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ABSTRACT

This paper presents a novel method for stereo matching with oc-
clusion handling. In order to estimate optimal cost, we define an
energy function and solve the iterative equation with the numerical
method. We improve performance and convergence rate by using
several acceleration techniques. The proposed method is compu-
tationally efficient since it does not use color segmentation or any
global optimization techniques. For occlusion handling, which has
not been performed effectively by any conventional cost aggregation
approaches, we combine the occlusion problem with the proposed
minimization scheme. Asymmetric information is used so that few
additional computational loads are necessary. Experimental results
show that performance is comparable to that of many state-of-the-art
methods.

Index Terms— Cost aggregation, multiscale approach, stereo
vision, occlusion handling, weighted least square

1. INTRODUCTION
For decades, the correspondence problem has been an important is-
sue in the field of computer vision, and many methods have been pro-
posed to solve this problem. An extensive review of stereo matching
algorithms can be found in [1]. Local approaches use correlations
between color or intensity patterns in neighboring windows. Per-
formance depends on how the optimal window is selected in each
pixel, but finding an optimal window with an arbitrary shape and
size is very difficult. To solve this problem, a number of methods
have been proposed.

In general, adaptive window algorithms try to find optimal win-
dows for each pixel by adaptively changing the window size and
shape. Kanade and Okutomi [2] proposed a way of selecting an
appropriate window by evaluating the local intensity and disparity
variations. Yoon et al [3] used boundary information to compute
accurate windows for each pixel. Multiple window algorithms [4]
used a small number of different windows, whose reference points
lie in several positions. Yoon and Kweon [5] proposed a general
method that computes an optimal local support window. However,
it is very computationally expensive to perform pixel-wise support
weight computation.

Another issue discussed in this paper is occlusion handling. Sev-
eral constraints have been used in stereo matching for occlusion han-
dling. Bobick [6] exploited the ordering constraint by using dynamic
programming. This approach is very efficient but the ordering con-
straint is invalid when an image has a thin object. Most approaches
have used global optimization schemes to detect the occlusion re-
gions by using uniqueness constraint, and assign pre-defined values
to the occluded pixels [7].
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Fig. 1. Per-pixel and estimated costs in the ‘Tsukuba’ image, when
disparity is 0.

In this paper, we propose a novel approach of performing effi-
cient cost aggregation and handling occlusion for stereo matching.
To estimate the optimal cost, we define an energy function and solve
a corresponding iterative equation with several acceleration tech-
niques. We combine the occlusion problem, which has not been
solved by any existing cost aggregation approaches, into the itera-
tive scheme. It is not necessary to define a pre-defined value for the
occluded pixel and it is possible to use asymmetric information with
trivial additional computational loads, that is, only the left disparity
field needs to be used.

2. PROPOSED COST AGGREGATION
2.1. Problem statement
When estimating the disparity field, only the left and right image
pairs are used. We obtain the difference image by shifting the right
image further to the right, and then subtracting the left and the shifted
right images. This is done for all disparities. A set of difference
images is called 3D cost volume e(p, d), where p and d represent
the 2D locations of pixels and disparity, respectively. We call the 3D
cost volume a per-pixel cost. In order to estimate the optimal cost,
we define the per-pixel cost e as follows:

e(p, d) = E(p, d) + n (1)

, where n represents noise. We simplify E(p, d) to E(p), since
the same process is performed for each disparity. Fig. 1 shows the
per-pixel and estimated costs for the ‘Tsukuba’ image. Given the
observation data, we use the prior knowledge that costs should vary
smoothly, except at object boundaries. From this observation, we
are able to estimate the cost function by minimizing the following
energy model with anisotropic diffusion term:

ε(E) =
�
Ω

(E(p) − e(p))2 dp + λd

�
Ω

g(|∇I|)|∇E|2dp (2)

, where g(|∇I|) decreases monotonically with respect to |∇I|.
This is known as the diffusivity function, which plays the role of a
discontinuity marker. The minimization of Eq. (2) yields the follow-
ing Euler-Lagrange equation. We obtain the solution to the equation
by calculating the asymptotic state (t → ∞) of the parabolic system,
as shown in Eq. (3).

∂E

∂t
= −E(p) + e(p) + λd∇ · (g(|∇I|)∇E) (3)
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Fig. 2. Per-pixel and estimated costs when disparity is 0, and esti-
mated disparity map.

The final solution can be found in a recursive manner with nu-
merical method. Fig. 2 shows the results of the estimated cost with
nonlinear diffusion filtering, and the disparity field computed with
these cost functions. To evaluate the performance of the cost ag-
gregation scheme, we use WTA (Winner-Takes-All) method. We
find that there are some problems in the textureless and occluded re-
gions, although edge-preserving smoothing is performed. In Eq. (1),
the optimal cost model considers sensor noise only. Thus, another
strategy to solve these problems is necessary.

