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Abstract. We study the problems of upsampling a low-resolution depth
map and interpolating an initial set of sparse motion matches, with the
guidance from a corresponding high-resolution color image. The com-
mon objective for both tasks is to densify a set of sparse data points,
either regularly distributed or scattered, to a full image grid through
a 2D guided interpolation process. We propose a unified approach that
casts the fundamental guided interpolation problem into a hierarchical,
global optimization framework. Built on a weighted least squares (WLS)
formulation with its recent fast solver – fast global smoothing (FGS)
technique, our method progressively densifies the input data set by ef-
ficiently performing the cascaded, global interpolation (or smoothing)
with alternating guidances. Our cascaded scheme effectively addresses
the potential structure inconsistency between the sparse input data and
the guidance image, while preserving depth or motion boundaries. To
prevent new data points of low confidence from contaminating the next
interpolation process, we also prudently evaluate the consensus of the in-
terpolated intermediate data. Experiments show that our general inter-
polation approach successfully tackles several notorious challenges. Our
method achieves quantitatively competitive results on various benchmark
evaluations, while running much faster than other competing methods
designed specifically for either depth upsampling or motion interpolation.

Keywords: Image-guided interpolation, depth upsampling, optical flow

1 Introduction

Dense depth or optical flow maps often serve as a fundamental building block
for many computer vision and computational photography applications, e.g., 3D
scene reconstruction, object tracking, video editing, to name a few. An active
range sensing technology such as time-of-flight (ToF) cameras has been recently
advanced, emerging as an alternative to obtaining a depth map. It provides 2D
depth maps at a video rate, but the quality of ToF depth maps is not as good as
that of a high-quality color camera. The depth map is of low-resolution and noisy,
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Fig. 1. Using the same guided interpolation pipeline, our technique gives strong results
for two tasks: (top) depth upsampling and (bottom) optical flow field interpolation.
Local or non-local methods (e.g. GF [21] and Epic-LA [35]) are usually efficient, but
suffer from limitations like copying texture from the color guidance (green arrows) and
inability to interpolate pixels in a distance (green rectangle). Methods using compli-
cated models and global optimization (e.g. AR [43]) can obtain high quality results,
but are often rather slow in computation. Our method, with a unified framework for
both problems, is 1000× faster than AR [43] and even faster than local methods, while
yielding competitive results when compared with state-of-the-art task-specific methods.

and thus a post-processing for depth upsampling is usually required to enhance
the quality of depth maps. Over the years, numerous approaches for optical flow
estimation have also been developed, but several challenging issues still remain,
including large displacements, non-rigid fine motion, large occlusion, and flow
boundaries. To address these issues, modern optical flow approaches often use a
discriminative descriptor (or patch) matching to estimate sparse or quasi-dense
motion matches. These important anchor points are used to interpolate a dense
flow map, which is then embedded into subsequent optimization procedures.

One prevailing strategy for both depth upsampling and motion field interpo-
lation is via a guided interpolation that uses an associated high-quality color im-
age, exploiting the correlation between the color guidance and the depth/motion
data. For depth upsampling, many methods based on the guided interpolation
have been proposed with either local or global formulations [21, 43, 10, 12, 17, 22,
28–30, 34, 32]. Similarly, the guided motion field interpolation has been actively
adopted as a key element in state-of-the-art optical flow approaches [35, 6, 39, 14,
26, 25, 8]. Though both tasks share the same goal of densifying a set of sparse in-
put data points to a full image grid, most existing interpolation approaches have
been developed in isolation, tailored to either the depth upsampling or motion
densification tasks due to different characteristics of two data sets. For instance,
ToF depth observations are noisy but regularly distributed in the high-resolution
image grid, while sparse motion matches after outlier removal are typically reli-
able but highly scattered with a varying density of valid motion data across an
image. In addition, existing interpolation methods are usually complicated and
computationally inefficient.
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We propose a unified approach to cast the fundamental guided interpolation
(or densification) problem for both depth and motion data into a hierarchi-
cal, global optimization framework. Leveraging a recent fast global smoothing
(FGS) technique [31] based on a weighted least squares (WLS) formulation [16],
our method progressively densifies the input data set by efficiently performing
a cascaded, guided global interpolation (or smoothing). While most existing ap-
proaches for depth upsampling and motion interpolation primarily rely on the
color guidance image, the proposed method alternates the color image and an
interpolated intermediate depth or flow map as the guidance. As a result, our
cascaded scheme effectively addresses the potential structure inconsistency be-
tween the sparse input data and the guidance image, while preserving depth or
motion discontinuities. To prudently select reliable new data points to augment
the input sparse data, we evaluate the consensus between the interpolated data
points using guidances and the data points from a spatial interpolation. Fig. 1
shows example results from our method. The contributions of this paper include:

– We propose a general fast guided interpolation (FGI) approach for both
1) noisy but regularly distributed depth maps and 2) typically reliable but
highly scattered motion data.

