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ABSTRACT

Exploring underlying texture flows defined with orientation and
scale is of a great interest on a variety of vision-related tasks. How-
ever, existing methods often fail to capture accurate flows due to
over-parameterization of texture deformation or employ a costly
global optimization which makes the algorithm computationally
demanding. In this paper, we address this inverse problem by
casting it as a randomized correspondence search along with a
locally-adaptive vector field smoothing. When a small example
patch is given as a reference, a randomized deformable matching is
performed on the very densely quantized label space, enabling an
efficient estimation of texture deformation without quality degener-
ation, e.g., due to quantization artifacts which often appear in the
optimization-driven discrete approaches. The visual similarity with
respect to the deformation parameters is directly measured with an
input texture image on an appearance space. The locally-adaptive
smoothing is then applied to the intermediate flow field, resulting
in a good continuation of the resultant texture flow. Experimental
results on both synthetic and natural images show that the pro-
posed method improves the performance in terms of both runtime
efficiency and/or visual quality, compared to the existing methods.

Index Terms— Texture analysis, flow estimation, correspon-
dence search, and joint filtering.

1. INTRODUCTION

Texture flow, typically defined as a locally-varying deformation field
in terms of orientation and scale, on a natural photograph is essen-
tial to numerous computer vision applications such as scene analy-
sis, segmentation, shape from shading, texture synthesis and editing.
It offers a fundamental clue to grasp inherent visual structure em-
bedded in the spatially (and smoothly) varying surface on textures.
Texture flow estimation serves as a starting point to interpret the per-
ceptual organization of real world images. Fig. 1 shows the example
of texture flow estimated from a natural image by using our method.

Discovering the underlying texture flows through a computa-
tional approach, however, is non-trivial, especially due to the de-
viation in texture appearance. To better model local attributes of the
texture, traditional methods usually leverage a parametric model for
texture representation. For example, oriented filters were deployed
to estimate dominant orientation fields for gradient-like patterns [1].
In [2], a texture feature was represented as a linear array of thresh-
olded pixels (i.e., local binary patterns), followed by the dimension
reduction strategy through the principal component analysis (PCA).
In [3], Chang and Fisher decomposed a deformed texture into ex-
plicit local attributes such as orientation and scale by utilizing a
steerable pyramid. In [4], the structure tensor response computed at
each pixel is compared to that computed from an example patch in
order to discriminate the dominant orientation inherent in the texture.

(a) Texture image (b) Orientation (c) Scale

Fig. 1. Examples of texture flow estimation from a natural photo-
graph: (a) the texture image, (b) the estimated orientation field, and
(c) the estimated scale field.

To further enforce a global consistency, a costly global optimiza-
tion is often taken into account [2, 3, 5], by minimizing an objective
which combines the data constraint with a regularization term en-
forcing smoothness on the resultant flow fields. Namely, the estima-
tion process is formulated as the MAP solution of a discrete labeling
Markov network [2]. However, such optimization-driven methods
suffer from the computational burden caused by a high-dimensional
label space and/or quantization artifacts inherent in discrete labeling
tasks.

What makes our approach novel for texture flow estimation is
that we directly utilize intensity values of two patches for comput-
ing the correlation metric, unlike existing texture flow estimation
approaches [1, 2, 3, 4] that typically rely on parametric models
based on texture descriptors. Since the texture has a stochastic
property, this kind of intensity-based correlation measure, i.e., a
non-parametric model, is traditionally considered unfit in the ex-
isting methods. However, it was shown in the texture synthesis
literature [6] that the appearance based synthesis approach produces
spatially coherent texture images very well by evolving an input
example patch with respect to deformation fields consisting of ori-
entation and scale. Following this observation, we demonstrate that
the local visual similarity directly measured using a simple intensity
correlation metric captures local behaviors of the inherent flow fields
very well. Then, such an exhaustive search with respect to orienta-
tion and scale becomes computationally feasible by leveraging the
randomized deformable matching that can simulate a lot of possible
texture deformation fields very efficiently.

