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ABSTRACT

Adaptive normalized cross-correlation (ANCC) cost function works
well between images under photometric distortions, but its heavy
computational burden often limits its applications. To overcome this
limitation, this paper proposes a robust and efficient computational
framework, called ANCC flow, designed for establishing dense cor-
respondences between images under severe photometric variations.
We first simplify the weight of ANCC in an asymmetric manner by
considering a source image weight only. It is then efficiently com-
puted by applying constant-time edge-aware filters without loss of
its matching accuracy. Additionally, to deal with a large discrete
label space effectively, which is a challenging issue in a flow field
estimation, we propose a randomized label space sampling strategy
similar to PatchMatch filer (PMF) optimization. The robustness of
the asymmetric ANCC and the cost filter is further enhanced through
an evolving weight computation, where a flow field computed in a
previous iteration is utilized to build current edge-aware weights.
Experimental results demonstrate the outstanding performance of
ANCC flow in many cases of dense correspondence estimations un-
der severe photometric and geometric variations.

Index Terms— adaptive normalized cross-correlation, Patch-
match filter, dense correspondence, stereo matching

1. INTRODUCTION

In many computer vision and computational photography applica-
tions, images captured under different imaging modalities are pop-
ularly used to overcome their inherent limitations, such as flash and
no-flash images [1], color and dark flash images [2], blurred images
[3, 4], and images under different radiometric conditions [5].

To realize these tasks, establishing dense correspondences be-
tween image pairs across photometric variations is an essential prob-
lem. Conventional methods for estimating depth [6] or optical flow
fields [7, 8], in which input images are acquired in a similar imag-
ing condition, have been dramatically advanced in recent studies. In
these approaches, a matching fidelity term was not a critical issue,
as they assume that multiple images share a similar visual pattern.
Instead, they focus on powerful labeling optimizers, e.g., graph-
cut (GC) [9], PatchMatch [10], cost volume filter [11], non-rigid
dense correspondence (NRDC) [12], and Patchmatch filter (PMF)
[13]. However, for images taken under different modality condi-
tions, they cannot deal with severe photometric variations without
suitable matching cost functions or descriptors [14]. In those cases,
robust cost functions designed to deal with modality variations are
one of the most important issues to yield a reliable matching quality
[15]. Unfortunately, conventional gradient-based descriptors such
as scale invariant feature transform (SIFT) [16] and DAISY [17], as
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Fig. 1. Comparison of ANCC flow with existing approaches. (a), (b)
stereo images, and depth maps with (c) NCC+GC, (c) ANCC+GC,
and (d) ANCC flow. ANCC flow runs 60× faster than ANCC+GC
while providing a lower error rate (5.11% vs. 12.24%).

well as intensity comparison-based binary descriptors such as binary
robust independent elementary features (BRIEF) [18], have shown a
limited performance in matching under photometric variations [15].

To overcome these limitations, a number of methods have been
proposed, and could be categorized as feature-based and area-based
approaches. Schechtman and Irani introduced local self-similarity
(LSS) descriptor [19], and achieved impressive results in object de-
tection and retrieval. Based on the LSS [19], several methods applied
it to multi-modal registration problems [20, 21, 15]. These feature-
based approaches have shown satisfactory results in a robust manner,
but their discriminative power is limited, leading to difficulty of ac-
curate matches especially on boundary regions.

Among area-based approaches, mutual information (MI)-based
cost function is used for a registration of multi-modal medical im-
ages [22]. As a pioneering work, the cross-correlation (CC)-based
cost function has been popularly used for multi-modal image corre-
spondences, e.g., normalized CC (NCC) [6], adaptive NCC (ANCC)
[23], Mahalanobis distance CC (MDCC) [24], and robust selective
normalized CC (RSNCC) [25]. Although they provide satisfactory
results, when the search space is large, their computational time is
also inevitably high [15]. When incorporated with an global energy
function and solved by a global optimizer [9], their complexity fur-
ther dramatically increases.

