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ABSTRACT

In this paper, we propose a new approach of synthesizing novel
views in multiview camera configurations. We introduce the semi
N -view & N -depth framework in order to estimate disparity maps
efficiently and correctly. This framework reduces redundancy on dis-
parity estimation by using information from neighboring views. The
occlusion problem is handled by using cost functions computed with
multiview images. The proposed method provides a 2D/3D freeview
video. User can select 2D/3D modes of freeview video and control
3D depth perception by adjusting several parameters in 3D freeview
video. Experimental results show that the proposed method yields
the accurate disparity maps and provides seamless freeview videos.

Index Terms— Occlusion handling, semi N -view & N -depth
framework, stereo matching, virtual view rendering

1. INTRODUCTION
For decades, the problem of synthesizing novel views with a lim-
ited number of cameras has been an important issue in the field of
computer vision. Novel view rendering is an important technique
in the 3-dimensional TV (3DTV) applications, since it can provide
reality and interactivity by enabling specific users to select different
viewpoints. There is the rendering approach with implicit geometry
among image-based rendering [1]. A number of view interpolation
approaches have been proposed to improve the performance.

Zhang et al proposed the method of reconstructing intermedi-
ate views from stereoscopic images [2]. Kauff et al introduced an
advanced approach for 3DTV system based on the concept of video-
plus-depth data representation [3]. In this paper, video-plus-depth
data representation method is called N -view & N -depth framework,
where N is the number of cameras. Zitnick et al proposed the method
for performing high-quality novel view interpolation using multiple
synchronized video streams [4].

In this paper, we propose a new method for synthesizing novel
views from the virtual camera. We reduce the redundancy when es-
timating the disparity maps in semi N -view & N -depth framework,
while the conventional method estimates the disparity maps in the
same manner for N images in N -view & N -depth framework. We
can provide user 2D/3D freeview videos in the proposed method.
Most conventional methods provide a user 2D freeview video [4] or
3D video at one fixed viewpoint when stereo images are given [2].
We propose more flexible system for 3DTV by making it possible
that the user selects 2D/3D modes of freeview videos.

2. MOTIVATION AND OVERVIEW
When N images are given, it is necessary to acquire N depth maps
for rendering novel views from virtual cameras in multiview cam-
era configurations. Most previous approaches have acquired dispar-
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Fig. 1. Representation of multiview images and depth data: semi
N -view & N -depth framework

ity maps for N images independently in the same manner. There
have been huge redundancies when estimating the disparity maps,
since the disparity maps of multiview images are very similar to
each other, except in the occluded parts. We propose semi N -view
& N -depth framework to reduce the redundancy of estimating the
disparity maps in multiview images. Fig. 1 shows the concept of
the semi N -view & N -depth framework. The multiview images (N
views) are classified into reference and target images. The target im-
ages are divided into target and semi-target images. The proposed
cost aggregation method is only used to estimate the disparity maps
of the reference images. The disparity maps of the target images
are acquired by warping the cost functions of the reference images.
Note that the cost functions of the reference images are transferred
into those of the target images, not the disparity values. As shown
in Fig. 1, symmetric warping on the target images means that both
forward and backward warping are done from neighboring reference
images, while asymmetric warping on the semi-target images means
that either forward or backward warping are done.

3. MULTIVIEW STEREO MATCHING
We use a multiview camera configuration for estimating the disparity
maps and rendering virtual views. An extensive review of stereo
matching algorithms can be found in [5]. In this paper, our aim is to
develop a 2D/3D freeview video generation system. Thus, a parallel
camera structure is used, since multiview camera configuration with
a toed-in structure may cause a number of holes in the synthesis of
3D freeview videos. We assume that the baseline distances between
the captured cameras are the same as B.