– The proposed method successfully tackles several challenges such as texture-
copy artifacts and loss of depth discontinuities in depth upsampling, and also
large occlusions and motion boundaries in optical flow through a cascaded,
guided global interpolation framework with alternating guidances.

– It achieves quantitatively competitive results on both tasks, while running
much faster than state-of-the-art methods designed specifically for depth
upsampling (over 600× faster) or motion interpolation (over 2× faster).

– Our technique is also generally applicable to other edge-aware filters such as
the guided filter [21], and is shown to improve their interpolation quality.

1.1 Related Work

We review related work on depth upsampling and motion interpolation based on
the guided interpolation. Other interpolation tasks (e.g., spline fitting or single
image super-resolution) without a guidance signal are beyond this paper’s scope.

Depth upsampling: In an early work, Diebel and Thrun [12] cast a depth
upsampling problem into a MRF formulation and solved it using a conjugate
gradient method, but it tends to generate oversmooth results and is also sensi-
tive to noise. Lu et al. [29] proposed an improved MRF-based depth upsampling
method, but it is computationally expensive due to a complex global optimiza-
tion. In [34], a non-local means (NLM) regularization term was additionally used
in the MRF optimization. Ferstl et al. [17] defined the depth upsampling as a
convex optimization problem using a high-order regularization term, called total
generalized variation (TGV), which enforces piecewise affine results. An adaptive
color-guided auto-regressive (AR) model [43] was proposed by formulating the
depth upsampling task into a minimization of AR prediction errors, producing
satisfactory results on real depth data. As filtering-based approaches, the joint bi-
lateral upsampling (JBU) [22] was proposed to upsample a low-resolution depth
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map by applying the bilateral filtering [38] with a guidance of a high-resolution
color image. Afterwards, numerous filtering-based methods have been proposed
using edge-aware filtering techniques, e.g. guided filter (GF) [21], cross-based
local multipoint filter (CLMF) [30], and joint geodesic filter (JGF) [28]. The
weighted mode filter (WMF) upsamples a low-resolution depth map by estimat-
ing a dominant mode from a joint histogram computed with an input depth data
and a color guidance image [32]. One interesting work on devising a noise-aware
filter [10] for depth upsampling took into account an inherent noisy nature of
a depth map, preventing undesired texture-copy artifacts in the output depth
map. Recently, Shen et al. [36] dealt with inconsistent structures existing in a
pair of input signals e.g. NIR and RGB images with the concept of mutual-
structure. But, this method focuses on the tasks such as joint restoration rather
than tackling specific challenges in depth upsampling or motion interpolation,
where the input data points are highly sparse.

Motion field interpolation: Modern optical flow algorithms have often
used an interpolated motion data at an intermediate step for dealing with large
displacement optical flow estimation. A set of sparse, reliable correspondences,
first computed using a discriminative descriptor (or patch) matching, is interpo-
lated and used as dense inputs for subsequent optimization steps. Using a non-
local, approximated geodesic averaging or affine estimation, Revaud et al. [35]
proposed an effective sparse-to-dense interpolation scheme termed ‘EpicFlow’,
where sparse motion matches are computed from the deep matching method [39].
The interpolated output flow field was further refined through a variational en-
ergy minimization. The same interpolation and optimization pipeline was re-
cently adopted in [6] to densify reliable flow fields after outlier filtering. However,
EpicFlow solely counts on color edges detected with a structured edge detector
(SED) [13] as the guidance for its interpolation, which are prone to the known
issues of weak color boundaries or erroneous texture transferring in sparse data
interpolation. Drayer and Brox proposed a combinatorial refinement of the ini-
tial matching [14], and then applied it to modern optical flow algorithms [35, 8,
39]. They utilized sparse motion matches as an input for motion interpolation
and refinement. Though improving the flow accuracy, the whole process of [14] is
still complex and slow. A sparse-to-dense interpolation approach was also used
in [26], but a costly optimization process is involved in finding a set of initial
matches and computing an affine model independently for each pixel.

