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Abstract

Recent vision-based reinforcement learning (RL) meth-
ods have found extracting high-level features from raw pix-
els with self-supervised learning to be effective in learning
policies. However, these methods focus on learning global
representations of images, and disregard local spatial struc-
tures present in the consecutively stacked frames. In this
paper, we propose a novel approach, termed self-supervised
Paired Similarity Representation Learning (PSRL) for effec-
tively encoding spatial structures in an unsupervised manner.
Given the input frames, the latent volumes are first gener-
ated individually using an encoder, and they are used to
capture the variance in terms of local spatial structures, i.e.,
correspondence maps among multiple frames. This enables
for providing plenty of fine-grained samples for training the
encoder of deep RL. We further attempt to learn the global se-
mantic representations in the action aware transform module
that predicts future state representations using action vec-
tors as a medium. The proposed method imposes similarity
constraints on the three latent volumes; transformed query
representations by estimated pixel-wise correspondence, pre-
dicted query representations from the action aware transform
model, and target representations of future state, guiding
action aware transform with locality-inherent volume. Ex-
perimental results on complex tasks in Atari Games and
DeepMind Control Suite demonstrate that the RL methods
are significantly boosted by the proposed self-supervised
learning of paired similarity representations.

1. Introduction
Deep reinforcement learning (RL) has been an appealing

tool for training agents to solve various tasks including com-
plex control and video games [12]. While most approaches
have focused on training RL agent under the assumption
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that compact state representations are readily available, this
assumption does not hold in the cases where raw visual ob-
servations (e.g. images) are used as inputs for training the
deep RL agent. Learning visual features from raw pixels
only using a reward function leads to limited performance
and low sample efficiency.

To address this challenge, a number of deep RL ap-
proaches [1,10,38,40,43,44,46] leverage the recent advance
of self-supervised learning which effectively extracts high-
level features from raw pixels in an unsupervised fashion.
In [38, 46], they propose to train the convolutional encoder
for pairs of images using a contrastive loss [24,50]. For train-
ing the RL agent, given a query and a set of keys consisting of
positive and negative samples, they minimize the contrastive
loss such that the query matches with the positive sample
more than any of the negative samples [38, 46]. While the
parameters of the query encoder are updated through back-
propagation using the contrastive loss [50], the parameters
of the key encoder are computed with an exponential mov-
ing average (EMA) of the query encoder parameters. The
output representations of the query encoder are passed to the
RL algorithm for training the agent. These approaches have
shown compelling performance and high sample efficiency
on the complex control tasks when compared to existing
image-based RL approaches [31, 33, 51].

While these approaches can effectively encode the global
semantic representations of images with the self-supervised
representation learning, there has been no attention on the
local fine-grained structures present in the consecutively
stacked images. Our key observation is that spatial defor-
mation, i.e., the change in terms of the spatial structures
across the consecutive frames, can provide plenty of local
samples for training the RL agent. Establishing dense corre-
spondence [19, 34, 39, 42, 55], which has been widely used
for various tasks such as image registration and recognition
in computer vision, can be an appropriate tool in modeling
the local spatial deformation.

In this work, we propose a novel approach, termed
self-supervised Paired Similarity Representation Learning
(PSRL), that learns representations for deep RL by effec-
tively encoding the spatial structures in a self-supervised
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fashion. The query representations generated from an en-
coder are used to predict the correspondence maps among
the input frames. A correspondence aware transform is
then applied to generate future representations. We further
extend our framework by introducing the concept of fu-
ture state prediction, originally used for action planning in
RL [8,11], into the proposed action aware transform in order
to learn temporally-consistent global semantic representa-
tions. The proposed method is termed ‘Paired Similarity’ as
it encodes both local and global information of agent obser-
vations. More structured details of the terms are provided in
the supplementary material due to lack of space. To learn
the proposed paired similarity representation, we impose
similarity constraints on the three representations; trans-
formed query representations by the estimated pixel-wise
correspondence, predicted query representations from the
action aware transform module, and target representations of
future state. When applying the paired similarity constraint,
the prediction and projection heads of global similarity con-
straint are shared with the local constraint head, inducing
locality-inherent volume to guide the global prediction. Fi-
nally, the well-devised paired similarity representation is
then used as input to the RL policy learner.

We evaluate the proposed method with two challeng-
ing benchmarks including Atari 2600 Games [31, 51] and
DMControl Suite [48], which are the common benchmarks
adopted to evaluate the performance of recent sample-
efficient deep RL algorithms. The proposed method com-
petes favorably compared to the state-of-the-arts in 13 out
of 26 environments on Atari 2600 Games and in 4 out of 6
tasks on DMControl Suite, in terms of cumulative rewards
per episode.

