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ABSTRACT

This paper presents a Markov Random Field (MRF)-based ap-
proach for depth map super-resolution and enhancement. Given
a low-resolution or moderate quality depth map, we study the
problem of enhancing its resolution or quality with a registered
high-resolution color image. Different from the previous meth-
ods, this MRF-based approach is based on a novel data term
formulation that fits well to the unique characteristics of depth
maps. We also discuss a few important design choices that
boost the performance of general MRF-based methods. Experi-
mental results show that our proposed approach achieves high-
resolution depth maps at more desirable quality, both qualita-
tively and quantitatively. It can also be applied to enhance the
depth maps derived with state-of-the-art stereo methods, result-
ing in the raised ranking based on the Middlebury benchmark.

Index Terms— Time-of-flight sensor, MRFs, depth super-
resolution, depth-enhancement, global optimization

1. INTRODUCTION

Accurate depth at high resolution is required in many applica-
tions such as interactive view interpolation, 3D television, robot
navigation. Unlike obtaining high-resolution color images, the
acquisition process of an accurate depth map at high resolution
is never trivial, e.g., laser range scanners or active illumination
with structured lights. However, these accurate depth measure-
ment techniques are only applicable to the static environments.

For the purpose of acquiring depth maps for dynamic scenes
at video rate, passive stereo and recent active depth sensors
based on the time-of-flight (TOF) principle [1] are actually the
primary choices. Unfortunately, the quality of depth maps ob-
tained with these techniques is often not at a level desired by
the high-level applications, due to inherent physical limitations
or real-life constraints. For instance, depth maps returned by
TOF sensors are typically of low resolution and also noisy, e.g.,
176 x 144 for Mesa Imaging SR4000 [1]. Depth maps esti-
mated by stereo algorithms are, however, not accurate enough,
especially when they are estimated under real-time constraints.
This paper hence focuses on a post-processing step that en-
hances the resolution or quality of a given non-ideal depth map.
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Fig. 1. Depth map super-resolution on the same input low-
resolution depth map with the upsampling factor of 8. Depth
maps generated by (a) Yang et al. [3] (b) Diebel and Thrun [4]
(c) Our proposed method. (d)-(f) Close-ups of (a)-(c).

Different from some existing work on probabilistic fusion of
active and passive sensors [2], our approach takes only one
color image in addition to the depth map to be processed. The
motivations are two-fold. First, we want to investigate how
far we can go with depth enhancement using only one single
high-resolution color image, which has not been adequately ad-
dressed so far. Second, for the application scenarios where net-
work bandwidth and processing power are constrained at the
content capturing end, the input to the post-processing module
may only contain a single-view color image plus a registered
depth map either estimated by passive stereo under the stringent
real-time constraint or measured by a TOF sensor.

Specifically for this one color image plus one depth map
setup, Yang et al. [3] used an iterative joint bilateral filtering
scheme to build a cost volume for the final depth hypothesis se-
lection. Though this method better preserves the depth discon-
tinuities than other previous methods that directly apply a joint
bilateral filter to the depth image [5], it does not explicitly en-
force the spatial smoothness constraint when searching through
all the depth hypotheses. Without a global regulation term,
such a soft-weighting based local method still makes the result-
ing depth map fuzzy, especially along depth discontinuities [see
Figure 1(a)]. Diebel and Thrun [4] have instead proposed using
a MRF method to fuse low-resolution depth maps with high-
resolution color images. Depth value assignment is modeled as
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an energy minimization problem based on MRF formulations,
and the authors used the quadratic distance in both data term and
smoothness term in the energy function. This choice enables
using the conjugate gradient algorithm for the least square opti-
mization problem, but it results in much worse solution quality
than what is typically expected for a MRF-based approach [6],
as shown in Figure 1(b).

Therefore, the first goal of this paper is to revisit the MRF-
based depth enhancement problem. We formulate the energy
function more rigorously in Section 2, and solve it with loopy
belief propagation (LBP) [7]. Secondly, a novel scheme is pro-
posed to construct the data term in Section 3 allowing for pixel-
wise adaptive selection of an appropriate depth reference value.