2 Image Smoothing with WLS

Our pipeline is built on edge-aware image smoothing techniques, e.g. [38, 15, 16,
21, 18, 37, 7, 31]. In this paper, we choose the weighted least squares (WLS) for-
mulation [16] as our fundamental engine based on the two considerations: (1) it
uses a global optimization formulation that overcomes the limitation (e.g. halo
artifacts) of edge-aware local filters [21, 18, 30] in the smoothing process; (2)
the recent proposed fast WLS solver [31] shows comparable runtime to fast lo-
cal filters. Such favorable properties allow us to exploit it with full extent in a
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Color guidance WLS Our result Ground truth Color guidance WLS Our result Ground truth

Depth Optical flow

Fig. 2. Limitations of the WLS formulation [31] in depth upsampling (left) and motion
match interpolation (right). Spurious structures mistakenly transferred from the color
guidance are clearly visible in both cases, while our interpolator generates interpolation
results that resemble the ground truth. (Best viewed in electronic version.)

hierarchical, multi-pass framework, meeting our requirements in terms of accu-
racy and efficiency, which would not be practical previously. Besides WLS, our
framework is generally applicable to other edge-aware smoothing filters (Sec. 4).

In a WLS based smoothing approach, given an input image f and a guidance
image g, an output image u is computed by minimizing the objective E as:

E(u) =
∑
p

(up − fp)2 + λ
∑
p

∑
q∈N4(p)

wp,q(g)(up − uq)2, (1)

where N4(p) consists of four neighbors for p. wp,q is a spatially varying weight
function measuring how similar two pixels p and q are in the guidance image g.
The weight λ balance the data term and the regularization term. This objective
can also be written in a matrix/vector form:

E(u) = (u− f)>(u− f) + λu>Au . (2)

The matrix A = D −W is usually referred to as a Laplacian matrix. D is a
degree matrix, where D(i, i) =

∑
j∈N(i) wi,j(g), and D(i, j) = 0 for i 6= j. W is

an adjacency matrix defined with {wi,j|j∈N(i)}. Eq. (2) is strictly convex, and
thus u is obtained by solving a linear system with a large sparse matrix as

(E + λA)u = f , (3)

where E is an identity matrix. Though several methods [23, 24] have been pro-
posed for efficiently solving the linear system Eq. (3), they are an order of magni-
tude slower than the local filters [18, 21]. Recently, a fast global smoothing (FGS)
technique [31] was proposed as an efficient alternative to compute the solution
of Eq. (2). The key idea is to approximate the large linear system by solving
a series of 1D sub-systems in a separable way. The 1D sub-systems are defined
with horizontal or vertical passes for an input 2D image. It has an efficient so-
lution obtained by the Gaussian elimination algorithm. Specifically, its runtime
for filtering a 1M pixel RGB image on a single CPU core is only 0.1s [31].

Limitations of WLS in interpolation. The WLS based formulation was
originally proposed for computational photography and image processing appli-
cations. We found that directly applying it to depth or motion interpolation,
where an input data is highly sparse and/or noisy, does not yield an excellent
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Fig. 3. Our fast guided interpolation (FGI) framework, taking sparse input data dl,
its mask ml and a color guidance cl as inputs for the level l. The guided interpola-
tion/filtering with alternating guidances and consensus checking iterate a few times in
a hierarchical way to get to the result at final resolution. In contrast, existing methods
e.g. [43] directly take the bicubic estimation and the color guidance to infer the final
results in a single pass joint filtering/optimization manner (denoted in dashed lines).

result. Fig. 2 shows the interpolation result based on the single scale WLS. It
is because the one-pass optimization at a single scale is insufficient for inter-
polating highly sparse and noisy data with very low-density regions (e.g. 16×
upsampling for depth data, namely only one raw depth value is available in a
16× 16 = 256 region in the targeted full scale). This signal recovery instability
caused by the highly deficient data observation matrix can also be understood
from a theoretical perspective of the conditioning of linear systems [19, 43]. In
such a case, large gaps between observed sparse data points are forced to be
filled by primarily counting on the structures in the color guidance. However,
the color guidance is not always faithfully correlated with the data to be inter-
polated, thus often producing texture-copy artifacts or over-smoothing around
weak edges.

3 Fast Guided Global Interpolation

As shown in Fig. 2, a single-pass WLS-based optimization often fails to generate
high-quality interpolation results, when the input data is too sparse or scattered
on a full image grid. To address these issues especially in depth upsampling and
motion interpolation tasks in a unified manner, we propose a hierarchical, multi-
pass guided interpolation framework. Specifically, we address the challenges in
an iterative coarse-to-fine manner that divides the problems into a sequence of
interpolation tasks with smaller scale factors, and gradually fills the large gap
between the sparse measurement and the dense data.