3.1. Per-pixel cost computation
When estimating the disparity field, two or more images are used.
The difference image is computed for each image based on the con-
stant brightness assumption. Let i−1th, ith and i+1th images left,
center and right images, respectively. Since the multiple images are
rectified into horizontal direction, we obtain the difference image of
center image by shifting the left (or right) image to the right (or left)
direction, and the subtracting the center and shifted left (or right)
images. The difference image ei,j(p, d) for ith image is computed
with the ith and jth images, as follows.

ei,i+1(p, d) = min{|Ii(x, y)− Ii+1(x + d, y)|, T}
ei,i−1(p, d) = min{|Ii(x, y)− Ii−1(x− d, y)|, T} (1)



p and d represent the 2D locations of pixels and disparity, re-
spectively. I is the intensity with RGB color, and T is the thresh-
old that defines the upper bound of matching cost. We compute the
per-pixel cost ei(p, d) with the ei,i+1, ei,i−1. When computing the
per-pixel cost, we should consider whether pixels in the center im-
age are visible or occluded. Based on the principle which matching
cost of visible pixel is generally smaller than that of occluded pixel,
we compute the per-pixel cost ei(p, d) on the center (ith) image as
follows:

ei(p, d) = min(ei,i+1(p, d), ei,i−1(p, d)) (2)

3.2. Cost aggregation with weighted least square
In order to estimate the optimal cost Ei(p, d) on the ith image, we
use a prior knowledge that costs should vary smoothly, except at
object boundaries. From this observation, we are able to estimate
the cost function by minimizing the following energy model with
weighted least square:

ε(E) =
R
Ω

(E(p)− e(p))2 dp

+λ
R
Ω

P
n∈N1

�
wp,p+n(E(p)− E(p + n))2

+wp,p+n⊥(E(p)− E(p + n⊥))2

�
dp

N1 = {(xn, yn)|0 < xn ≤ M, 0 ≤ yn ≤ M}
(3)

where w represents the weighting function between corresponding
neighbor pixels. We simplify Ei(p, d) to E(p), since the same pro-
cess is performed for each disparity. n and n⊥ represent the 2D
vectors, which are perpendicular to each other. M represents the
size of a set of neighbor pixels. Taking the first derivative of Eq. (3)
with respect to E, we obtain the following equation:

E(p)− e(p) + λ
X

m∈N(p)

wp,m(E(p)− E(m)) = 0 (4)

In the above equation, we redefine the set of neighbor pixels.
When p is (x, y), the set can be expressed as:

N(p) = {(x + xn, y + yn)| −M ≤ xn, yn ≤ M, xn + yn 6= 0}
The solution of the (k +1)th iteration is obtained by the follow-

ing equation:

Ek+1(p) = ē(p) + Ēk(p) =

e(p) + λ
P

m∈N(p)

wp,mEk(m)

1 + λ
P

m∈N(p)

wp,m
(5)

Eq. (5) consists of two parts: normalized per-pixel matching
cost and weighted neighboring pixel cost. By running the iteration
scheme, the cost function E is regularized with the weighted neigh-
boring pixel cost. The iteration scheme is similar to the adaptive
weight approach [6] when the number of iterations is 1. In the pro-
posed method, we use the asymmetric Gaussian weighting function
with the CIE-Lab color space in Eq. (6). rc and rs are weighting
constants for the color and geometric distances, respectively. When
Ci is the color distance that is computed with ith image, the weight-
ing function can be defined as follows.

wp,m = exp

�
−
�

Ci
p,m

2r2
c

+
Sp,m

2r2
s

��
Ci

p,m = (Li
p − Li

m)2 + (ai
p − ai

m)2 + (bi
p − bi

m)2

Sp,m = (p−m)2

(6)

3.3. Acceleration Scheme
3.3.1. Gauss-Seidel Acceleration
One reason for slowing down the convergence in Eq. (5) is that the
updated components in each pixel are used only after one iteration
is complete. We compensate for this problem by using the updated
components in each pixel intermediately after they are computed.
We divide a set of neighbor pixels N(p) into two parts: the causal
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Fig. 2. Overall framework of the cost aggregation.

part Nc(p) and the non-causal part Nn(p). Eq. (5) is expressed as
follows, based on this relationship:

Ek+1(p) =
e(p)+λ

P
m∈Nc(p)

wp,mEk+1(m)+λ
P

m∈Nn(p)
wp,mEk(m)