In this paper, our approach is focused on the ANCC cost func-
tion [23], which has shown satisfactory results on correspondences
under photometric variations, but has inherently high computational
burdens. We reformulate ANCC [23] in a robust and efficient man-
ner, and further combine it with a cost volume filtering-based opti-
mization [11, 13]. Specifically, our approach approximates ANCC
[23] by considering a source guidance weight only, which enables
us to apply constant time edge-aware filters (EAF) [26] for a fast
computation. To reduce a computational burden for large search
spaces, we further employ PMF-like random search strategy. In the
optimization procedure, by leveraging evolving guidance weights in
computing the cost function and cost volume filter, more reliable and
robust flow fields are estimated as evolving the iterations. Unlike
other methods, our ANCC flow can be easily extended to overcome
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geometric variation problems between image pairs. Fig. 1 shows
the robustness of our ANCC flow. In experiments for image pairs
under photometric and even geometric variations, our ANCC flow
outperforms conventional feature-based and area-based approaches
both quantitatively and qualitatively.

2. THE ANCC COST FUNCTION AND ITS LIMITATIONS

Let us define an image as fi : I → R for pixel i = [xi, yi]
T , where

I ⊂ N
2 is a discrete image domain. Given a pair of images fs

i and
f t
i , a dense correspondence estimation aims to assign each pixel i a

label li ∈ L = {l = [ul, vl]
T }, satisfying that fs

i+li
= f t

i .

Unlike conventional cost measures [6], an adaptive normalized
cross-correlation (ANCC) cost function deals with photometric vari-
ations between image pairs effectively, by leveraging its edge-aware
subtraction and normalization [23]. Given a pixel i and its label
candidate l, the ANCC cost function Φ(i, l) is defined between two
patches Fi for pixel i of source image fs and Fj for corresponding
pixel j (where j = i− li) of target image f t as
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∑
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(1)
where i′ ∈ Fi and j′ ∈ Fj , and weighted averages on Fi and Fj are
defined such that Gi =

∑
i′ ωi,i′fi′ and Gj =

∑
j′ ωj,j′fj′ , ωi,i′

is the normalized adaptive weight of a support pixel i′ defined on
the image. Based on the cost Φ(i, l) for all pixel i and all candidate
l ∈ L, the final flow fields are generally inferred by minimizing the
energy function with a global optimizer, e.g., graph-cut (GC) [9].

Although it provides outstanding performances, it has inherent
limitations to be applied to a general dense correspondence scenario.
Due to its computation of edge-aware weights ωs

i,i′ and ωt
j,j′ , a com-

putational time dramatically increases as a large size of support win-
dow |F| and search space |L| [23]. Furthermore, the edge-aware
weight defined on a color image only leads to texture copy problems
from the color image [27] and building non-reliable cost volumes,
which limits the matching performance.

3. THE ANCC FLOW

3.1. Overview of Our Approach
Our ANCC flow formulates a more robust energy function for flow
field estimations by intelligently combining the ANCC cost function
[23] and cost volume filter [11], which is solved very efficiently in
a unified computational framework (Sec. 3.2). Unlike conventional
ANCC [23], our approach first approximates it as only considering
a source guidance image, which enables us to apply fast EAF very
efficiently without performance loss (Sec. 3.3.1). Under constructed
cost volumes, a cost volume filtering for the optimization is followed
(Sec. 3.3.2), where the weights for adaptive support aggregation is
also re-used as one from the cost computation. To overcome a com-
putational bottleneck from a large label search space, we propose
the PMF-like search space sampling scheme. In each iteration, es-
timated flow fields is considered as a new guidance image for the
asymmetric ANCC cost computation and the cost filtering, which si-
multaneously enhances a matching quality and boosts a convergence
(Sec. 3.3.2). Fig. 2 illustrates the ANCC flow framework.

3.2. Our Computational Model
Similar to cost volume filter [11] or PMF [13], we employ a local
window-based cost aggregation scheme to provide a reliable match-
ing performance with a very low computational time. In particular,

Fig. 2. Framework of ANCC flow. Through an asymmetric ANCC,
PatchMatch filter-like optimization, and evolving guidance aggrega-
tions, it computes a reliable flow field very efficiently.

to infer li for pixel i, our approach first builds a more robust cost
volume using asymmetric ANCC cost function such that

C(i, l) =
∑

i′∈Fi

ωl
i,i′

(
1− Φ̃l (i′, l)

)
, (2)

where Fi is local neighborhood for cost aggregation, which is same
as that in (1), and it is computed for all i ∈ I and l ∈ L.