Suppose the number of levels used in the hierarchical structure is L. We start
the guided interpolation from the coarsest level (l = L − 1), and progressively
generates reliable data points to densify the sparse input data. This process is
repeated until the finest level (l = 0) is reached. Fig. 3 illustrates the procedure
of the proposed framework at the lth level. At each level, we first interpolate



Fast Guided Global Interpolation for Depth and Motion 7

the sparse input dl
4 by performing the WLS optimization using a corresponding

color image cl as the guidance and also a simple bicubic interpolation technique,
respectively. Then, another WLS is applied with the interpolated dense data d∗
from the first WLS interpolation output as the guidance and the bicubic inter-
polated map as the input signal. Finally, we select reliable points via consensus
checking, and pass the augmented data points to the next level l − 1.

For a sparse data input, we use a mask ml (l = 0, ..., L−1) to denote the data
observation or constraint map whose elements are 1 for pixels with valid data
and 0 otherwise. At each level, we upsample the signal by a factor of 2. We also
pre-compute a downsampled color image cl for each level from a high resolution
color image c such that c0 = c, cl = cl−1 ↓ (l = 1, 2, . . . , L− 1), where ↓ denotes
a downsampling operation by a factor of 2. A sparse input at the starting level
(l = L − 1) can be depth data from a low resolution depth map or irregular
sparse motion matches mapped from descriptor matching methods (e.g. [39]).

3.1 Cascaded Filtering with Alternating Guidances

For a progressively densified input data dl at a certain level l, our technique
performs two cascaded WLS by alternating the color image cl and an interme-
diate interpolated depth or flow map d∗ as the guidance (see Fig. 3). For the
first WLS-based interpolation using the color guidance, the sparse input data
dl is quickly densified at the current scale. In this pass, the sparse data is in-
terpolated in accordance with the color structures. This process may introduce
spurious structures to the interpolated data d∗ (e.g. texture-copying effects) due
to inconsistent structures between the color and sparse input depth/motion data,
but d∗ interpolated from the sparse input data dl contains much weaker texture
patterns than the original guidance signal cl (see d∗ in Fig. 4). Therefore, we
propose to append the second modified WLS smoothing step using the newly
interpolated data d∗ as the guidance. During this second pass, the WLS opti-
mization is solved with a more faithful guidance of the same modality (i.e. d∗
rather than cl), while being subject to dense data constraints from the bicubic-
upsampled data d◦. We find this cascaded scheme effectively addresses the po-
tential structure inconsistency between the sparse input data and the guidance
image, while preserving true depth or motion discontinuities (see Fig. 2 & 4).
1st WLS using cl as the guidance. When the sparse input data dl and the
guidance color image cl are given at the lth level, the first WLS step, minimizing
the following objective, is invoked to obtain an intermediate dense output d∗:

E(d∗) = (d∗ − dl)
>Ml(d∗ − dl) + λ1 d>∗ Acld∗ , (4)

where Ml is a diagonal matrix with its elements given by the mask map ml. Acl

denotes the spatially varying Laplacian matrix defined by the guidance image cl
at the lth level. Unlike the image smoothing task using a dense input in (2), the
input data dl is sparse, and thus directly minimizing it in a separable manner

4 Hereinafter we denote the corresponding vectorized form of d as d.
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Fig. 4. Comparison of the 1D scanline results obtained by our cascaded WLS steps
over three levels l = 2, 1, 0, and that obtained by the one-pass WLS. In all the subplots
(right), the corresponding color signal is in olive green, while other kinds of signals are
in different colors. The same is observed for optical flow interpolation.

leads to unstable results. Instead, as in [31, 18], we compute the solution d∗ with

d∗(p) =
((E + λAcl)

−1dl)(p)

((E + λAcl)
−1ml)(p)

, (5)

where ml denotes the corresponding vectorized form of ml. The WLS is applied
twice to dl and ml, respectively.
2nd WLS using d∗ as the guidance. Here, the input data d◦ is obtained
by a bicubic interpolation of dl at the lth level, and the guidance signal is the
intermediate interpolated data d∗. A similar objective is minimized as:

E(d̃l) = (d̃l − d◦)
>(d̃l − d◦) + λ2d̃

>
l Ad∗ d̃l , (6)

where Ad∗ denotes the Laplacian matrix defined by d∗. Note that the input data
d◦ is dense in this pass, while dl is sparse in the 1st WLS.

To give more intuitions of the proposed cascaded filtering process with al-
ternating guidances, we show in Fig. 4 the processing results for one scanline
(extracted from real images in Fig. 2): d∗ and d̃l from the 1st and 2nd WLS steps,
iterating from l = 2 down to l = 0. Over the iterations, both of our intermediate
guidance signal d∗ and the 2nd WLS output d̃l are progressively improved, with
the final output d̃0 close to the ground truth. In contrast, the result of applying
the one-pass WLS contains spurious color structures (though attenuated), which
are mistakenly transferred from highly-varying texture regions.