We highlight our contributions as follows.

• While prior approaches place emphasis only on encod-
ing global representations, our method takes advan-
tage of spatial deformation to learn local fine-grained
structures together, providing sufficient supervision for
training the encoder of deep RL.

• We propose to impose the paired similarity constraints
for visual deep RL by guiding the global prediction
heads with locality-inherent volume.

• We introduce the action aware transform module to self-
supervised framework to learn temporally-consistent
instance discriminability by using action as a medium.

2. Related Work
Self-supervised Representation Learning: The self-
supervised representation learning aims to learn general fea-
tures from large-scale unlabeled images or videos without
expensive data annotations. The contrastive methods have
achieved state-of-the-art performance in the self-supervised

representation learning [2,4,6,7,15,24,25,27,49,50,54]. The
contrastive learning aims to bring positive samples closer
while separating negative samples from each other [20].
Wu et al. [54] formulate the contrastive learning as a non-
parametric classification problem at the instance level, and
propose to learn visual features with the memory bank and
noise contrastive estimation (NCE) [16, 41]. The method
in [50] proposes a probabilistic contrastive loss, called In-
foNCE, for inducing representations by leveraging positive
and negative samples. The InfoNCE loss has widely been
adopted in [6, 24, 25, 49]. Chen et al. [6] present a simple
framework for contrastive self-supervised learning without
specialized architecture [2, 25] or memory bank [54], but it
requires a large batch size for using enough negative samples
when computing the InfoNCE loss [50]. He et al. [24] pro-
pose to build a dynamic dictionary with a queue to avoid the
use of large batches when collecting negative samples, and
also uses the moving averaged (momentum) encoder for tar-
get data (positive and negative samples of query data). Grill
et al. [15] use the momentum encoder to produce represen-
tations of the targets as a means of stabilizing the bootstrap
step. This enables for learning the representations with only
positive samples, which are generated by data augmenta-
tion, for a given query without the need to carefully set up
negative samples. The method in [7] further extends this
idea by using only stop-gradient operation without using the
momentum update. Hjelm et al. [27] propose Deep InfoMax
(DIM) that learns representations by maximizing mutual in-
formation between the input and learned features from deep
networks. This was extended in [2] by maximizing mutual
information between features extracted from multiple images
of a shared context, e.g., augmented images. While these
approaches focuses on learning global representations of a
single image, our method proposes to learn paired similarity
representations for effectively encoding the spatial structures
in the consecutive images.

Self-supervised Representation Learning in Deep RL:
Representation learning is crucial for RL algorithms to
learn policies with high-dimensional visual observations.
Contrastive learning has been used to extract desired
latent representations of visual observations used in the
RL algorithms. For training robot agents, Sermanet et
al. [44] present the time-contrastive networks (TCN) that
train viewpoint-invariant representations using a metric
learning such that multiple viewpoints of the same scene
are encouraged to be close, while negative images taken
from a different timestep are separated. This work was
extended in [10] by embedding multiple frames at each
timestep for learning task-agnostic representations such as
position and velocity attributes in continuous control tasks.
In [40], a new objective based on DIM [27] was presented
for adapting to RL algorithms. In [1], the representations
for RL algorithms are learned by maximizing mutual
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Figure 1. Overall framework of the PSRL method: Multiple representations generated by the query and target encoders are used to infer a set
of pixel-wise correspondence maps. The transformed representation Zq,tr

k+1 is produced using an inverse warping with the set of pixel-wise
correspondence maps. The action aware transform module G with an action ak predicts the future representation Zq,pr

k+1 . The proposed
method imposes paired similarity constraints on the three latent volumes, Zq,tr

k+1, Zq,pr
k+1 and Zt

k+1, guiding global prediction with local
spatial structure. The target encoder and projection heads are updated using the stop-gradient operation. The encoder representation Zq

k is
used as an input in the RL algorithm. In our work, Rainbow DQN [51] (M = 3) and SAC [17] (M = 2) are used as RL algorithms.

information [27] across spatially and temporally distinct
features of an encoder of visual observations. [43] leverage
the self-supervised learning [15] for imposing the similarity
constraint between self-predictive and target representations.
Srinivas et al. [38] introduce Contrastive Unsupervised
representations for Reinforcement Learning (CURL) that
learns the representations from visual inputs using the
InfoNCE loss [50]. Stooke et al. [46] present Augmented
Temporal Contrast (ATC) using image augmentations and
InfoNCE loss [50] for representation learning, and decouples
it from policy learning. From a different perspective, [23]
propose to adapt the policy network through self-supervised
representation learning in unseen environments where
it is difficult to predict changed rewards. Our method
imposes the similarity constraint on the fine-grained
dynamics information as well as the global semantic
representations in an self-supervised manner, thus provid-
ing plenty of supervision for training the encoder of deep RL.