2. MRF FORMULATION FOR DEPTH INFERENCE

Given a depth map D, which is potentially to be up-sampled
by a factor of s for each image dimension, our goal is to enhance
its resolution and/or quality by using an aligned high-resolution
color image /. The resulting enhanced depth image at the same
resolution of  is denoted as D = {d, }, where p = (i, 7) is an
integer pixel on a 2D image grid.

We formulate the depth super-resolution and enhancement
problem using a MRF-based depth inference framework in a
unified manner. MRF is an elegant model that can be justified in
terms of maximum a posteriori estimation [6]. The basic idea is
to assign a depth label to every pixel p, which is the most likely
estimate of the unknown true depth value, given the coarse map
D° = {d)} and I. In the MRF framework, such a pixel-labeling
problem is solved by minimizing the Gibbs energy £ on a graph
g=WV,&):

E=> Uld)+X Y V(dydy), (1)

peV (p,q)€E

where V is the set of all pixels, £ is the set of graph edges con-
necting adjacent pixels. U(d)), known as the data energy, mea-
sures similarity between the estimated depth value and the input
depth value from D°. V'(d,, d,), known as the smoothness en-
ergy, is a regularization term that encourages neighboring pixels
to have similar depths. Here we use the standard 4-connected
neighborhood system. )\ is a parameter to balance the two terms.

Different functional forms can be used to define the data term
U and the smoothness term V, but they eventually lead to very
different results in terms of solution quality and efficiency [6].
Rather than using the quadratic distance [4], we propose to use
robust distance functions such as truncated absolute difference
(TAD) in U and V. TAD is good at preserving discontinuities,
and can also be efficiently computed via distance transform in
LBP. More specifically, given a truncation threshold o,

U(dp) = min(|d, — d)|, o) . )

When the upsampling factor s > 1, the input depth map D°
is of a low resolution with regard to I. Therefore, (2) is
only applied to a sparse grid of pixels V¢ = {(i,7)|i%s =
(s —s%2)/2,j%s = (s — s%2)/2}. We set the data energy of
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the rest of the pixels, i.e., p € V\V*, to zero. We have also per-
formed experiments to test other image upsampling strategies to
upsample DO to the full resolution of I, such as bicubic inter-
polation and bilinear interpolation. Consistent with the findings
in [8], we find that the nearest neighbor sampling is preferable,
which does not introduce unwanted blurring due to interpolated
sampling. In regular depth enhancement, when s = 1, then
V? =), meaning that the data cost is computed with (2) for all
the pixels.
Next, we define the smoothness term V' as follows,

V(dy,dy) = wp,q - min(|d, — dg|, 7) . 3)

where 7 is a truncation threshold. w,, , is a spatially varying
weight defined using the color image [ and the parameter +,

Wp,q = eXp(—AL, 4/7) . 4)

Wy, 4 Serves as a soft constraint that encourages the depth dis-
continuities to be aligned with color edges. Unlike the previous
method [3] calculating w,, , based on the average absolute dif-
ference of different color channels, we define Al , to be the
maximum absolute difference among the three color channels
between the pixel p and ¢q. With such a change, the case when
the average absolute difference is mild but one of the color chan-
nels is distinctive is more appropriately handled.

3. PROPOSED DATA TERM CONSTRUCTION

The MRF formulation proposed in Section 2 generally works
well for depth super-resolution and enhancement. Nevertheless,
sometimes it does not reconstruct very accurate depth values
for depth discontinuities. The main reason is that the data cost
U (d,) associated with a depth hypothesis d,, at pixel p is solely
defined with respect to d%, whereas dg is known to be less re-
liable along depth discontinuities. This observation holds for
the coarse depth map measured by TOF sensors, as well as the
one estimated from passive stereo algorithms. In this section, a
novel method is proposed to construct the data term.

Our key idea is to limit the negative impact of inaccu-
rate depth estimates or measurements over the depth infer-
ence. Therefore, rather than always trusting dg as a good ref-
erence value when defining U(d,), we also include the initial
depth values Ng = {dJ ,dJ ,dJ,,dJ } of neighboring pixels
N = {qo,q1, g2, g3} for the pixel p. As shown in Figure 2(a),
q; s of a distance of s pixels to the pixel p under consideration,
when measured according to the full resolution grid. The ratio-
nale is that the current depth hypothesis d,, does not necessarily
need to fit well to dg (if it is likely unreliable), but instead it is
allowed to decide the best reference depth value d;; from a union
of Ny and dg. Conceptually, this idea is similar to shifted win-
dows or non-centered windows used to improve performance at
object boundaries in stereo matching.

