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Abstract. Driven by the success of Masked Language Modeling (MLM),
the realm of self-supervised learning for computer vision has been invig-
orated by the central role of Masked Image Modeling (MIM) in driv-
ing recent breakthroughs. Notwithstanding the achievements of MIM
across various downstream tasks, its overall efficiency is occasionally
hampered by the lengthy duration of the pre-training phase. This pa-
per presents a perspective that the optimization of masked tokens as a
means of addressing the prevailing issue. Initially, we delve into an explo-
ration of the inherent properties that a masked token ought to possess.
Within the properties, we principally dedicated to articulating and em-
phasizing the ‘data distinctiveness’ attribute inherent in masked tokens.
Through a comprehensive analysis of the heterogeneity between masked
tokens and visible tokens within pre-trained models, we propose a novel
approach termed masked token optimization (MTO), specifically
designed to improve model efficiency through weight recalibration and
the enhancement of the key property of masked tokens. The proposed
method serves as an adaptable solution that seamlessly integrates into
any MIM approach that leverages masked tokens. As a result, MTO
achieves a considerable improvement in pre-training efficiency, resulting
in an approximately 50% reduction in pre-training epochs required to at-
tain converged performance of the recent approaches. Code is available
at https://github.com/doihye/MTO.
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1 Introduction

Pre-training of universal language representations [7, 9, 22, 28, 29] has been a
crucial area of Natural Language Processing (NLP), especially when training
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large-scale models [3, 32]. Following the philosophy of Masked Language Mod-
eling (MLM) [2, 7, 9, 22], Masked Image Modeling (MIM) [1, 10, 13, 38] has been
at the core of recent advances in self-supervised learning for computer vision.
MIM applies the principles of MLM to images, enabling effective pre-training
of Transformers and improving transfer learning performances. The essence of
these Masked Signal Modeling approaches lies in encouraging the model to pre-
dict the gaps in an input signal to learn the contextual relationships between
signals while capturing an overall structure.

Despite the tremendous successes of MIM in diverse downstream tasks, the
long pre-training phase that it entails tends to impede its efficiency. Concretely, a
substantial amount of pre-training, typically from 800 to 1600 epochs, is essential
to attain the convergence of the Transformer for transfer learning. Meanwhile,
several methodologies have been employed for MIM in an effort to alleviate the
disparities that exist between the linguistic and visual domains when leveraging
the MLM concept. For instance, patch tokenization [1] is introduced to emulate
the discrete nature of language tokens, while raw pixel regression [38] is adopted
to attune with the continuous visual signals. However, the intrinsic properties of
masked tokens, a vital component of MIM, have yet to be comprehensively sur-
veyed by the vision community. In this paper, we address the lengthy pre-training
issue caused by low convergence rates through the optimization of masked to-
kens, focusing on their inherent properties that have been previously overlooked.

Here we come to the pivotal inquiry that lies at the heart of the discourse:
What properties should a masked token have within the realm of MIM? Given
the premise that the masked token is selected and masked from the training
data, it is imperative that the selected masked token exhibits certain specific
attributes; (i) Spatial Randomness: Masked tokens must be randomly selected
from input patches, so that the model can learn to predict tokens in various
locations and semantics. Regarding this property, a research direction incorpo-
rating prior knowledge into the spatial randomness of masked tokens [16, 37]
is currently debated. (ii) Substitutional Consistency, in the masking process,
randomly selected visible tokens should consistently be replaced with the same
learnable parameters [35], allowing the model to recognize and reconstruct them
during pre-training. Lastly, (iii) Data Distinctiveness. This last facet repre-
sents a novel property that we aim to assert and demonstrate throughout the
entire manuscript. It signifies that the masked token in the initial embedding
should be unique token that are unlikely to manifest in the training data. Stated
differently, the masked tokens should exhibit a negligible correlation with vis-
ible tokens to mitigate the possibility of obfuscation, when given as inputs to
the attention layers. Employing masked tokens that are well differentiated from
visible tokens enables the model to identify semantics within the training data,
thereby improving focused pretext prediction capability.

Visual signals are inherently continuous, making it challenging for masked
tokens to ensure data distinctiveness, as they cannot be explicitly differentiated
like their discrete text token counterparts. To be specific, due to the clear seman-
tics associated with each word in the text, the distinctiveness of masked tokens
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can be easily preserved during the pretext prediction process in the linguistic do-
main. Contrarily, the Tokenizer-based approach [19] has reported that in image
tokenizers, different semantic patches can have similar token under visual dis-
cretization. This finding indicates that the task of distinguishing masked tokens
from visible tokens is adverse in the context of the visual tokenizer, where patches
are represented as continuous values. Hence, attaining the desired distinctiveness
of the masked token to the training data solely relies upon the model’s conver-
gence through a prolonged pre-training process, akin to the predictions of a
black-box system devoid of explicit constraints. Therefore, we propose an anal-
ysis of masked tokens and optimization based on it by directing our attention
toward the data distinctiveness among the trifecta of properties.