It is worth noting the difference from the rolling guidance filter (RGF) [44],
though using progressively improved guidance signals appears somewhat related.
First, they are developed for different objectives: RGF focuses on removing small
structural details for image smoothing, but our FGI tackles notorious interpola-
tion issues such as inconsistent structures between a color guidance image and a
sparse depth or flow map. Second, RGF needs to carefully set the target scale pa-
rameter for its Gaussian prefiltering, but inconsistent structures across different
signal modalities are often not small. Third, RGF has the limitation of blunting
image corners, while FGI preserves important depth or motion structures.
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3.2 Consensus-Based Data Point Augmentation

Thanks to the hierarchical interpolation framework, the proposed algorithm is
not required to generate a fully dense data set for any intermediate level, which
may propagate some unreliable data points to the next level otherwise. There-
fore, we can be prudent in selecting reliable new data points to augment the input
sparse data set dl. As the last consistency checking in this current iteration l, we
evaluate the consensus between the interpolated data points d̃l obtained from
alternating guidance filtering and the data points d◦ from a direct bicubic inter-
polation. In fact, without using the color guidance in the spatial interpolation
process, d◦ is free from color texture copying artifacts, though it has difficulties
in restoring sharp edges/structures. Therefore, if we impose a consensus check-
ing in the interpolated data between d◦ and d̃l, those unwanted color texture
patterns in d̃l will not be chosen. This cautious design helps preventing those
new data points of low confidence (e.g. undesired texture-copy patterns) from
contaminating the next interpolation process.

Our consensus-based data point augmentation proceeds in a non-overlapping
patch fashion. For each pixel q in the patch we check the consistency between
the interpolated data points d̃l and the bicubic upsampled data points d◦ as
δ(q) = ‖d̃l(q)−d◦(q)‖. After the consensus checking we pick the most consistent
data location in the current patch (i.e. with the smallest δ(q) and also smaller
than a preset threshold τ) and add this location to the data mask map m̃l. Fig. 3
illustrates this data augmentation process by denoting new data points in ma

l

as green triangles and initial sparse data points ml as red dots. By selecting
at most one new data point in each patch, we intend to avoid propagating the
interpolation error to the next level. We use 2× 2 patches in this paper.

3.3 Computational Complexity

The computational cost is mainly from solving the WLS objective in (3), as other
parts have marginal computational overhead. To compare the complexity of our
method with a single scale WLS based interpolation, we first count how many
times the linear system is solved in both methods. In each level, the WLS based
guided interpolation of (4) requires solving the linear system twice as in (5)–
one for the input signal and one for the binary index signal, after which the final
solution is obtained by an element-wise division . The WLS of (6) needs to solve
the linear system once as its input d◦ is dense. Thus, the linear system solver
is applied 3 times at each level of our method. Since the interpolation grid is
progressively rescaled with a factor of 2, our hierarchical framework increases the
total computational complexity at most by 1/(1 − 1/4) = 4/3. One can expect
our hierarchical approach to have (2+1)×4/3 = 4 passes of executing the linear
system solver, while the single scale WLS based interpolation needs 2 passes.

4 Experiments

We perform our experiments on a PC with Intel Xeon CPU (3.50 GHz) and 16
GB RAM. The implementation was in C++. For minimizing the WLS objective
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Fig. 5. The effect of each component of our pipeline evaluated on depth upsampling.

Table 1. Quantitative comparison (MAD) on ToF-like synthetic datasets [43]. Best
results are in bold, and the second best are underlined.