2.2. Cost Aggregation with Weighted Least Square
To solve the problem in textureless regions, we consider using the
smoothness constraint with more neighborhoods. As opposed to im-
age restoration/denoising, it is necessary to gather sufficient texture
in the neighborhoods for reliable matching. To include more neigh-
borhoods, we propose a new energy function with the weighted least
square method:

ε(E) =
�
Ω

(E(p) − e(p))2 dp

+λ
�
Ω

�
n∈N1

�
wp,p+n(E(p) − E(p + n))2

+wp,p+n⊥(E(p) − E(p + n⊥))2

�
dp

N1 = {(xn, yn)|0 < xn ≤ M, 0 ≤ yn ≤ M}
(4)

, where w represents the weighting function between correspond-
ing neighbor pixels. n and n⊥ represent the 2D vectors, which are
perpendicular to each other. M represents the size of a set of neigh-
bor pixels. When the element of the set N1 is (1, 0) only, Eq. (4)
is similar to anisotropic diffusion. In other words, Eq. (4) can be
considered to be the generalized function of Eq. (2). Taking the
first derivative of Eq. (4) with respect to E, we yield the following
equation:

E(p) − e(p)

+λ
�

n∈N1

����
���

wp,p+n(E(p) − E(p + n))
−wp−n,p(E(p − n) − E(p))
+wp,p+n⊥(E(p) − E(p + n⊥))

−wp−n⊥,p(E(p − n⊥) − E(p))

���	
��


= 0
(5)

To simplify the above equation, we redefine the set of neighbor
pixels. When p is (x, y), the set can be expressed as:

N(p) = {p + pn| − M ≤ xn, yn ≤ M, xn + yn �= 0}
By using the above notation, Eq. (5) is expressed as:

E(p) − e(p) + λ
�

m∈N(p)

wp,m(E(p) − E(m)) = 0 (6)

The solution of the (k +1)th iteration is obtained by the follow-
ing equation:

Ek+1(p) = ē(p) + Ēk(p)

=

e(p) + λ
�

m∈N(p)

wp,mEk(m)

1 + λ
�

m∈N(p)

wp,m
(7)

Eq. (7) consists of two parts: normalized per-pixel matching
cost and weighted neighboring pixel cost. By running the iteration
scheme, the cost function E is regularized with the weighted neigh-
boring pixel cost. In the proposed method, we use the symmetric

Gaussian weighting function with the CIE-Lab color space in Eq.
(8). rc and rs are weighting constants for the color and geomet-
ric distances, respectively. As opposed to g(|∇I|) in Eq. (2), it is
necessary to use the term for geometric distance in the weighting
function, since the smoothness constraints with more neighborhoods
are considered.

wp,m = exp

�
−
�

CL
p,m

2r2
c

+
CR

p,m

2r2
c

+
Sp,m

2r2
s



Cp,m = (Lp − Lm)2 + (ap − am)2 + (bp − bm)2

Sp,m = (p − m)2

(8)

2.3. Acceleration Scheme
2.3.1. Gauss-Seidel Acceleration
One reason for slowing down the convergence in Eq. (7) is that the
updated components in each pixel are used only after one iteration
is complete. We compensate for this problem by using the updated
components in each pixel intermediately. We divide a set of neighbor
pixels N(p) into two parts: the causal part Nc(p) and the non-causal
part Nn(p). Eq. (7) is expressed as follows, based on this relation-
ship:

Ek+1(p) = ē(p) + Ēk(p)

=

e(p) + λ
�

m∈Nc(p)

wp,mEk+1(m) + λ
�

m∈Nn(p)

wp,mEk(m)

1 + λ
�

m∈N(p)

wp,m
(9)

2.3.2. Multiscale Approach
As previously mentioned, it is necessary to gather pixel informa-
tion at a large distance to ensure reliable matching. This implies
that a number of iterations are required to estimate the correct cost
function. We use a multiscale approach to solve this problem. Our
method is different from the conventional approaches in the sense
that it is applied in the cost domain. In Eq. (9), the cost function
E(p) can generally be initialized to e(p). We can initialize the value
close to the optimal cost in each level by using the final value in the
coarser level.

Using Eq. (9), the proposed method performs cost aggregation
independently in each section with the same disparity of the 3D cost
volume. Conventional multiscale approaches reduce image resolu-
tion at first, and then the estimation process continues. The reduc-
tion of the resolution also reduces the search range of the disparity.
For instance, if we use the multiscale approach over three levels,
the search range will have been reduced to a quarter of the original
search range on the coarsest level. Thus, two cost functions in the
finer level Ef (p, 2d) and Ef (p, 2d + 1) are initialized by using the
cost function in the coarser level Ec(p, d). To avoid this problem, we
use an alternative multiscale scheme for cost aggregation. We first
compute the 3D cost volume and then perform the proposed mul-
tiscale scheme in each 2D cost function. The proposed multiscale
method runs the iterative scheme at the coarsest level by initializing
the cost function to e(p, d). After K iterations, the resulting cost
function is used to initialize the cost function in the finer level, and
this process is repeated until the finest level is reached. The proposed
multiscale scheme is shown in Fig. 5, which includes adaptive inter-
polation and occlusion handling.