Our initial step encompassed a heterogeneity analysis of masked tokens against
the visible tokens to demonstrate the manifestation of the masked token’s data
distinctiveness characteristic within the model upon reaching convergence. More-
over, the scope of this analysis is designed to investigate both the extent and the
tendency of how heterogeneity unfolds throughout the different layers of the net-
work’s architecture. Building upon the insights from the heterogeneity analysis,
we propose a sophisticated method for optimizing masked tokens. The proposed
Masked Token Optimization (MTO) approach includes a strategic exclusion of
semantically inconsequential masked tokens from the weight aggregation pro-
cess associated with visible tokens, achieved through weight recalibration. At the
same time, the proposed MTO method explicitly imposes constraints on data
distinctiveness throughout the optimization of masked tokens to reinforce the
model’s capacity to differentiate between tasks, given the distinctive roles that
masked tokens and visible tokens assume within the architecture; the masked
token is integral to pretext prediction, whereas the visible token is essential for
the encoding and decoding of representations.

The proposed Masked Token Optimization (MTO) represents a versatile and
adaptable method capable of seamless integration into any MIM-based approach
utilizing masked tokens, thus empowering pre-training operations with height-
ened efficiency and performance. The succeeding sections of the paper present
the empirical evidence of the efficacy of the MTO approach when integrated
into diverse MIM methodologies including SimMIM [38], MAE [13] and Boot-
MAE [10]. The findings demonstrate that the application of MTO induces rapid
model convergence and substantial improvements in representation learning. No-
tably, MTO improves the pre-training efficiency by approximately halving the
pre-training epochs required to reach converged performance in the recent MIM
approaches. Such outcomes provide a compelling justification for the wide-scale
adoption of MTO as an useful plug-and-play tool in pre-training procedures.

2 Preliminaries

We start by revisiting the recent framework of MIM. The latest advancements in
MIM [10,13,38] have surpassed the past two-stage methods [1,19] by integrating
masked prediction and the autoencoder training in a single end-to-end process,



4 H. Choi et al.

aiming at encoding valuable representation and predicting pretext for masked
patches [42]. As these approaches are built upon Transformer architectures [11,
23, 24, 33], we assume the underlying framework is an attention model [11, 24]
throughout the paper. An input image I ∈ RHW×3 is first divided into non-
overlapping N = H ×W/P 2 patches. Then, patches are randomly sampled and
masked with a high masking ratio, reflecting the information redundancy [13].

Let δM be defined as a set of masked indexes where visible tokens are replaced
by a mask token. In general, the representation of masked modeling is trained
via the minimization of the following self-supervised objective:

Lss(f(I;Θ)) =
1

|δM |
∑
i∈δM

∥f(I;Θ)i − Ii∥22, (1)

with pretext prediction network f and its learnable parameters Θ. In Sim-
MIM [38], f is jointly learned with semantic encoding using masked tokens
within the encoder. In contrast, the encoder of MAE [13] solely leverages the
visible image tokens. Then, the encoded visual patches are fed into the Trans-
former decoder, where masked tokens are employed for pretext prediction.

3 Analysis

To investigate the tendency of the heterogeneity between masked token and
visible tokens, we analyze the pre-trained models of the recent approaches [13,38].

3.1 Heterogeneity Measure via Entropy

We define the degree of heterogeneity as the mutual dependence of masked tokens
with respect to visible tokens in each layer as follows:

H = − 1

|δM |
∑
i

∑
j

Ai,j log(Ai,j) where A = ψ(XMX
⊤
V ). (2)

We define XM = {xi|i ∈ δM} as a set of masked tokens, XV = {xi|i /∈ δM}
as a set of visible image token, A ∈ R|δM |×(N−|δM |) is the affinity matrix that
represents the probabilistic similarity between XM and XV , and ψ is the scaling
function, i.e. row-wise softmax, that scales logits into a probability distribution
relative to the visible image token.

3.2 Heterogeneity Analysis

We assume that it is necessary for masked tokens and visible tokens to exhibit
substantial variability in terms of their distinct data properties in the initial
embedding prior to being processed by the attention layers. This distinctive-
ness between masked tokens and visible tokens is instrumental in enhancing the
model’s ability to differentiate between the two tasks, owing to their distinct
roles in the architecture; the former serves the purpose of pretext prediction
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Fig. 1: To investigate the heterogeneity between masked token and visible token, we
analyze the pre-trained models of the recent approaches [13, 38]. (a) shows that the
heterogeneity between two distinct types of tokens is highest on the initial embedding
for both approaches, and it gradually decreases in subsequent layers. Unlike the pre-
trained model, the heterogeneity of the non-converged SimMIM [38] model shown in
(b) displays an erratic trend, indicating that the tendency of heterogeneity is acquired
through model convergence.

while the latter aids in feature encoding and decoding. On the other hand, in
subsequent layers, the masked tokens are gradually recovered by the neighboring
visible tokens and will exhibit a heightened correlation with them.