Now, we present how to decide the depth reference value
dy, adaptively for different pixels p, which will replace dg in
(2). Considering possible geometric configurations around p,
we explicitly tackle four different conditions. Let ), = \dgo —
dy,| and v, = |d) —dj. | denote the absolute difference between



° .P .QO o o
° q1
g3
e | o | @ e|o | e
(@) 14 P
o °

(@) (e)

Fig. 2. Proposed locally adaptive selection of the depth refer-
ence value for the anchor pixel p. (a) Besides p, four depth
measurements of the neighboring pixels {qo, g1, g2, g3 } are also
considered. (b) p is near general depth discontinuities. (c, d) pis
near an approximately vertical or horizontal depth edge. (e) p is
in homogeneous depth regions or indefinitive regions. Shaded
blocks denote those neighboring depth values that d;, can be se-
lected from, in addition to dJ.

horizontal and vertical neighbors, respectively. Based on the
strength of %, and vy, the four cases are categorized as follows.

1) p is near general depth discontinuities [Fig. 2(b)]. This
corresponds to the case when h,, > ¢; and v, > t;. In this
case, Vdy € {d) ,dy ,do,,d) },if |d). — d)| < t, then we set
dy = dg,' This means if one neighboring depth measurement
can support the center depth value, then we trust the initial depth
measurement more, and use it for d;. Otherwise, dg is very
likely to be a transitional depth value (mixing foreground and
background depths), so we rely on the color cue to disambiguate
which depth value to select to define dj,. The pixel that has the
closest average color distance to the center pixel p is selected as
the winner, so its depth value is assigned to d;. Here we first
apply a 3 x 3 median filter to /, suppressing the impact of image
noise as well as subtle non-Lambertian effects.

2) p is near an approximately vertical depth edge [Fig. 2(c)].
This corresponds to the case when h,, > ¢; and v, < ¢,. In this
case, d7 is selected from {dY), ) ,dj }, using the same strategy
discussed above, i.e., depth proximity check followed by color
distance check.

3) p is near an approximately horizontal depth
edge [Fig. 2(d)]. This is the case when h, < t, and v, > ;.
Similar to the case 2), dj is selected from {dJ, dJ ,dJ. }.

4) p is in homogeneous depth regions or indefinitive re-
gions [Fig. 2(e)]. This corresponds to all the other cases not
covered in the previous classes. In this case, d;; = dg, and the
scheme degenerates to the original data term construction in (2).

Figure 3 illustrates the proposed idea when applied to super-
resolve the Teddy depth map with s = 8. Appropriate depth
values can be decided to define d;, for the anchor pixel p, adapt-
ing to difference local scene structures. Based on the Middle-
bury stereo evaluation [9], it is found that the proposed new
data term construction performs better than the baseline method
of (2). With little overhead, the error rates for the non-occluded,
all, and depth discontinuities regions for the given Teddy image
are reduced by 1.5%, 1.5%, and 4.3%, respectively.
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Fig. 3. (a) Full-resolution color image /. (b) Upsampled depth
map with a factor of 8 using the nearest neighbor sampling.
Four different pixel locations have been shown, corresponding
to the four cases discussed, i.e., 1) near general depth discon-
tinuities, 2-3) near a vertical/horizontal depth edge, and 4) in
homogeneous regions. The red arrow indicates the neighboring
pixel’s depth value that has been selected. (c) Close-ups of (b).

4. EXPERIMENTAL RESULTS

We have implemented the proposed MRF formulation and the
new data function based on the Middlebury MRF minimization
source code. The LBP software [7] is used to minimize the
global energy function in (1). To enable quantitative evaluation
of different techniques based on the ground-truth depth maps,
the Middlebury dataset [9] has been used in our experiments.
Some parameters in the proposed approach are empirically set
as follows, v = 20.0, A = 2, ts = 4. For Tsukuba and Venus im-
ages containing a relatively small number of intermediate depth
layers (normalized to grayscale), we set o, 7, and ¢; all to 64,
while for Teddy and Cones images, o, 7, and ¢; are all set to 32.