Visual Correspondence Learning: Visual correspondence
estimation [19, 34, 42, 55] is a long-standing research in the
computer vision community. It aims to establish a pair of
corresponding pixels between two (or more) views taken
under different locations (stereo matching) or timestep (op-
tical flow). Recent methods for stereo matching [5, 57, 58]

and optical flow estimation [9, 28, 47] have been advanced
largely thanks to the expressive power of deep networks.
Though both approaches share a similar objective of finding
corresponding pixels across views, the optical flow is known
to be effective for encoding temporal motion trajectories,
while the stereo matching is tailored to predicting 3D depth
map in the scene. The commonly used architecture for two-
frame correspondence estimation involves the feature map
extraction of two frames, correlation volume computation, a
series of convolutions for refinement, and regression. Some
unsupervised learning approaches have attempted to infer
correspondence maps with an image reconstruction loss for
imposing the constraint that corresponding pixels should
have similar intensities. Note that the image reconstruction
loss has also been used for self-supervised monocular depth
estimation [13, 14] and stereo matching [53]. In our work,
we present the self-supervised correspondence estimation
network that learns fine-grained dynamics information from
the consecutive frames used in the RL algorithms.

3. Method

We consider the Markov Decision Process (MDP) setting
where an agent interacts with environments in a sequence
of observations, actions, and rewards. We denote ok, ak,
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and rk as the observation, the action of the agent, and the
reward received at timestep k. Since our method is a general
framework that leverages the representation learning for
training the RL agent, it can be combined with any RL
algorithm. Following the state-of-the-arts RL approaches
[38, 43, 46] using the self-supervised learning, we adopt the
Soft Actor Critic (SAC) method [17] for continuous control
task in DeepMind Control Suite benchmark, and Rainbow
DQN [51] for discrete control task in Atari Games. The
proposed self-supervised paired similarity representation
learning (PSRL) is used as an auxiliary task for training RL
agents.

3.1. Self-supervised Correspondence Estimation

We start with how to generate the locality-inherent rep-
resentations for capturing spatial deformations from the
consecutively stacked frames in a self-supervised manner.
An instance used by the model-free off-policy RL algo-
rithms [17, 51] is a stack of images, not a single image.
Given an input raw observation ok = {Ik, ..., Ik+M} where
Ik is an image at timestep k, the latent encoder features
ek = {zk, ..., zk+M} are first generated by applying an en-
coder individually to each of the input observations ok. Note
that z ∈ Rh×w×d is a 3-D volume with a spatial resolution
h× w and a feature dimension d. We apply query encoder
and target encoder to ok and ok+1, respectively, and denote
the output of the query encoder Eq as zq, and the output
of the target encoder Et as zt. While the existing meth-
ods [1, 10, 38, 40, 43, 44, 46] feeds the stacked frames to the
encoder at once, which can be viewed as an early fusion [32],
our method generates the set of the latent representations in-
dividually with the encoder. Later, they are fused using 1× 1
convolutional layer in a manner similar to a late fusion [45].

The set of representations is used to predict the spa-
tial deformations, i.e., correspondence maps between two
consecutive frames. We compute a correlation volume
Va,b ∈ Rh×w×r2 using a dot product between two latent
representations za and zb [9] as follows:

Va,b(u, v, δ) = < za(u+ δ), zb(v + δ) >, (1)

where u and v represent 2D feature position in za and zb,
δ ∈ [−r̄, r̄], and r̄ indicates the kernal size for computing
correlation, r = 2r̄ + 1. Computing the patch similarity in
(1) for all combinations of u and v (totally, h2 · w2 times)
causes a huge amount of computation. Thus, the maximum
displacement for computing the patch similarity is limited
for v ∈ N (u) where N (u) represents neighboring pixels of
u within pre-defined search range.

The correlation volume is fed into a series of convolutions
followed by the refinement layers, producing a correspon-
dence map ca→b ∈ Rh×w×2 from Ia to Ib. As PSRL is a
fully self-supervised framework, the correspondence esti-
mation module C is trained by self-supervised loss Lr as

Figure 2. Correspondence matching block in Figure 1: Self-
supervised correspondence estimation module C including the
correlation volume, convolutions, and refinement layers.

follows:

Lr(ca→b) =
∑
p

|Ia(p)− Ib(p+ ca→b)|+ Lreg, (2)

where I(p) indicates an intensity at the pixel corresponding
to 2D feature position p. For computing the loss Lr, we
resize Ia and Ib to the size of the latent representations, h×w.
We additionally use the Charbonnier regularization loss Lreg

[3] for producing spatially smooth correspondence maps. In
Figure 1, we denote ‘correspondence matching’ block as
the self-supervised correspondence estimation module C
including the correlation volume computation, the series of
convolutions, and the refinement layers as in Figure 2.