In this paper, we mainly focus on the estimation of deformation
fields (consisting of orientation and scale) in the per-pixel labeling
framework. Different from existing works [2, 3, 5], we introduce
a simple yet effective alternative of a global optimization by lever-
aging both the randomized search concept [7] and the joint filter-
ing technique [8]. It enables achieving substantial gains in terms of
both memory requirement and runtime, which is difficult to achieve
with existing optimization-driven approaches due to the computa-
tional burden of the high-dimensional variable space.
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(a) Input texture (b) 1
3

iteration (c) 1 iteration (d) 3 iterations (e) Field smoothing (f) Orientation field (g) Scale field

Fig. 2. Algorithm overview. Given an input texture with a small example patch (a), our algorithm iteratively updates a deformation field
(b)-(d) from random initialization, followed by local field smoothing (e). It produces globally consistent orientation (f) and scale (g) fields.

2. PROPOSED METHOD

Our texture flow estimation begins with the inference of deformation
parameters defined in the high-dimensional search space by virtue of
the randomized search framework. Once the randomized search is
done, the flow field is then adaptively filtered out with the guidance
of matching confidence in order to ensure a global coherency. The
proposed framework is illustrated in Fig. 2.

2.1. Deformation Model and Overview

Given a texture image I that undergoes smoothly varying deforma-
tion in surfaces, our objective is to discover a dense deformation
field f : I �→ R

2 defined over all pixel coordinates p ∈ I through a
deformable correspondence search on the appearance space. We as-
sume that a small example patch T is given by a user and represent
the input texture image I well. For modeling the underlying visual
structure, we define a texture deformation model as a transformation
in terms of orientation θp and scale sp:

f(p) = (θp, sp)
T , ∀p ∈ I, (1)

where θp and sp represent orientation label and scale label at a pixel
p, respectively. Since orientation is periodic, the search range of
orientation is constrained to be 0 ≤ θp < 2π. To handle scale, the
search range of scale is preset to be in the range of 0.25 ≤ sp ≤ 2.

The deformation field f(p) is inferred by matching the example
patch T and a deformed patch centered at a pixel p from I . Let
EI and EG denote respectively a distance function for measuring
intensity and gradient similarity of two patches as:

EI(p, θ, s) =
∑

q∈N (T )

∥∥∥T (q)− I(φ(θ,s)
p (q))

∥∥∥
2

, (2)

EG(p, θ, s) =
∑

q∈N (T )

∥∥∥∇T (q)−∇I(φ(θ,s)
p (q))

∥∥∥
2

, (3)

where ∇ is a gradient operator, and N (T ) is a set of relative pixel
locations, with setting the center of the example patch T to an origin.

φ
(θ,s)
p (·) denotes a warping operator with respect to rotation θ and

scale s, which yields

φ(θ,s)
p (q) = p+ s

[
cos θ − sin θ
sin θ cos θ

]
q. (4)

Based on these intensity-based distance measures, the visual simi-
larity of two patches is defined as follows:

V(p, θ, s) = EI(p, θ, s) + EG(p, θ, s). (5)

The deformation field f(p) is then estimated by minimizing the fol-
lowing objective function:

f(p) = argmin
(θ,s)∈F

V(p, θ, s), (6)

where F is the set of all possible labels with respect to rotation and
scale. Indeed, this minimization problem can be simply solved by
exhaustively searching over the discretized label space of F. How-
ever, such an exhaustive search is computationally expensive, since
the number of possible deformation labels is typically very huge.

To address this problems, we introduce a simple yet effective
deformable correspondence search by deploying the randomized
search concept recently proposed in [7]. In contrast to search over
all possible labels, we smartly traverse parts of it using a randomized
cooperative hill climbing strategy: propagation and random search.
It thus achieves a substantial improvement in runtime efficiency
while maintaining its original matching quality.

2.2. Randomized Inference

Let us now focus on the problem of finding an optimal deforma-
tion field that minimizes the objective function in (6). To handle the
computational complexity introduced by a large number of candidate
labels, we deploy the randomized search algorithm [7] for inference,
which is proven to be highly efficient in the high-dimensional dis-
crete label search. A basic motivation is simple: if deformation fields
are initialized by random labels, then correct labels are likely to exist
among the set of these random labels. A good guess also guides the
rest of pixels to have a good guess by propagating its current labels to
the vicinity. This randomized inference process iteratively updates
the deformation field f until convergence. For each iteration, good
guesses are examined in scan order by alternating between propaga-
tion and random search. Fig. 3(a) shows an example of an initial
deformation field f consisting of random labels that are uniformly
sampled from F. It should be noted that our algorithm randomly se-
lects arbitrary (floating) values for the orientation and scale within
the given search range, and thus it does not suffer from severe quan-
tization artifacts while maintaining its runtime efficiency.
Propagation. In the first step, a propagation proceeds in order to im-
prove an intermediate deformation label f(p) by considering current
best label pairs Ωp of its neighboring pixels including itself, for in-
stance, Ωp = {f(p), f(p−(1, 0)), f(p−(0, 1))} on odd-numbered
iteration. The hypothesis test is then performed as follows:

f(p)← argmin
(θ,s)∈Ωp

V(p, θ, s), (7)

c(p)← V(p, f(p))
where V is the visual similarity distance defined in (5) and ← is
an assignment operator. Intuitively, the current deformation label
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(a) Random initialization (b) 1 iteration

(c) 3 iterations (d) After smoothing

Fig. 3. Intermediate texture flows during the randomized inference
process: (a) random initialization, (b) 1 iteration, (c) 3 iterations, (d)
after smoothing.

f(p) is replaced with the label that provides the smallest match-
ing cost among candidate labels Ωp. Also, the smallest matching
cost is stored in the distance map c(p). This process helps im-
prove the convergence, since neighboring pixels tend to have sim-
ilar orientation and scale in natural images. On even-numbered it-
eration, the propagation is performed in reverse scan order: Ωp =
{f(p), f(p+ (1, 0)), f(p+ (0, 1))}.

Random Search. In the second step, a random search proceeds to
prevent the flow result being trapped in a local minimum. We up-
date the current optimal label f(p) by a sequence of random trials
which are constructed by sampling around f(p) at an exponentially
decreasing distance as

(θip, s
i
p)

T = (θp, sp)
T + αiRiZ, i = 0, 1, 2, . . . , (8)

where Ri is a 2× 2 diagonal matrix whose diagonal entries are uni-
form random numbers in [−1, 1]× [−1, 1], αi is the ith exponential
of a ratio α = 0.5, and Z = (π, 2.0)T is the maximum search range.
The index i increases until the search radius of the first entry in αiZ
is below 1. Using this sequence, the current label f(p) is refined if
the target random pair has a smaller cost.

Fig. 3 shows intermediate results of the flow field during itera-
tions. Starting from random orientations of Fig. 3(a), the orientation
fields are progressively evolved during iterations. As a result, the
resultant orientation fields are locally aligned with the visual struc-
ture of an input texture image, as shown in Fig. 3(c). In addition,
despite the variation in appearance between the example patch and
the sample patch from the input image, the local behavior of under-
lying texture flows are well captured using the visual similarity di-
rectly measured on the appearance space, thanks to our randomized
deformable matching in the high-dimensional search space. How-
ever, the inference mechanism is inherently local, thus often missing
a spatial coherency in the estimation. Instead of using the costly
global optimization, we resolve this problem by explicitly imposing
the smoothness prior on the deformation field via a local filtering
approach, which will be detailed in the following section.

(a) Distance map c(p) (b) Initial sp (c) Smoothed sp

Fig. 4. Results on scale smoothing: (a) distance map, scale fields (b)
without smoothing and (c) with smoothing.

2.3. Field Smoothing

After the deformation labels are inferred through the randomized
search, the nonlinear vector field smoothing is performed with the
guidance of the distance map c(p) as a matching confidence in or-
der to enforce global consistency. We extend the work of [8] by
introducing the scale field as well as the orientation field into the
smoothing process as a two-tuple flow vector. Intuitively, dominant
flow vectors having a smaller matching distance are preserved, while
weak flow vectors are directed to follow neighboring dominant ones.
The field smoothing is defined as follows:

f̂(p) = K−1(p)
∑

q∈Nf (p)

W(p,q)f(q), (9)

where K−1(p) is a diagonal matrix for a normalization and Nf (p)
denotes the neighborhood of p. W is a 2 × 2 diagonal weighting
matrix, which is defined as:

W(p,q) =

[
wr(p,q)wd(p,q) 0

0 wr(p,q)

]
, (10)

where wr and wd represent the range kernel and the direction kernel,
respectively. The range kernel wr encourages dominant orientations
and scales to be preserved during smoothing, which is defined as
follows:

wr(p,q) =
1

2
(1 + tanh[c̄(p)− c̄(q)]), (11)

where c̄(p) represents a normalized matching distance across an en-
tire image. tanh(·) is a monotonically increasing function with re-
spect to the distance difference c̄(p)− c̄(q), and thus bigger weights
are assigned to the neighboring pixels q whose matching distances
are lower than that of the center p. Accordingly, the pixels having
lower matching distances contribute more in the filtering of the de-
formation field. The direction kernel wd helps tighter alignment of
neighboring orientations, which is defined as:

wd(p,q) = |cos(θp − θq)|. (12)