When the cost function on the (l + 1)th level is defined as
El+1(p), we can refine the resolution of the cost function El(p) on
the finer level by using bilinear interpolation. However, if bilinear
interpolation is used, the error can be propagated into the neigh-
borhood regions, especially on the boundary region. To avoid this
problem, we propose an adaptive interpolation method based on the
weighted least square:
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Fig. 3. Several cases of asymmetric occlusion detection: (a) using
the geometric constraints only, (b) using both the geometric and pho-
tometric constraints.

El(p) =

el(p) + λa

�

pm∈N(pi)

wp,pmEl+1(pm)

1 + λa

�

pm∈N(pi)

wp,pm

(10)

, where pi = (xi, yi) represents a pixel on the coarser level, and
N(pi) on the (l + 1)th level is a set of 4-neighboring pixels. In Eq.
(10), w represents the weighting function, equivalent to that in Eq.
(7). We set the weighting factor to λa = 15. Another advantage of
adaptive interpolation is to increase the resolution of the cost func-
tion so that no blocking artifact exists. The adaptive interpolation by
the intensity values on two successive levels leads to the up-sampling
scheme, which preserves the discontinuities on the boundary region.
Thus, it is not necessary to perform the cost aggregation scheme on
the finest level, and this makes the proposed method faster. In the ex-
perimental results, we will show that adaptive interpolation increases
the resolution of the cost function without requiring any blocking ar-
tifact.

3. OCCLUSION HANDLING
Most approaches have used an iterative scheme which combines the
uniqueness constraint into a global optimization method for occlu-
sion handling. In this section, we introduce a new approach for
dealing with the occlusion problem in the proposed cost aggregation
scheme. Only the left disparity field, and not a pre-defined value for
the occluded pixels, is used in the occlusion handling.

Our main goal is not to detect the occluded pixels in an image
correctly but to determine a candidate set of occluded pixels. Then,
reasonable cost functions are assigned in the candidate set. Although
some visible pixels may be contained in the candidate set, this prob-
lem is solved by using the proposed cost aggregation. For asym-
metric occlusion detection, we use geometric and photometric con-
straints. To determine whether a pixel is visible or not, we have to
evaluate the disparity values of the neighboring pixels. The disparity
of the occluding pixels is larger than that of the occluded pixels. Be-
fore defining the visibility function, we describe the function Sr(j)
as a set of pixels in the right image:

Sr(j) = {i|i − d(i) = j, all i with 0 ≤ i ≤ W − 1}
, where i and j represent the x coordinates of the left and right

images, respectively. W represents the width of the image and d rep-
resents the disparity of the pixel. When there are multiple matching
points at pixels in the other image, that is, #(Sr(j)) ≥ 1, the pixel
with the largest disparity among Sr(j) is considered as visible and
the remaining pixels are considered occluded. This is valid only if
the occluding pixels have reliable disparities. Fig. 3 shows several
cases of asymmetric occlusion detection. If the disparities in the oc-
cluded pixels are larger than those of the visible pixels, the occluded
pixels block the other visible pixels, as shown in Fig. 3(a). Thus, we
use the photometric constraint to evaluate the reliability of the oc-
cluding pixels. The costs at the occluded pixels are generally larger
than those of the visible pixels. If the cost at the pixel, which is de-
termined as occluding pixels by geometric constraints, is not smaller
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visible pixels by sequential 
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Fig. 4. Propagation of information at the visible pixels in sequential
occlusion handling.
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Fig. 5. Overall framework of the proposed method.

than that of the remaining occluded pixels, we can not guarantee the
reliability of the occluding pixels. Therefore, all the pixels in Sr(j)
are used as occlusion candidates, as shown in Fig. 3(b). We deter-
mine a set of occlusion candidates instead of a set of occlusions by
using this constraint. We define visibility function Ol which takes
the value 1 (or 0) when the pixel is visible (or occluded). By using
Ol, we redefine the iterative scheme in Eq. (9) as follows:

Ek+1(p) =

Ol(p)e(p) + λ
�

m∈Nc(p)

Ol(m)wp,mEk+1(m)

+λ
�

m∈Nn(p)

Ol(m)wp,mEk(m)

Ol(p) + λ
�

m∈N(p)

Ol(m)wp,m
(11)

The overall process of the proposed occlusion handling method
is as follows. When the 3D cost volume is given, we are able to es-
timate the disparity by using an optimization method, and perform
proposed occlusion handling with the estimated disparity. In this
paper, we only use the WTA method to evaluate performance of pro-
posed cost aggregation. However, other techniques can be used in
the proposed method. If we use belief propagation for disparity es-
timation at each level, the message computed at each specific level
can be used to initialize the message of the finer level. This scheme
is very similar to hierarchical belief propagation [10].