3.2. Paired Similarity Representation Learning

Figure 1 illustrates the overall architecture of the
proposed PSRL approach. Following the prior work on the
self-supervised learning [7,15,24], we use the query encoder
Eq with the parameters θq and the target encoder Et with
the parameters θt for encoding the query observation ok
and the target observation ok+1, respectively. While the
parameters θq of the query encoder are updated through
back-propagation, the parameters θt of the target encoder
are updated with the query encoder parameters θq using a
stop-gradient operation [7] as θt ← θq .

Pixel-wise Correspondence Learning and Correspon-
dence Aware Transform (CAT): By minimizing (2), we
first compute a set of M + 1 external correspondence maps
{cextk+i+1→k+i|i = 0, ...,M} with the self-supervised corre-
spondence estimation module C such that

cextk+i+1→k+i = C(ztk+i+1, z
q
k+i) for i = 0, ...,M.

(3)
Note that the external correspondence map is predicted from
the target feature ztk+i+1 to the query feature zqk+i. Then, we
transform the query features eqk = {zqk, ..., z

q
k+M} into the

future state via the inverse warping [30] using M + 1 exter-
nal correspondence maps. The transformed query features
{zq,trk+1, ..., z

q,tr
k+M+1} are then fused using 1× 1 convolution,

producing the transformed query representation Zq,tr
k+1 at the

timestep k + 1.
As an additional exploitation of predicted volumes, we

can also predict internal correspondence maps within the
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Figure 3. Global and local similarity heads in Figure 1: Similarity
module consisting of the query projection and prediction heads and
the target projection heads. When applying the paired similarity
constraint, the heads of global similarity constraint are shared with
the local constraint head, inducing locality-inherent volume to
guide the global prediction.

query features eqk = {zqk, ..., z
q
k+M} as cinta→b = C(zqa, z

q
b ).

Various combinations of a and b are possible for computing
the internal correspondence maps, and we choose to com-
pute a single correspondence map cintk→k+M . We found that
this is an appropriate choice in terms of computational ef-
ficiency and accuracy as the external correspondence maps
are already used to impose the structural similarity constraint
between multiple frames, and is effective in dealing with
the case where the external spatial difference between two
consecutive frames is relatively small. More details are pre-
sented in the supplementary material. The loss function
Lc for computing the internal and external correspondence
maps is given as

Lc = Lr(c
int
k→k+M ) +

M∑
i=0

Lr(c
ext
k+i+1→k+i). (4)

To measure the similarity between the transformed query
representation Zq,tr

k+1 and the target representation Zt
k+1

which is the fusion of target encoder features etk+1 =
{ztk+1, ..., z

t
k+M+1}, we use two projection heads and one

predictor. We project the two representations Zq,tr
k+1 and

Zt
k+1 into a smaller latent space by passing them into the

query projection head ψq with parameters ξq and the tar-
get projection head ψt with parameters ξt, and also apply
an additional query prediction head ϕq to the query projec-
tion. The target projection head parameters ξt are updated
with the stop-gradient operation as in the target encoder,
i.e., ξt ← ξq. The prediction loss Ls is computed using
the cosine similarity between the transformed query repre-
sentation yq,trk+1 = ϕq(ψq(Zq,tr

k+1)) and the observed target
representation ytk+1 = ψt(Zt

k+1), such that

Ls(y1, y2) = −
< y1, y2 >

∥y1∥2∥y2∥2
. (5)

In Figure 3, we depict the module consisting of the query
projection and prediction heads and the target projection
heads.

Action Aware Transform (AAT): We further extend our
method by leveraging an action aware transform module
conditioned on an action. We generate the query representa-
tion Zq

k by applying 1× 1 convolution to the query features
{zqk, ..., z

q
k+M} and then feed it into the convolutional

prediction model G. Then, we use a single next prediction
Zq,pr
k+1 = G(Zq

k , ak) from the query representation Zq
k . The

predicted global query representation Zq,pr
k+1 is fed into

the query projection head ψq and the query prediction
head ϕq such that yq,prk+1 = ϕq(ψq(Zq,pr

k+1)). Note that,
Zq,pr
k+1 is a 3-dimensional representation and it becomes

1-dimensional vector, yq,prk+1, after passing the heads. The
prediction loss is also computed using the cosine similarity
loss Ls(y

q,pr
k+1, y

t
k+1).