First, we compare different depth super-resolution methods
by using the same set of input low-resolution depth maps [3],
with a upscaling factor s of 8. Based on the Middlebury online
evaluation, Table 1 reports the disparity error rates measured
against the ground-truth disparities. Compared to the previous
methods such as the prior MRF formulation [4] and iterative
joint bilateral filter (JBF) [3], our proposed methods have signif-
icantly improved the depth map accuracy, particularly for chal-
lenging depth discontinuities. Also, our method-2 presented in
Section 3 improves the overall performance over our method-1
presented in Section 2, thanks to the new data term construc-
tion scheme. A visual comparison of the depth maps is given in
Figure 1. Clearly, our method-2 yields piecewise smooth depth
maps with cleaner and sharper depth edges.

We have also compared the performance of our method-1
and our method-2 with low-resolution depth maps of different
blurring effects, which were created by varying the standard de-
viation of the Gaussian kernel. We find that the improvement
in depth map accuracy due to applying our method-2 is more
pronounced, when the blurring effect is strong or the upsam-
pling factor s is big (as shown in Figure 3). In fact, even when



Table 1. Quantitative evaluation results for the Middlebury stereo database [9]. The image upscaling factor is 8.

. Tsukuba Venus Teddy Cones
Algorithm . . . -
nonocc. all disc. | nonocc. all disc. | nonocc. all disc. | nonocc. all disc.
Before refinement 8.14 9.74 43.4 2.18 2.79 30.5 13.7 14.7 419 12.0 15.1 34.1
MRF-previous [4] 8.20 9.74 44.0 2.11 2.69 29.6 13.5 14.5 41.5 11.8 14.9 33.8
Iterative JBF [3] 6.27 7.23 33.6 1.20 1.50 16.7 10.7 11.5 32.1 8.83 11.0 25.3
Our method-1 4.86 5.60 24.4 0.79 1.00 10.5 9.26 9.96 25.9 8.70 11.4 24.3
Our method-2 4.35 5.09 22.2 0.79 1.00 10.5 9.33 9.87 26.3 8.79 11.3 24.5
M Our method-1 M Our method-2
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Fig. 4. Comparison between our method-1 and our method-2
near depth discontinuities regions for an upscaling factor of 4.

the standard deviation is as low as 1.5, we can still observe an
appreciable accuracy improvement, as shown in Figure 4.

Lastly, we show that our methods can also enhance the qual-
ity of a depth map estimated by stereo algorithms, taking a
left-view color image as the input at the post-processing end.
Figure 5 shows that our method-2 corrects the matching errors
and also tackles the foreground over-fattening effects seen in the
original depth maps, which are generated by our previous GPU-
based stereo method under the real-time constraint [10]. Our
experiments also show that the proposed technique can improve
the global optimization based stereo methods. For instance, it
raises the Middlebury rank of RealTimeBP [9] by 11 slots, and it
further enhances the depth accuracy achieved by the top-ranking
AdaptingBP method [9].

5. CONCLUSIONS

In this paper, we have studied the MRF-based depth super-
resolution and enhancement problem, given a coarse-resolution
or coarse-quality depth map plus one registered full-resolution
color image. Different from the previous methods, we have for-
mulated the energy function for depth inference more rigorously
in the MRF framework. Then, we further propose a novel data
term construction scheme, which allows pixelwise adaptive se-
lection of an appropriate depth reference value. Experimental
results illustrate the effectiveness of our methods when com-
pared to traditional approaches in enhancing the resolution and
quality of the input depth maps. The proposed method also im-
proves the depth maps estimated by existing stereo algorithms
noticeably, when applied as a post-processing step. With the
same MRF-based depth inference framework, our method can
also work against additive image noise. Our future work in-
cludes approximating and accelerating BP-based depth infer-
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Fig. 5. Improving existing stereo results by our proposed
method. From left to right: group-truth depth map, depth
map by RealTimeCross [10], and improved depth map with our
method. Top row: Tsukuba images. Bottom row: Cones images.

(d)

ence on GPUs, as BP is known to be friendly for fast parallel
processing. We also plan to model the depth image formation
process for TOF sensors, and such a model will be useful for
defining the energy function. Occlusion and non-perfect regis-
tration between color and depth sensors will also be tackled.
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