Occlusion handling is sequentially performed. After the cost ag-
gregation scheme is performed at the pixels of the set of occlusion
candidates, the pixels become visible, in other words, Ol(p) = 1.
This is very reasonable for occlusion handling since the occluded
pixels aggregated with the visible pixels are used as visible pixels
again in Eq. (11). Fig. 4 shows the process of sequential occlu-
sion handling. The information of the visible pixels is propagated to
estimate the cost function at the occluded pixels.

4. EXPERIMENTAL RESULTS
4.1. Overall Framework & Experimental Environments
The basic framework of the proposed method is to perform cost ag-
gregation in a coarse-to-fine manner. Fig. 5 shows the overall pro-
cess of the proposed method. In order to initialize the cost function
in the finer level, adaptive interpolation is performed with Eq. (10),
and then occlusion handling is performed (once at each level). This
process is repeated until the finest level is reached.
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Table 1. Objective evaluation for the proposed method with the Middlebury test bed

Algorithm Tsukuba Venus Teddy Cone
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

AdaptingBP [8] 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32
SymBP+occ [7] 0.97 1.75 5.09 0.16 0.33 2.19 6.47 10.7 17.0 4.79 10.7 10.9
Our method 1.36 1.93 7.19 0.55 1.26 5.84 6.90 12.1 17.5 3.60 8.57 9.36
OverSegmBP [9] 1.69 1.97 8.47 0.50 0.68 4.69 6.74 11.9 15.8 3.19 8.81 8.89
AdaptWeight [5] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26

Fig. 6. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’, ‘Teddy’
and ‘Cone’ image pairs: (from left to right) original images, ground
truth maps, our results, error maps.

We evaluate the performance of the proposed method and com-
pared it with state-of-the-art methods in the Middlebury test bed
[11]. The results for each test dataset are evaluated by measuring
the percentage of bad matching pixels (where the absolute dispar-
ity error is greater than 1 pixel). The measurement is computed for
three subsets of an image: nonocc (the pixels in the non-occluded
regions), all (the pixels in both the non-occluded and half-occluded
regions), and disc (the visible pixels near the occluded regions).

The proposed method is tested using the same parameters for all
the test images. The two parameters in the weighting function are
rc = 8.0, rs = 8.0, and the weighting factor is λ = 1.0. We use
the multiscale approach at four levels, and the number of iterations
is (3, 2, 2,×), on a coarse to fine scale. The iteration number of
the finest level is not defined since we use the adaptive interpolation
technique in the up-sampling step, as mentioned in section 2.4.2.
The sizes of the sets of neighbor pixels are 5 × 5, 7 × 7, 9 × 9, and
9 × 9. In the finest level, only occlusion handling is performed.

4.2. Performance Analysis
Fig. 6 shows the results of the proposed method for the test bed
images. The proposed method yielded accurate results for the dis-
continuity, occluded, and textureless regions. Table 1 shows that the
proposed method obtained comparable performance with state-of-
the-art methods. Fig. 7 shows the results obtained by the proposed
occlusion handling method. The occlusion candidate set contained
as many occluded pixels as possible in order to perform occlusion
handling well. The proposed occlusion handling method is different
from the extrapolation technique widely used for occlusion handling.
While the extrapolation technique is just filling by using the dispari-
ties of the visible pixels, the proposed method propagates the infor-
mation of the visible pixels into that of the occluded pixels. This is

Fig. 7. Disparity map before handling, occlusion candidate, disparity
map after handling (from left to right).

Fig. 8. Disparity maps in each level in a multiscale approach: level
3, 2, 1 (from left to right).

very similar to the concept of edge-preserving nonlinear diffusion.
Fig. 8 shows the intermediate results of the multiscale approach.
Since the cost function in each level was obtained after performing
adaptive interpolation, the cost function was considered as that in the
finer level. We found that the estimated disparity map in level 1 had
the finest resolution as shown in Fig. 8(c).

5. CONCLUSION
In this paper, we have proposed the cost aggregation and occlusion
handling method for stereo matching with the weighted least square.
By solving the iterative scheme with acceleration techniques such
as the Gauss-Seidel method and multiscale approach, we efficiently
estimated an accurate disparity map. The information at the visible
pixels was propagated into the occluded pixels by sequential occlu-
sion handling. The experimental results show that the performance
of the proposed method is comparable to state-of-the-art methods in
the Middlebury stereo datasets.
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