We measure the paired similarity loss Lsim between the
three representations yq,trk+1, yq,prk+1, and ytk+1 as

Lsim = Ls(y
q,tr
k+1, y

t
k+1) + Ls(y

q,pr
k+1, y

t
k+1)

+ L1(Z
q,tr
k+1, Z

t
k+1) + L1(Z

q,pr
k+1 , Z

t
k+1).

(6)

We also include pixel-level L1 loss on the original spatial
latent space to guide the semantic loss with additional
pixel-level similarity. Note that when applying Lsim, the
projection and the prediction heads of global similarity
constraint are shared with the local constraint head,
inducing the locality-inherent volume generated from the
correspondence to guide the global prediction process.
Finally, the query representation Zq

k is fed into the deep RL
algorithm.

Final Loss: The final loss function is summarized as

Ltotal = Lc + αLsim + LRL(Z
q
k), (7)

whereLRL(Z
q
k) indicates the loss of the RL algorithm which

uses Zq
k as an input. α is a hyper-parameter that balances

the loss function. We summarize the overall method in
Algorithm 1.

3.3. Implementation Details

Self-supervised Correspondence Estimation Module: The
input image Ii is of 84× 84 for Atari Games and DeepMind
Control (DMControl) Suites. The query and target encoders
generates zqi , z

t
i+1 ∈ R7×7×64 (i = k, ..., k + 3) for Atari

Games and zqi , z
t
i+1 ∈ R32×32×32 (i = k, ..., k + 2) for

DMControl Suites, respectively. The search window for
computing the correlation volume V is 6 × 6 for Atari
games and DMControl Suites. The correlation volume goes
through 3 × 3 convolution layers 3 times. The decoder is
then applied to provide a dense correspondence map. The
decoder includes three un-convolutional layers, consisting of
un-pooling and convolution, and the coarser correspondence
maps and encoder feature maps are concatenated into each
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Algorithm 1: Self-Supervised Paired Similarity
Representation Learning (PSRL)
Eq , Et: Query encoder, Target encoder
ψq , ψt: Query projection head, Target projection head
ϕq : Query prediction head
Initialize replay buffer and network parameters.
while Training do

(1) PSRL
Generate zqk+i, z

t
k+i+1 with Eq , Et for i = 0, ...,M .

Generate query representation Zq
k by fusing a set of query

features zqk+i for i = 0, ...,M .
Generate target representation Zt

k+1 by fusing a set of target
features ztk+i+1 for i = 0, ...,M .

(1-1) Correspondence Learning
Learn external and internal correspondences with (4).

(1-2) Correspondence Aware Transform
Generate transformed query representation Zq,tr

k+1 with
external correspondence cextk+i+1→k+i for i = 0, ...,M .

(1-3) Action Aware Transform
Generate predicted query representation Zq,pr

k+1 from Zq
k

using action aware transform model G.

(2) Training
Zq
k goes into RL MLP head.

Compute global and local similarities of (6) as in Figure 3.
Optimize the networks by minimizing (7).
Update parameters of Et and ψt with Eq and ψq .

end

un-convolutional layer.

Action aware transform Model: The action aware trans-
form model includes two convolutional layers interweaved
with ReLU and batch normalization [29], with the current
representations Zq

k and the action ak of one-hot vector taken
to each location being fed to the first convolutional layer.

Other Details: The query and target projection heads,
ψq and ψt, are implemented as the multi-layer perceptron
(MLP). For the query prediction head ϕq, we reuse the first
linear layer of the RL head. We used α = 5 in (7) to balance
the weight of the losses. More details are presented in the
supplementary material.

4. Experimental Results
4.1. Evaluation on Atari Games

To compare the performance of the proposed method
with state-of-the-arts, we chose Atari 2600 Games intro-
duced in [31, 51] where only 100K environment steps, corre-
sponding to two hours of gameplay experiences, are avail-
able for training data. This sample-efficient setup, which
uses much less environment steps than the standard setup of
50,000K environment steps, has been adopted for evaluating
the performance of recent sample-efficient deep RL algo-
rithms [31, 33, 38, 43, 51]. We compared our results with var-

ious RL algorithms including SimPLe [31] which learns to
infer its own latent representations for Atari, Data-Efficient
Rainbow (DER) [51] which modifies the Rainbow hyper-
parameters for improving the sample efficiency, OTRain-
bow [33] which is an over-trained version of the Rainbow
for the sample efficiency, CURL [38] which proposes the
use of image augmentation with the contrastive loss [50]
for self-supervised representation learning, DrQ [36] which
uses the modest image augmentation to improve the sample
efficiency, and SPR [43] which trains an agent to predict its
own latent state representations into the future. Following
the experimental setup on the above-mentioned approaches,
we evaluated on 26 environments of Atari 2600 games by
measuring the average return after 100K interaction steps.
We trained our method with 10 random seeds, similar to
other methods.