Method
Art Book Moebius Reindeer Laundry Dolls Average

2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x

Bicubic 3.52 3.84 4.47 5.72 3.30 3.37 3.51 3.82 3.28 3.36 3.50 3.80 3.39 3.52 3.82 4.45 3.35 3.49 3.77 4.35 3.28 3.34 3.47 3.72 3.35 3.49 3.76 4.31
JGF [28] 2.36 2.74 3.64 5.46 2.12 2.25 2.49 3.25 2.09 2.24 2.56 3.28 2.18 2.40 2.89 3.94 2.16 2.37 2.85 3.90 2.09 2.22 2.49 3.25 2.17 2.37 2.82 3.85
GF [21] 1.49 1.97 3.00 4.91 0.8 1.22 1.95 3.04 1.18 1.90 2.77 3.55 1.29 1.99 2.99 4.14 1.28 2.05 3.04 4.10 1.19 1.94 2.80 3.50 1.21 1.85 2.76 3.87
CLMF0[30] 1.19 1.77 2.95 4.91 0.90 1.48 2.38 3.36 0.87 1.44 2.32 3.3 0.96 1.56 2.54 3.85 0.94 1.55 2.50 3.81 0.96 1.54 2.37 3.25 0.97 1.56 2.51 3.75
MRF+nlm[34] 1.69 2.40 3.60 5.75 1.12 1.44 1.81 2.59 1.13 1.45 1.95 2.91 1.20 1.60 2.40 3.97 1.28 1.63 2.20 3.34 1.14 1.54 2.07 3.02 1.26 1.68 2.34 3.60
TGV[17] 0.82 1.26 2.76 6.87 0.50 0.74 1.49 2.74 0.56 0.89 1.72 3.99 0.59 0.84 1.75 4.40 0.61 1.59 1.89 4.16 0.66 1.63 1.75 3.71 0.62 1.16 1.89 4.31
AR [43] 0.76 1.01 1.70 3.05 0.47 0.70 1.15 1.81 0.46 0.72 1.15 1.92 0.48 0.80 1.29 2.02 0.51 0.85 1.30 2.24 0.59 0.91 1.32 2.08 0.55 0.83 1.32 2.19
WLS [31] 1.34 1.90 2.95 4.63 1.25 1.70 2.39 3.29 1.34 1.92 2.66 3.56 1.47 2.05 2.82 4.09 1.11 1.55 2.24 3.49 1.34 1.85 2.55 3.50 1.31 1.83 2.60 3.76
FGI (ours) 0.79 1.17 2.01 3.65 0.58 0.80 1.13 1.75 0.58 0.80 1.15 1.71 0.65 0.89 1.36 2.37 0.65 0.97 1.49 2.43 0.67 0.91 1.31 1.95 0.65 0.92 1.41 2.31

function, we use the FGS [31] solver provided on its project site [1] (also possible
to use its OpenCV 3.1 function [2]). We will make our code publicly available. In
all the experiments, we fix the smooth weights λ1 = 30.02, λ2 = 10.02, and the
consensus checking threshold τ = 15(depth)/1(motion). For the affinity weight
wp,q(g) in (1), we follow [31] to set wp,q(g) = exp(−‖gp−gq‖/σ) with σ = 0.005.

4.1 Depth Upsampling Results

Pipeline Validation. First, we present a quick study on our pipeline design
given in Sec. 3 on the depth upsampling task with the dataset provided by [43].
Starting from the single pass WLS based interpolation, we gradually add in new
features until getting to our full pipeline. The comparison of the average error
in the upsampled depth maps is plotted in Fig. 5. As can be seen, adding the
cascaded filtering with one more WLS using alternating guidance in the single
scale leads to lower errors in depth upsampling. Note, however, the gain from
this step is almost fixed for all upsampling factors. To handle more challenging
cases with high upsampling rates (e.g. 8 or 16), employing the hierarchical pro-
cess yields better results, which meets our expectation. The last module tested is
the consensus-based data point augmentation. This strategy further reduces the
upsampling errors. Overall, our whole pipeline obtains much better depth up-
sampling results than the direct single pass WLS interpolation (see also Fig. 2).

We now evaluate the performance of depth upsampling with different edge-
aware smoothing filters. We take the popular GF [21] for this test. The average
error of a single pass interpolation with GF are 1.31/1.54/2.04/3.12 for upscaling
rate 2/4/8/16. When using our pipeline with GF (i.e. replacing all the WLS steps
with GF), the results are 1.06/1.21/1.63/2.59. The improvements confirm that
our framework is generic to other edge-aware filtering techniques. We choose
FGS [31] as our fundamental block for its best efficiency and accuracy.
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Table 2. Average runtime (in sec) to upsample by 4× an input depth map 272× 344.

Method MRF+nlm[34] TGV [17] AR [43] GF [21] CLMF0 [30] WLS [31] FGI (ours)
Runtime(s) 170 420 900 1.26 2.4 0.32 0.65

Ground truth/Color MRF+nlm [34] JGF [28] TGV [17] AR [43] FGI(ours)

Fig. 6. Visual comparison on 8× upsampling results and error maps of Art and Moebius
from the ToF-like synthetic dataset [43]. (Best viewed in electronic version.)