1+λ
P

m∈N(p)
wp,m

(7)
3.3.2. Multiscale Approach
As previously mentioned, it is necessary to gather pixel informa-
tion at a large distance to ensure reliable matching. This implies
that a number of iterations are required to estimate the correct cost
function. We use a multiscale approach to solve this problem. Our
method is different from the conventional approaches in the sense
that it is applied in the cost domain. We can initialize the value close
to the optimal cost in each level by using the final value in the coarser
level. Using Eq. (7), the proposed method performs cost aggregation
independently in each section with the same disparity of the 3D cost
volume. We first compute the 3D cost volume and then perform the
proposed multiscale scheme in each 2D cost function. The proposed
multiscale method runs the iterative scheme at the coarsest level by
initializing the cost function to e(p, d). After K iterations, the re-
sulting cost function is used to initialize the cost function in the finer
level, and this process is repeated until the finest level is reached.
The proposed multiscale scheme is shown in Fig. 2, which includes
adaptive interpolation.

When the cost function on the (l + 1)th level is defined as
El+1(p), we can refine the resolution of the cost function El(p) on
the finer level by using bilinear interpolation. However, if bilinear
interpolation is used, the error can be propagated into the neigh-
borhood regions, especially on the boundary region. To avoid this
problem, we propose an adaptive interpolation method based on the
weighted least square:

El(p) =

el(p) + λa

P
pm∈N(pi)

wp,pmEl+1(pm)

1 + λa

P
pm∈N(pi)

wp,pm

(8)

where pi = (xi, yi) represents a pixel on the coarser level, and
N(pi) on the (l + 1)th level is a set of 4-neighboring pixels. In
Eq. (8), w represents the weighting function, equivalent to that in
Eq. (5). We set the weighting factor to λa = 15. The adaptive
interpolation by the intensity values on two successive levels leads
to the up-sampling scheme, which preserves the discontinuities on
the boundary region. Thus, it is not necessary to perform the cost
aggregation scheme on the finest level, and this makes the proposed
method faster.

4. VIRTUAL VIEW RENDERING
4.1. Semi N -view & N -depth Framework
In this section, we propose a new approach which eliminates the re-
dundancy of estimating the disparity maps in the semi N -view &
N -depth framework. The cost functions in the reference images are
estimated by using the proposed cost aggregation method with the
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Fig. 3. Several cases of forward warping: when occluded pixels on
the reference are blocked by visible pixels, and when occluded pixels
on the reference block visible pixels.

weighted least square. The cost functions in the target and semi-
target images are estimated through the warping of those in the ref-
erence images. Since both forward and backward warping are per-
formed in the target images, we are able to compensate for the oc-
cluded pixels, which are caused by other warping so that only few
holes exist. However, since either forward or backward warping is
performed in the semi-target images, the occluded parts as well as
the holes remain. For assigning a reasonable cost function to the
occluded pixels, we use the method of handling the occluded pix-
els with reliable neighboring pixels in the proposed cost aggregation
scheme.

The cost functions of visible pixels on two images should only
be transferred through forward/backward warping. To determine
whether a pixel on the reference image is visible or not, we use geo-
metric and photometric constraints. At first, we explain the process
of forward warping. We can estimate the visibility of pixels by eval-
uating the disparity values of the neighboring pixels. The disparity
of the occluding pixels is generally larger than that of the occluded
pixels. Before we define the visibility function of the pixels based
on this principle, we describe the function St(j) for target image as
a set of pixels in the reference image:

St(j) = {i|i− dr(i) = j, all i with 0 ≤ i ≤ W − 1}
where i and j represent the x coordinates of the reference and target
images, respectively. W represents the width of the image and d rep-
resents the disparity of the pixel. When there are multiple matching
points at pixels in the target image, that is, #(St(j)) ≥ 1, the pixel
with the largest disparity among St(j) is considered as visible and
the remaining pixels as occluded. This is valid only if the occluding
pixels have reliable disparities. Fig. 3 shows several cases of for-
ward warping. If the disparities in the occluded pixels are smaller
than those of the visible pixels, we are able to accurately detect the
occluded region. Otherwise, the occluded pixels block the other vis-
ible pixels. We use the photometric constraint to evaluate the re-
liability of the occluding pixels. We determine a set of occlusion
candidates instead of a set of occlusions on the target image by us-
ing this constraint. The costs at the occluded pixels are generally
larger than those of the visible pixels. If the cost at the pixel, which
is determined as occluding pixels by geometric constraints, is not
smaller than that of the remaining occluded pixels, we can not guar-
antee the reliability of the occluding pixels. Therefore, all the pixels
in St(j) are used as occlusion candidates as shown in Fig. 3 (b), and
#(St(j)) is reset to 0. Then, the visibility function Ot(j) on the tar-
get image is set to 0 when #(St(j)) = 0, and otherwise, Ot(j) = 1.
By using the visibility function Ot on the target image, we warp cost
functions of reference image as follows:

Et(i− dr, dr) = Er(i, dr), if Ot(i− dr) = 1. (9)

In Eq. (9), the y coordinate is omitted, since the same process
is performed for each scanline. The process of backward warping

is also similar to that of forward warping. Note that the cost func-
tions of reference images are transferred into those of target images
through the warping, not disparity values. The occluded parts in
target images are handled in the cost aggregation. By using the vis-
ibility function Ot on the target image, we can redefine the iterative
scheme in Eq. (7) as follows:

Ek+1
t (p) =

Ot(p)e(p) + λ
P

m∈Nc

Ot(m)wp,mEk+1
t (m)

+λ
P

m∈Nn

Ot(m)wp,mEk
t (m)

Ot(p) + λ
P

m∈N(p)

Ot(m)wp,m
. (10)

It is different from the extrapolation technique widely used for
occlusion handling. While the extrapolation technique is just filling
by using the disparities of the visible pixels, the proposed method
propagates the information of the visible pixels into that of the oc-
cluded pixels. The proposed occlusion handling is similar to the
concept of edge-preserving nonlinear diffusion. In this paper, we
use WTA (Winner-Takes-All) method as optimization method for
disparity estimation. Other optimization techniques such as graph
cut and belief propagation can be used to perform disparity estima-
tion.
4.2. Virtual view generation
Given N images and the associated disparity maps, the virtual view
can be synthesized by warping each image with its disparity map.
All the images are warped and the novel view is generated by per-
forming the weighted-interpolation. The rotation of the virtual cam-
era is not considered in the novel view rendering, since the rotation
of the virtual camera may cause a number of holes in the novel view
and it is not appropriate in 3DTV or video-conferencing. Given
a novel viewpoint, the nearest two images (camera i and i + 1)
are selected and projected into virtual view. The relation between
mi(x, y) in the ith image and mv

i (xv
i , yv

i ) in the novel view can be
computed as follows [10]:

xv
i − x0 = f (xi−x0)B/di+Tx

fB/di+Tz
= xi−x0+diαx

1+diαz/f

yv
i − y0 = f

(yi−y0)B/di+Ty

fB/di+Tz
=

yi−y0+diαy

1+diαz/f

(11)

where (x0, y0) is the center of the image plane and (Tx, Ty, Tz) rep-
resents translation between the real and virtual cameras. To sim-
plify the notation, we use a normalized coordinate (αx, αy, αz) =
(Tx, Ty, Tz)/B, and set the baseline distance to 1. Let Ii and Iv

i

the reference and projected images, respectively, then Iv
i (xv, yv) =

Ii(x, y). The virtual camera can move with x and z-axes, which
consists of left, right, forward and backward movements. The move-
ment with y-axis is limited since this may cause some holes in the
novel view. We can generate 2D or 3D freeview video by synthesiz-
ing one or two novel views, respectively. When V (p) is a visibility
function whether a pixel in the novel view is visible in the reference
views, the final reconstructed novel view is computed by interpola-
tion with the projected images as follows.

Iv(p) = V i(p)(1− αx)Ii
v(p) + V i+1(p)αxIi+1

v (p) (12)

4.3. Virtual 3D view generation
The synthesis of stereoscopic novel view can be generated by syn-
thesizing two novel views - one for left view and one for right view.
The distance between two novel views is defined as Bs. To establish
the zero parallax setting (ZPS), the CCD sensor of the stereoscopic
cameras in the parallel structure are translated by a small shift h
relative to the position of the lenses [7]. It makes us choose the con-
vergence distance Zc in the 3D scene. The sensor shift can be simply
formulated as a displacement of a camera’s principal point. When a
horizontal shift of the principal point is defined as h, the point in the
novel view can be computed in Eq. (13). ±h means the shifted right



Table 1. Processing time for N -view & N -depth and semi N -view
& N -depth frameworks (N = 5).