As shown in Table 1, the proposed method (PSRL)
achieved the best performance on 13 out of 26 environments.
CURL [38] recorded the highest mean in 7 games out of
26, and SPR [43] recorded the highest mean in 11 games
out of 26. PSRL has the highest mean in 13 games out of
26. It can be interpreted that the performance increase of the
PSRL is not small by considering the quantitative aspects
of these games. Also, among the 13 games in which PSRL
has an edge, in particular, in 8 games (Alien, Assault, Go-
pher, Jamesbond, Krull, Kung Fu Master, Ms Pacman, and
Seaquest), PSRL records a remarkably higher performance
compared to other methods. Even the performance of cer-
tain games is high enough to match that of humans. This is
because the proposed method of capturing the local-global
spatial structure is able to derive an effective representation
from the images of the specific Atari Games with various
movements.

However, PSRL may not be effective for some games.
In particular, PSRL did not perform well in the task ‘Pong’
in Atari Games [31]. The biggest reason for this is that
there are too few discriminative spatial structures available
in the game images. Therefore, we can be sure that our
representation learning method, which effectively captures
the spatial structure, will work particularly well for data
with much more complex structural features. In other words,
while most of the simple methods suffer from training with
data with complex structural features, PSRL can be a good
substitute for addressing this.

4.2. Evaluation on DMControl Suite

Various approaches including ours have been bench-
marked on the DMControl Suite where the agent operates
from pixels to evaluate challenging visual continuous control
tasks [48]. We compared our results with State-SAC which
supposes that the agent has access to low-level state based
features, Pixel-SAC [18] which directly operates from pix-
els, SAC+AE [56] which uses a joint learning of SAC with
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Table 1. Quantitative evaluation with state-of-the-arts on the 26 Atari games [31] after 100K time steps using 10 random seeds: Numbers in
bold represent 1st ranking. PSRL achieves the best performance on 13 out of 26 environments. We compared results with SimPLe [31],
Data-Efficient Rainbow (DER) [51], OverTrained Rainbow (OTRainbow) [33], CURL [38], DrQ [36], and SPR [43].

Game Human Random Rainbow SimPLe DER OTRainbow CURL DrQ SPR PSRL
Alien 7127.7 227.8 318.7 616.9 739.9 824.7 558.2 771.2 801.5 1030.1
Amidar 1719.5 5.8 32.5 88.0 188.6 82.8 142.1 102.8 176.3 114.3
Assault 742.0 222.4 231.0 527.2 431.2 351.9 600.6 452.4 571.0 708.3
Asterix 8503.3 210.0 243.6 1128.3 470.8 628.5 734.5 603.5 977.8 959.3
Bank Heist 753.1 14.2 15.55 34.2 51.0 182.1 131.6 168.9 380.9 95.8
BattleZone 37187.5 2360.0 2360.0 5184.4 10124.6 4060.6 14870.0 12954.0 16651.0 16688.0
Boxing 12.1 0.1 -24.8 9.1 0.2 2.5 1.2 6.0 35.8 35.9
Breakout 30.5 1.7 1.2 16.4 1.9 9.8 4.9 16.1 17.1 17.5
ChopperCommand 7387.8 811.0 120.0 1246.9 861.8 1033.3 1058.5 780.3 974.8 1251.2
Crazy Climber 35829.4 10780.5 2254.5 62583.6 16185.3 21327.8 12146.5 20516.5 42923.6 42544.0
Demon Attack 1971.0 152.1 163.6 208.1 508.0 711.8 817.6 1113.4 545.2 884.0
Freeway 29.6 0.0 0.0 20.3 27.9 25.0 26.7 9.8 24.4 24.8
Frostbite 4334.7 65.2 60.2 254.7 866.8 231.6 1181.3 331.1 1821.5 776.9
Gopher 2412.5 257.6 431.2 771.0 349.5 778.0 669.3 636.3 715.2 920.3
Hero 30826.4 1027.0 487.0 2656.6 6857.0 6458.8 6279.3 3736.3 7019.2 3977.3
Jamesbond 302.8 29.0 47.4 125.3 301.6 112.3 471.0 236.0 365.4 471.4
Kangaroo 3035.0 52.0 0.0 323.1 779.3 605.4 872.5 940.6 3276.4 1580.0
Krull 2665.5 1598.0 1468.0 4539.9 2851.5 3277.9 4229.6 4018.1 3688.9 4958.3
Kung Fu Master 22736.3 258.5 0.0 17257.2 14346.1 5722.2 14307.8 9111.0 13192.7 17759.5
Ms Pacman 6951.6 307.3 67.0 1480.0 1204.1 941.9 1465.5 960.5 1313.2 1597.3
Pong 14.6 -20.7 -20.6 12.8 -19.3 1.3 -16.5 -8.5 -5.9 -8.2
Private Eye 69571.3 24.9 0.0 58.3 97.8 100.0 218.4 -13.6 124.0 158.0
Qbert 13455.0 163.9 123.46 1288.8 1152.9 509.3 1042.4 854.4 669.1 1290.3
Road Runner 7845.0 11.5 1588.46 5640.6 9600.0 2696.7 5661.0 8895.1 14220.5 3175.7
Seaquest 42054.7 68.4 131.69 683.3 354.1 286.9 384.5 301.2 583.1 734.9
Up N Down 11693.2 533.4 504.6 3350.3 2877.4 2847.6 2955.2 3180.8 28138.5 4263.8