With the cost volume C(i, l), final flow field can be estimated as
winner takes-all (WTA) optimization as follows:

li = argminl∈LC(i, l). (3)

In contrast to existing cost filtering-based methods [11, 13], our
computational model is mainly different in two aspects. First, asym-
metric ANCC cost function Φ̃l(i, l) is utilized, which features that
it only considers a source guidance weight function with evolving
guidance settings. Namely, the edge-aware weights are computed
using the previously estimated flow field, which will be described
in Sec. 3.3.1. Second, cost C(i, l) is aggregated by a cost filter
with evolving guidance weight ωl

i,i′ , which will be described in Sec.
3.3.2. Note that an evolving guidance concept is first introduced in
[28], where its robustness is investigated in the image filtering. Our
approach is first attempt to apply it in stereo matching.

Our computational model for ANCC flow is designed so that
very efficient computation is feasible. A straightforward computa-
tion of (2) might be extremely time-consuming, because its com-
plexity depends on |F| and |L|. In the following, we introduce an
efficient computation scheme for minimizing the energy in (2).

3.3. Efficient Computational Solver
To reduce the computational dependency of |F|, we first reformulate
ANCC as a source guided version, which enables us to apply fast
EAF [29, 26]. Similar to PMF [13], to reduce the computational de-
pendency of |L|, our approach adopts the superpixel-based inference
model for computing cost and cost volume filter, simultaneously.

3.3.1. Asymmetric ANCC cost computation with evolving guidance

To efficiently handle large computational burden for weights in (1),
we simplify it by considering only the weights ωi,i′ from the source
patch Fi so that a fast computation using a fast EAF is feasible. It
should be noted that such an asymmetric weight approximation has
been also used in cost aggregation for stereo matching [11].

Our asymmetric ANCC cost function is first defined as

Φ̃(i, l) =

∑
i′,j′ ω

s
i,i′(f

s
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i )(f
t
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2
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2
, (4)

where Gi,j =
∑

i′,j′ ωi,i′fj′ , which means a weighted average of
fj′ ∈ Fj with a guidance image fi′ ∈ Fi.
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Algorithm 1: The ANCC Flow Framework

Input : image pair fs
i and f t

i .
Output : dense correspondence field li ∈ L.
1 : Define the label space L as in Sec. 3.4
2 : Decompose the image fs

i into superpixels Sf .
3 : Assign an initial label lm randomly to each superpixels Sm.

while not converged do
for m = 1 : M do

4 : Propagate a set of labels Lp randomly sampled from
neighboring segments to the segment Sm.

5 : Compute Gl
i and Gl

i2 for all pixel i.
for l ∈ Lp do

6 : Construct a cost slice fj from i with label li.
7 : Compute Gl

i,ij , Gl
i,j , and Gl

i,j2 with l.

8 : Estimate Φ̃l(i, l) using (4).
9 : Estimate C(i, l) using (2) with l.

end for
10 : Update an intermediate flow l with WTA in (3).
11 : Randomly sample q ∈ Sm for defining Lq .
12 : Update C(i, l) by following Step 6− 9 for all l ∈ Lq .
13 : Update an intermediate flow l with WTA in (3).

end for
end while

With some arithmetic derivations, (4) can be decomposed as

Gs
i,ij − Gs

i · Gs
i,j√

Gs
i2

− (Gs
i )

2 ·
√

Gs
i,j2
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i,j)

2
, (5)

where Gi2 =
∑

i′ ωi,i′f
2
i′ , Gi,ij =

∑
i′,j′ ωi,i′fi′fj′ , and Gi,j2 =∑

i′,j′ ωi,i′f
2
j′ . Similar to efficient computation scheme in [15], (5)

can be computed very efficiently using a constant-time EAF [30, 26].
Furthermore, to improve a robustness and discriminative power,

our final cost function makes use of an evolving guidance aggrega-
tion in a way that the previously estimated flow field is considered
as a guidance for the adaptive support aggregation in (5) such that

Φ̃l(i, l) =
Gl
i,ij − Gl

i · Gl
i,j√

Gl
i2

− (Gl
i)

2 ·
√

Gl
i,j2

− (Gl
i,j)

2
, (6)

where Gl
i,ij , Gl

i2 , Gl
i,j2 , Gl

i , and Gl
i,j are computed with ωl

i,i′ , which
is defined as edge-aware weights from previously estimated label l.