The direction weight increases as the difference of two orientations
approaches to 0 or π. Note that wd is only applicable to the ori-
entation field, since the scale field is not directional. For further
enhancing global coherency of the intermediate flow fields, the field
smoothing is iteratively applied η times. In Fig. 3(d), our smooth-
ing improves global coherency of the orientation field, resulting in a
good continuation of texture flows. In addition, as shown in Fig. 4,
our smoothing helps remove outliers in the scale estimation, which
are caused by severe variations on texture appearance.

3. EXPERIMENTAL RESULTS

We validate the performance of the proposed method on various tex-
ture images including both synthetic and natural photographs. Test
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Fig. 5. Experimental results on natural and synthetic images: (from left to right) input textures of size 256 × 256 with example patches of
size 64× 64, and estimated orientation and scale fields.

images were selected which undergo sufficient deformation such as
rotation and scale transformation, and also show a clear distinction
enough to be interpreted by the human visual system (HVS). The
user specified example patches with their reference orientation are
used that are not distorted and contain sufficient texture elements to
represent the input texture image. The proposed method was imple-
mented in Matlab and was simulated on a PC with Quad-core CPU
2.93GHz. In all experiments, the maximum iteration of the random-
ized inference process is set to 3. For each test image, the window
size Nf and the maximum iteration η of field smoothing is empiri-
cally set in the range of [15, 25] and [5, 15] according to an image
resolution, respectively. For flow visualization, the line integral con-
volution (LIC) [9] is used.

Fig. 5 shows the estimated deformation fields on both natural
and synthetic textures, which are visually consistent with the human
perception in terms of scale and orientation. As shown in the top row
of Fig. 5, our method can capture the inherent flows of the circular
pattern very well. Moreover, it can be seen that our method produces
consistent flows when an input texture has a regular property.

Fig. 6 compares our results with those obtained by two re-
cent deformation estimation approaches: the edge tangent flow fil-
ter (ETF) [8] and the statistical invariance approach (SI) [4]. Note
that similar to our method, they infer the deformation field locally,
not leveraging a global reasoning. Given the input texture of size
256× 256 and the example patch of size 64× 64, the running times
are respectively around 4 seconds (ETF) and 10 seconds (SI) on aver-
age, while our method takes 79 seconds (75 seconds for randomized
inference and 4 seconds for vector field smoothing) under the typ-
ical setting to estimate the deformation field. For a complex input
texture as in Fig. 6(a), these two local approaches fail to produce a
coherent flow field. These local methods directly calculate the de-
formation field with a over-simplified model (e.g., intensity gradi-
ent), and thus they run faster than ours but cannot discriminate dom-
inant orientation in the presence of complex structure. Moreover, the
ETF [8] does not consider the scale field. In contrast, though inher-
ently local, our method formulates the deformation field estimation
as the per-pixel labeling framework based on a non-parametric de-
formation model. This labeling algorithm shares a similar spirit with
several global optimization-driven approaches, but our randomized
search strategy along with the vector field smoothing enables a much
faster inference, with a comparable estimation quality to global ap-
proaches. For instance, the global approaches typically take about

(a) Input texture (b) ETF [8]

(c) SI [4] (d) Ours

Fig. 6. Comparison of the estimated flow field with competing meth-
ods: (a) input texture, (b) ETF [8], (c) SI [4], (d) proposed method.

10 ∼ 20 minutes [2]. In addition, our inference algorithm requires
only a little extra memory for storing a distance map, unlike exist-
ing optimization-driven approaches [2, 5] that typically need huge
memory usage to handle the high-dimensional label space.

4. CONCLUSIONS

In this paper, we have addressed the inverse estimation of under-
lying texture deformation fields. The efficient randomized search
enables the direct application of the non-parametric texture model
to a high-dimensional search space, and the locally-adaptive vector
field smoothing provides an excellent alternative for costly optimiza-
tion based approaches. Our method produces very promising results
compared with existing local methods, and also achieves substantial
efficiency gains over global methods.
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