Results on ToF-like synthetic datasets [43]. We evaluate the proposed FGI
method on a ToF depth upsampling task using the synthetic datasets provided
by [43]. They used six datasets from Middlebury benchmarks [3] to simulate
ToF-like depth degradation by adding noise and performing downsampling with
four different scales, i.e. 2, 4, 8, 16. Our FGI uses L = 1, 2, 3, 4 levels architec-
ture for four different upsampling scales. Table 1 reports the Mean Absolute
Difference (MAD) between ground truth depth maps and the results by various
depth upsampling methods including ours. The proposed method clearly out-
performs several existing methods like CLMF0 [30], JGF [28], MRF+nlm [34]
and TGV [17] that used different color-guided upsampling or optimization tech-
niques. Our method also yields much smaller error rates than the single-pass
WLS interpolation, validating the effectiveness of our hierarchical structure. Fi-
nally, when compared with the state-of-the-art AR method [43] over all test
image sets for challenging higher upsampling rates (8, 16), our FGI actually
yields more accurate depth maps on half of them, i.e. Book, Moebius, and Dolls.
Though slightly worse than AR [43] in terms of the MAD, our FGI is the second
best among all leading methods, and runs over 1000× faster than AR [43].

Table 2 summarizes the runtime of various methods whose source codes are
available and timed on our PC. Generally, the methods using global optimiza-
tions e.g. MRF+nlm [34], TGV [17] and AR [43] come with much higher compu-
tational costs. GF [21] and CLMF0 [30], as local filtering methods, take less time
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Table 3. Quantitative results (MAD in millimeter) on the real ToFMark datasets [4].

Bicubic JBU [22] GF [21] JGF [28] TGV [17] FGI (ours)
Books 16.23 16.03 15.74 17.39 12.36 13.03
Devil 16.66 27.57 27.04 19.02 14.68 15.09
Shark 17.78 18.79 18.21 18.17 15.29 15.82

JGF [28] TGV [17] Ours JGF [28] TGV [17] Ours

Fig. 7. Depth upsampling results and error maps of Books and Devil in ToFMark [4].

to upsample a depth map, but they are still slower than our fast optimization-
based method. The single-pass WLS with the FGS solver [31] takes only 0.32s.
Our FGI also takes advantage of the FGS solver [31] and is fast. Since we use dif-
ferent numbers of levels for different upsample rates, its runtimes vary slightly
for them, i.e. 0.51/0.65/0.69/0.73s for upscaling rate 2/4/8/16. The runtime
results of the single-scale WLS and our FGI are also consistent with the com-
plexity analysis in Sec. 3.3. Another efficient method JGF [28] reports 0.33s in
upsampling 8× to 0.4M depth images, but FGI takes 0.19s on the same size.

Fig. 6 shows two visual comparisons of depth maps upsampled by different
methods on this synthetic dataset. The results of MRF+nlm [34] fail to recover
the depth for the thin structures in the Art case and show texture-copy artifacts
in the Moebius case. The depth maps by JGF [28] contain noticeable noise as
it is designed without any consideration of the noise issue from depth sensors.
A separate noise removal process may be applied before JGF to solve the noise
problem while our method (like most leading depth upsampling methods) does
not require such a separate pre-processing. It is clearly observed that among all
methods compared, AR [43] and our FGI recover accurate depths in homoge-
neous regions and along depth boundaries, and preserve thin structures better
than other methods. More visual results are given in the supplemental materials.

Results on the ToFMark datasets [4]. We further test on the ToFMark
datasets [4] provided in the TGV paper [17] that contain three real ToF depth
and intensity image pairs i.e. Books, Devil, Shark. The ToF depth maps of spatial
resolution 120×160 are real depth values in millimeter (mm), while the intensity
images are of size 610× 810. Table 3 presents the quantitative results measured
by MAD in mm. Our method outperforms prevailing methods like JBU [22],
GF [21], JGF [28], and obtains performance quite close to TGV [17]. Fig. 7 shows
the visual comparison of different methods. The depth recovered by JGF [28]
again exhibits noticeable noise, while the results of TGV [17] and ours are much
sharper and cleaner, but our FGI runs about 650× faster than TGV [17].
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Table 4. Performance comparison (EPE) on the Sintel training set [9].

Method Clean Final Runtime Method Clean Final Runtime
Epic-NW [35] 3.17 4.55 0.80s WLS [31] 3.23 4.68 0.21s
Epic-LA [35] 2.65 4.10 0.94s FGI (ours) 2.75 4.14 0.39s
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Ground truth Ground truth Ground truth

(a) Weak edge in color guidance (b) Sparsely scattered points (c) Extrapolation

Fig. 8. Optical flow fields interpolated by our method and Epic-LA [35] on the Sintel
datasets on three challenging cases. Please refer to Sec. 4.2 for more analysis.