Table 2. Quantitative evaluation of mean and standard deviation with state-of-the-arts on the DMControl suite [48] after 100K time steps and
500K time steps using 10 random seeds. Numbers in bold represent 1st ranking, and PSRL achieves the best performance on 4 out of 6
environments for 500K time steps. We compared results with state-based SAC and pixel-based SAC [18], SAC+AE [56], Dreamer [21],
PlaNet [22], CURL [38], RAD [37], and DrQ [36].

100K step scores State SAC Pixel SAC SAC+AE Dreamer PlaNet CURL RAD DrQ PSRL
Finger, Spin 811±46 179±66 740±64 341±70 136±216 767±56 856±73 901±104 882±132
Cartpole, Swingup 835±22 419±40 311±11 326±27 297±39 582±146 828±27 759±92 849±63
Reacher, Easy 746±25 145±30 274±14 314±155 20±50 538±233 826±219 601±213 621±202
Cheetah, Run 616±18 197±15 267±24 235±137 138±88 299±48 447±88 344±67 398±71
Walker, Walk 891±82 42±12 394±22 277±12 224±48 403±24 504±191 612±164 595±104
Ball in Cup, Catch 746±91 312±63 391±82 246±174 0±0 769±43 840±179 913±53 922±60
500K step scores State SAC Pixel SAC SAC+AE Dreamer Planet CURL RAD DrQ PSRL
Finger, Spin 923±21 179±166 884±128 796±183 561±284 926±45 947±101 938±103 961±121
Cartpole, Swingup 848±15 419±40 735±63 762±27 475±71 841±45 863±9 868±10 895±39
Reacher, Easy 923±24 145±30 627±58 793±164 210±390 929±44 955±71 942±71 932±41
Cheetah, Run 795±30 197±15 550±34 570±253 305±131 518±28 728±71 660±96 686±80
Walker, Walk 948±54 42±12 847±48 897±49 351±58 902±43 918±16 921±45 930±75
Ball in Cup, Catch 974±33 312±63 794±58 879±87 460±380 959±27 974±12 963±9 988±54

β-VAE [26], VAE [35], and regularized autoencoder [52],
Dreamer [21] and PlaNet [22] which learn a latent space
world model, CURL [38] which uses image augmentation
with the contrastive loss [50], RAD [37] and DrQ [36] which
demonstrate that data augmentation can greatly improve the
performance of model-free RL algorithms and achieve state-
of-the-art performance on DMControl Suite. We trained our
method with 10 random seeds, and the results with 5 random
seeds are provided in the supplementary material.

Table 2 demonstrates that the self-supervised paired sim-
ilarity representations of PSRL achieved best performance
on 4 out of 6 environments for 500K time steps including
Cartpole Swingup, Reacher Easy, Walker Walk and Ball in
Cup Catch. In general, the performance at 500K steps after
most methods converge is widely adopted for the evaluation.

When compared to the performance improvement rate of
other methods, the performance increase of PSRL is signif-
icant. The performance at 100K steps is usually based on
when most methods do not converge. In Table 2, the per-
formance of PSRL recorded the highest mean in 2 tasks out
of 6 tasks at 100k steps, and RAD [37] and DrQ [36] also
recorded the highest mean in 2 tasks out of 6 tasks, respec-
tively. It can be interpreted that RAD [37], DrQ [36] and
PSRL are the three methods with the highest convergence
speed.