3.3.2. PMF based cost optimization

Our asymmetric ANCC cost in (6) can be computed very efficiently
compared to original ANCC in (1), but its computational time still
depends on search range size |L|. To overcome this limitation, we
employ label search space sampling strategy in PMF [13]. In the
optimization, for the evolving guidance aggregation, our approach
utilizes the previous flow field to construct edge-aware weights. We
first decompose the image f as superpixel Sf = {Sm|⋃m Sm =
I and ∀m �= n, Sm

⋂Sn �= ∅, m ∈ 1, ...,M}, where M is the
number of superpixels. A random label is initially assigned to each
node, and we iterate two search strategies in an interleaved manner,
i.e., neighborhood propagation and random search.

In neighborhood propagation step, for a current segment Sm, we
denote its set of spatially adjacent neighbors as {Sk}, and candidate
pixels p ∈ Sk are then randomly sampled from every neighboring
segment. A set of current best labels Lp = {lp} is then retrieved.
For l ∈ Lp, an asymmetric ANCC cost in (5) and cost volume filter-
ing in (2) are computed sequentially. After the preceding propaga-
tion step, in random search step, we randomly pick a reference pixel
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Fig. 3. Convergence analysis of the ANCC flow. By employing a
evolving guidance aggregation, its matching performance is highly
improved and boosted as increasing the iterations.

image size
SIFT
flow

NCC
w/GC

ANCC
w/GC

ANCC
flow†

ANCC
flow‡

463× 370 32.1s 30.2s 305.1s 235.2s 5.1s

Table 1. Evaluation of computational complexity. The brute-force
and efficient computation of our ANCC flow are denoted as † and ‡,
respectively. Our approach runs 60× faster than ANCC w/ GC.

q ∈ Sm to promote the label propagation within a segment. After
defining a set of labels Lq = {lq}, (5) and (2) are computed again
for pixels i ∈ Sm. After each iteration, the intermediate flow field
is inferred using (3), and is applied to next iteration as an evolving
guidance aggregation, which will boost matching performances on
each iteration. Algorithm 1 summarizes our ANCC flow.

3.3.3. Effects of evolving guidance aggregation

Fig. 3 shows convergence analysis of ANCC flow. In order to ana-
lyze only effects of evolving guidance aggregations in cost computa-
tion and cost aggregation, not PMF itself [13], disparity maps from
the cost computation with WTA and its corresponding cost filtering
with WTA are estimated with fixed Lp and Lq . As shown in Fig. 3,
an evolving guidance aggregation dramatically improves matching
performances in cost computation and cost filtering, simultaneously.
It further enables boosting very fast convergence.

3.4. Extension to Geometric-Invariant Flow Field Estimation
By properly defining the search label space li ∈ L, our ANCC flow
can be applied to general dense correspondence problems. For stereo
matching, li is defined to assign a disparity d (ul = d) to pixel i,
where vl = 0. For optical flow estimation, li is defined to assign a
2-D vector field for [ul, vl]. More challengingly, for general image
matching scenarios, where there exist not only translation fields but
also geometrically variations fields, e.g., scale and rotation, it is hard
to directly define li due to too many possible candidates. Instead, we
employ initial sparse feature matching and RANSAC-based global
transform inference [31]. We estimate global transform candidates
Tc between images. Using Tc, search label spaces are defined in
such a way that li = Tc(i) for all c, where Tc(i) means that pixel i
is applied by global transform Tc. In this case, |L| = |Tc|.
3.5. Computational Complexity Analysis
Given an image size |I|, the label space size |L|, the number of it-
eration K, and the aggregation window size |F|, the computational
complexity of ANCC flow framework on the brute-force implemen-
tation becomes O(K|I||L|4|F|). With efficient computation model
with fast constant-time EAF, our approach removes the complexity
dependency on the aggregation window size |F|, i.e., O(K|I||L|).
Furthermore, by employing PMF-like inference model to reduce the
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Fig. 4. Comparison of disparity estimations for image pairs across
illumination ‘1/3’ and exposure ‘0/2’ [6]. (from top to bottom) image
pairs, depth maps from cost filter [11], NCC [6], ANCC [32], SIFT
[16], DAISY [17], DASC [15], ANCC flow, and ground truth.
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Fig. 5. Average bad-pixel error rate on the Middlebury benchmark
[6] with (a) illumination and (b) exposure variations.

effect of large search spaces, our final computational complexity can
be dramatically reduced to O(K|I|log|L|).