4.2 Motion Field Interpolation for Optical Flow

We evaluate our motion interpolator using the MPI Sintel dataset [9], a modern
optical flow evaluation benchmark with large displacement flow and complex
non-rigid motions. The evaluation is conducted on two types of rendered frames,
i.e. clean pass and final pass, where the final pass includes more complex effects
such as specular reflections, motion blur, defocus blur, and atmospheric effects.
We evenly sampled 331 frames from the whole training set and used them for
evaluation and the rest of the frames were used to choose the best parameters.
The number of levels L in the hierarchical structure is fixed to 3.

To generate a set of sparse matches, we adopt a leading descriptor-based
matching algorithm – DeepMatching [39], one of the top methods on the Sin-
tel benchmark. We perform the same match pruning step as EpicFlow [35] to
remove unreliable matches, so the set of sparse matches used in our method
and EpicFlow are exactly the same. After the pruning step, we usually can get
5000∼6000 reliable matches on 436×1024 color frames. This motion interpolation
task from sparse data with about 1% density is challenging, especially consid-
ering the data points are not uniformly distributed. Note that besides [39], our
framework is flexible to take in other choices of reliable motion matches e.g. [6].

For performance comparison on the 331 frames , we test with the single pass
WLS [31], and also with both the locally-weighted affine (LA) and Nadaraya-
Watson (NW) interpolators of EpicFlow [35], denoted as Epic-LA and Epic-NW.
Table 4 reports the performance of these methods. Compared with the single pass
WLS, our FGI shows improvements in the sparse-to-dense interpolation results,
again demonstrating the effectiveness of our pipeline. Our method achieves a
quantitative performance better than EpicFlow-NW and very close to EpicFlow-
LA, while reducing the runtime of the interpolation process by over 50%.
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Table 5. Performance comparison (EPE) on the Sintel testing benchmark [9].

FlowFields[6] EpicFlow[35] PH-Flow[42] FGI (ours) Deep+R[14] SPM-BP[27] DeepFlow[39] PCA-Layers[40] MDP-Flow2[41]

Clean 3.748 4.115 4.388 4.664 5.041 5.202 5.377 5.730 5.837
Final 5.810 6.285 7.423 6.607 6.769 7.325 7.212 7.886 8.445

Fig. 8 compares optical flow fields interpolated by our method and EpicFlow-
LA. The EpicFlow method uses the color edges detected by a state-of-the-art
technique [13] as a guidance signal, but it is still unavoidable to produce un-
desired results with missing motion boundaries around weak color boundaries
(Fig. 8a). Furthermore, the motion interpolation used in the EpicFlow involves
finding a set of nearest matches (e.g. 100 matches) and generating a Voronoi di-
agram, and such hard decisions or assignments often tend to produce patch-wise
discretization artifacts (Fig. 8b). To address these issues, a variational energy
minimization is applied as a post-processing, but such problems are not fully
resolved due to the local minima of the variational approach. More seriously, in
extremely low density regions, it often fails to densify the flow map properly due
to its essentially localized, approximated geodesic propagation strategy (Fig. 8c).
In contrast, our approach does not detect color edges to directly guide the inter-
polation process, and also does not need an extra variational post-processing5

thanks to the global optimization formulation using a hierarchical strategy.
Table 5 reports the quantitative evaluation on the Sintel test set [5]. On the

benchmark, our FGI ranks the 8th for both clean and final passes among all 63
methods listed at the time of submission (Mar. 2016). Recent optical flow algo-
rithms [35, 6, 14, 40] use sparse matching or dense approximate nearest neighbor
fields to handle large displacement and usually perform better than conventional
methods [41]. The full version of EpicFlow in this table takes the advantage of
local-weighted affine (LA) fitting and a variational energy minimization, per-
forming slightly better than our FGI. However, unlike these optical flow specific
methods [35, 6, 14, 40], our proposed FGI is a generic, fast interpolator and does
not need an extra post processing like variational optimization [35, 6].

5 Conclusion

This paper presented a hierarchical, cascaded WLS-optimization based tech-
nique that handles low-resolution and noisy depth upsampling and sparse motion
match densification in a unified manner. Compared with the existing methods
tailored specifically for one of these different tasks, our FGI achieves leading
functional quality on benchmark evaluations as well as a highly efficient runtime
over those top performers on each task. We used a basic WLS formulation as
our key engine here to demonstrate its strength, but more robust sparse norms
or an adaptively aggregated data term [31] can also be employed. Moreover,
our technique has a potential advantage for further acceleration on GPUs and
FPGA [33, 20, 11], offering a common engine for guided interpolation.

5 We find adding it in FGI gives only marginal accuracy gain, unlike in EpicFlow [35].
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