of space. The 2D and 3D freeview
videos for other images are available at [11].

6. CONCLUSION

In this paper, we have presented a novel approach for generating
2D/3D freeview video in multiview camera configuration. By using
estimated cost functions of neighboring images, redundancy of esti-
mating disparity maps in the multiview images is reduced in semi N -
view & N -depth framework. The occlusion problem was efficiently
handled by using the cost functions of multiview images. The novel
view can be selected among 2D or 3D stereoscopic images accord-
ing to the selection of the user. In further work, we will investigate
virtual view rendering system for various camera configurations, and
develop 3DTV system including coding structure of multiview im-
ages and depth maps.
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