View # Teddy (s) Cone (s)
N.N. Semi N.N. N.N. Semi N.N.

View 0 6.58 1.97 6.32 2.09
View 1 6.42 6.65 6.27 6.20
View 2 6.38 0.28 6.24 0.34
View 3 6.33 6.55 6.22 6.22
View 4 6.52 1.91 6.37 2.05
Total 32.23 17.36 31.41 16.91

Table 2. PSNR results of reconstructed views in N -view & N -depth
and semi N -view & N -depth frameworks.

N = 5 Teddy (dB) Cone (dB)
N-N. 33.66 31.57

Semi N-N. 33.57 31.67

and left images of novel stereoscopic views, respectively. Please re-
fer to [7] for more detailed explanation.

xv
i − (x0 ± h) = xi−x0+diαx

1+diαz/f

yv
i − (y0 ± h) =

yi−y0+diαy

1+diαz/f

(13)

5. EXPERIMENTAL RESULTS
To validate the performance of the semi N -view & N -depth frame-
work, we performed the experiments with the Middlebury test se-
quences [8]. We used the following test data sets: ‘Tsukuba’, ‘Venus’,
‘Teddy’, and ‘Cone’. We performed the experiments with multiview
images which N is 5. The two parameters in the weighting function
were rc = 8.0, rs = 8.0, and the weighting factor was λ = 1.0.
We used the multiscale approach on four levels, and the number of
iterations was (3, 2, 2,×), on a coarse to fine scale. The iteration
number of the finest level was not defined since we used the adap-
tive interpolation technique in the up-sampling step. The sizes of the
sets of neighboring pixels were 5× 5, 7× 7, 9× 9, and 9× 9.

The estimated disparity maps for the multiview image pairs are
shown in Fig. 4. The disparity maps were estimated in the semi
N -view & N -depth framework, when N was 5. Fig. 4 (b) and (d)
show the disparity maps in the reference images, which were ac-
quired by the proposed cost aggregation method. The disparity map
Fig. 4 (c) in the target image was computed by symmetric warping.
The disparity maps Fig. 4 (a) and (e) in the semi-target image were
computed by backward (or forward) warping only. We find that the
disparity maps for the target and semi-target images were accurate
and had good localization on the object boundaries, although these
were acquired by warping techniques. Please refer to [9][11] for the
objective evaluation of proposed cost aggregation method in stereo
matching (N = 2). Table 1 shows the processing times when com-
paring levels of complexity with those of other methods. The pro-
cessing time of the semi N -view & N -depth framework was nearly
half of that of the N -view & N -depth framework. We show only
the results for ‘Teddy’ and ‘Cone’ image pairs due to lack of space.
Fig. 5 shows the synthesized novel views that were obtained by the
virtual camera. We found that seamless images were synthesized in
the object boundaries and the occluded regions. The quality of the
synthesized images was satisfactory enough to provide users with
natural freeview videos for 3DTV. For objective evaluation, we com-
pared with PSNR results of reconstructed images in N -view & N -
depth and semi N -view & N -depth frameworks, as shown in Table
2. We found that the PSNR of reconstructed images in two frame-
works was nearly same. The synthesized 2D and 3D freeview videos
are available at [11].

Fig. 4. Results for the multiview image pairs (N = 5).

Fig. 5. Results for 2D freeview generation, when N is 5: ‘Teddy’
and ‘Cone’ image pairs. (a) (1.2, 0.0, 0.0), (b) (1.5, 0.0, 0.0), (c)
(1.5, 0.0, 1.0), (d) (1.5, 0.0,−0.5), (e) (2.7, 0.0, 0.0).

6. CONCLUSION
In this paper, we have presented a novel approach for generating
2D/3D freeview video in multiview camera configuration. By using
estimated cost functions of neighboring images, redundancy of es-
timating disparity maps in the multiview images is reduced in semi
N -view & N -depth framework. The novel view can be selected
among 2D or 3D stereoscopic images according to the selection of
the user. In further work, we will investigate virtual view rendering
system for various camera configurations.
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