4.3. Ablation Study

Impact of Losses: Table 3 measured the average perfor-
mance over 10 random seeds according to the combinations
of several losses on DMControl Suite [48] with 500K time
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Table 3. To study the impact of several losses, we measured the average performance over 10 random seeds according to the combinations of
losses on DMControl Suite [48] with 500K time steps. Refer to section 4.3 for ‘C’, ‘C+T’, ‘P’, and ‘C+P’.

500K step scores C C+T P C+P C+T+P (PSRL)
Finger, Spin 729±110 757±100 711±64 768±112 961±121
Cartpole, Swingup 819±38 876±19 793±15 868±27 895±39
Reacher, Easy 857±45 901±29 904±58 922±31 932±41
Cheetah, Run 501±73 586±40 691±104 690±73 686±80
Walker, Walk 770±87 879±67 822±53 876±41 930±75
Ball in Cup, Catch 849±42 953±26 848±107 951±20 988±54

Table 4. To study the impact of various data augmentation, we
measured the average performance over 10 random seeds according
to the data augmentation on DMControl Suite [48] with 500K time
steps.

500K step scores PSRL + no aug PSRL + crop PSRL + translation
Finger, Spin 932±115 915±91 961±121
Cartpole, Swingup 895±39 837±16 872±51
Reacher, Easy 932±41 833±87 930±83
Cheetah, Run 635±74 611±59 686±80
Walker, Walk 914±30 930±75 886±51
Ball in cup, Catch 962±14 988±54 946±42

steps.
• ‘C’ using only the correspondence estimation loss in (4)
• ‘C+T’ using correspondence estimation loss and similarity
loss with ‘T’ransformed query and target representations in
(6)
• ‘P’ using prediction loss with ‘P’redicted and target
representations in (6)
• ‘C+P’ using the correspondence estimation loss and the
prediction loss in (6).
The network trained with only ‘C’ produces worse per-
formance compared to ‘C+T’, ‘C+P’ and ‘C+T+P’, but
still produces comparable performance to state-of-the-arts,
implying that even without the transform and prediction
model, simply guiding the encoder to extract features for the
correspondence prediction helps the RL agent to perform
better. The performance of ‘C+T’ and ‘C+P’ is similar,
but ‘C+T’ has slightly better performance on step scores
with smaller standard deviations. This implies that the
transformed query representation to the future state using
the estimated correspondence is capable of providing as
useful supervision as the predicted representation that uses
an action aware transform model. The performance was
further boosted, when using ‘C+T+P’ altogether (PSRL). To
measure only the impact of each loss, data augmentation
was not performed.

Impact of Data Augmentation: To study the impact of
data augmentation when used with the proposed method, we
measured the average performance over 10 random seeds
according to the data augmentation on DMControl Suite [48].
In Table 4, we evaluated the performance of the proposed
method when used with crop and translation proposed in
RAD [37].

Slightly different from the result presented in RAD [37],
Cartpole Swingup and Reacher Easy achieved the best per-
formance when no augmentation was used, Finger Spin and
Cheetach Run obtained the best performance for translation,
and Walker Walk and Ball in cup Catch showed the best
performance for crop. Since PSRL learns correspondence in
an end-to-end manner with RL algorithm, it is analyzed that
the results are different from those of RAD [37].

5. Discussion and Conclusion

We have presented the self-supervised paired similarity
representation learning, termed PSRL, to encode global
and local spatial structures in an unsupervised manner. The
correspondence maps inferred by the proposed method offer
plenty of supervision for learning the fine-grained latent
representations, and also compute transformed predictions
at future frame. PSRL achieves state-of-the-art performance
on Atari benchmark with 100K steps and DMControl Suites
with 100K/500K steps. We have shown the importance of
learning the paired similarity representations in improving
the performance and sample-efficiency of image-based RL
algorithms. We hope this can facilitate future works at
various aspects for RL based on self-supervised learning.
Code will be available soon.

Limitations The increase in the computational cost during
training is unavoidable because PSRL additionally lever-
age the correspondence estimation module, but we found
that the additional computational cost for training is not so
significant. For training on DMControl Suite [48] up to
500K on the same GPU environment, the proposed method
takes about 16 hours, whereas the state-of-the-art methods
CURL [38] and SPR [43] take about 10 hours and 13 hours,
respectively. Note that the original SPR paper did not pro-
vide the code implemented for DM Control Suite, so we
conducted the experiments by modifying the original SPR
code. Additionally, the correspondence estimation mod-
ule are used only during training, and the inference pro-
cess is implemented in the same manner as other methods.
Therefore, the inference time of our method is exactly the
same as that of the state-of-the-arts methods (CURL [38],
SPR [43], DrQ [36]) as long as the same encoder for query
images is used.
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