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Experimental Environments
In experiments, the ANCC flow was implemented with the following
same parameter settings for all datasets. For an EAF, we employed
the guided filter (GF) [26] with radius r = 9 and the smoothness
parameter ε = 0.009. The number of superpixels is set to about 500
using the SLIC [33]. We implemented the ANCC flow in C++ on
Intel Core i7-3770 CPU at 3.40 GHz. The computational complexity
of ANCC flow compared to other methods was evaluated in Table 1.

ANCC flow was compared to state-of-the-art matching methods,
e.g., cost filter [11], PatchMatch [10], and SIFT [16], DAISY [17],
and DASC [15] combined with SIFT flow [34] optimization. Fur-
thermore, we compared our approach with NCC [6] and ANCC [32]
with GC [9] optimization. For geometric-invariant flow estimations,
we evaluated SID [35], SegSID [35], and SSF [36].

4.2. Middlebury Stereo Benchmark
We first evaluate our ANCC flow framework in Middlebury stereo
benchmark containing illumination and exposure variations [6]. Fig.
4 shows depth maps for severe illumination and exposure variations,
and Fig. 5 shows average bad matching error rates. As expected,
without robust cost functions, the cost filter [11] and PatchMatch
[10] cannot provide reliable correspondence performances. Match-
ing performances of SIFT flow [34] combined with robust cost func-
tions [17, 18, 19, 15] are limited on edge-discontinuity regions since
they provide limited discriminative power. Furthermore, their com-

ANCC
w/GC

SIFT
flow

SID SegSID SSF
ANCC
flow

LTA 39.2 34.2 39.1 34.0 29.7 16.3

Table 2. Average LTA error rates on DIML benchmark [15].

(a) (b) (c) (d) (e)

Fig. 6. Comparison of qualitative evaluation on DIML benchmark
[15]. (a),(b) image pairs, warped color images from correspondences
of (c) SIFT flow [34], (d) SID [35], and (e) ANCC flow.

putational time was very high. Unlike these conventional methods,
our ANCC flow achieved the best results both quantitatively and
qualitatively. By leveraging a guidance aggregation, the matching
performance of ANCC flow was highly enhanced.

4.3. DIML Benchmark
We then evaluate our ANCC flow framework in recently published
DIML benchmark [15], captured as 10 geometry image sets by com-
bining geometric variations of viewpoint, scale, and rotation, and
each image set consists of images taken under 5 different photomet-
ric variation pairs including illumination, exposure, flash-noflash,
blur and noise. To evaluate the performance quantitatively, we com-
puted the label transfer accuracy (LTA) [37, 15]. Fig. 6 shows qual-
itative evaluation results, and Table 2 shows average LTA error rates
for all combinations. SIFT flow-based methods [17, 18, 19, 15] can-
not provide reliable matching qualities under geometric variations.
Geometry-invariant methods, such as SID [35], SegSID [35], and
SSF [36], showed robustness to geometric variations to some ex-
tent, but they showed limited performance on photometric variations.
Contrarily, through optimal flow candidates, ANCC flow provided
the robustness for both photometric and geometric variations.

5. CONCLUSION

The adaptive normalized cross-correlation (ANCC) flow framework
has been proposed for establishing dense correspondences between
images taken under different imaging modalities. Its high perfor-
mance of a matching quality and a computational time in comparison
to state-of-the-art approaches can be attributed to greater robustness
of asymmetric ANNC cost with evolving guidance aggregations,
PMF-like optimization, and its efficient computational scheme. The
ANCC flow has been validated on an extensive set of experiments
that cover photometric and geometric variations.
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