Our investigation centered on determining whether models that demonstrate
effective convergence uphold these hypotheses. To this end, we analyze the pre-
trained models of the recent approaches [13,38] from two facets: 1) Heterogeneity
analysis on pre-trained models of different methods and 2) heterogeneity analysis
of converged and non-converged models.

Heterogeneity analysis on pre-trained models of different methods The
heterogeneity between the masked and visible tokens across every layer of two
pre-trained models, MAE and SimMIM [13,38] utilizing ViT [11] as a backbone
is shown in Figure 1 (a). Note that ‘layer depth 0’ refers to the initial embedding
stage before the masked token is fed into the attention layer as an input. Figure 1
(a) shows that the heterogeneity between two distinct types of tokens is highest
on the initial embedding for both approaches, and it gradually decreases in
subsequent layers. The high heterogeneity in the initial embedding phase reflects
the data distinctiveness of the masked tokens, whereas the masked tokens are
reconstructed to resemble the visible tokens, leading to reduced heterogeneity in
subsequent layers.

Furthermore, Figure 2 presents the affinity map between every token pair for
each layer of the pre-trained model [38]. Affinity maps are listed in order from
initial embedding to subsequent layers, and we used min-max normalization
for visualization. In the interest of understanding, the x-axis and y-axis of the
affinity map are both arranged in the order of masked token XM and visible
image token XV . Thus, we divided the affinity map into quadrants. Note that,
the heterogeneity H is defined in the second quadrant as it corresponds to the
mutual dependence of masked tokens with respect to visible tokens.
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Fig. 2: We present the affinity map between every token pair for each layer of the
pre-trained model [38]. Affinity maps are listed in order from initial embedding to
subsequent layers, and the x-axis and y-axis of the affinity map are both arranged in
the order of masked token XM and the visible image token XV . Note that, the layer
depth increases from top-left to bottom-right. Min-max normalization was used for the
visualization of the affinity maps.

In the first quadrant, the masked token, initially a singular parameter in the
initial embedding, resembles the visible token in the subsequent layers, resulting
in various correlation values. Within the second and third quadrants, the rela-
tionship between the masked token and the visible token exhibits a relatively
low correlation during the initial layers. However, as the masked token under-
goes the reconstruction process, increasingly higher correlations materialize in
the subsequent layers. Finally, the correlation between the visible tokens in the
fourth quadrant is relatively constant regardless of layer depth. In conclusion,
the result of the affinity map qualitatively validates the orthogonality between
the masked token and the visible token in the initial embedding while revealing
a progressive enhancement in their similarity throughout the subsequent layers.
In line with the above hypothesis, the heterogeneity from the initial input to the
subsequent layers shows a distinct decrease in the overall results of Figure 1 and
Figure 2.

Heterogeneity analysis of converged and non-converged models The
heterogeneity of the converged model (‘After Convergence’) and the non-converged
model at the early stage (‘Before Convergence’) of SimMIM [38] is shown in
Figure 1 (b). Unlike the converged model, where the heterogeneity steadily de-
creases, the heterogeneity of the non-converged model displays an erratic trend,
lacking any discernible pattern or structure. The results indicate that a model
lacking a distinct inclination towards heterogeneity at the beginning of training
achieves the desired attributes of the masked token through subsequent conver-
gence.

4 Masked Token Optimization

Our endeavor lies in mitigating the issue of the prolonged pre-training phase by
imposing explicit constraints on the optimization of masked tokens.
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Fig. 3: The proposed Masked Token Optimization (MTO) approach encompasses the
selective exclusion of semantically inconsequential masked tokens from the weight ag-
gregation process pertaining to visible tokens with (3), and at the same time, it enforces
data distinctiveness constraints (4) and (5) based on the depth of the layer to enhance
the model’s capability to accurately identify regions necessitating semantic restoration.

In the initial embedding, the parameter designated for masked tokens is iden-
tical across all corrupted tokens, with their respective values being set via a ran-
dom initialization process. In this context, the semantic voidness within masked
tokens exerts a negative impact on the process of learning features of visible
tokens, impeding the overall efficacy of the representation learning. Therefore,
we propose an explicit optimization in the initial embedding stage that allows
the masked token to be reconstructed by being influenced by the visible token,
but conversely, constrains the visible token from being affected by the masked
tokens. This is achievable through the integration of a sparsity-inducing con-
straining term directly into the weight-learning mechanism of the affinity matrix
between masked tokens and visible tokens. As shown in Figure 2, the x-axis and
y-axis of the affinity map are both arranged in the order of masked token XM

and visible image token XV , which allows the affinity map to be divided into four
quadrants. Concretely, we propose to explore intuitive per-row sparsities within
the third and fourth quadrants of the matrix as they correspond to the reciprocal
dependencies between image tokens in relation to masked tokens and between
image tokens themselves, respectively. The following constraint recalibrates the
weight distribution between visible and masked tokens on a row-specific basis,
increasing the weight between visible-visible tokens in comparison to the weight
assigned to visible-masked token interactions:

Lspa(f(I;Θ)) = −
∑
i/∈δM

∑
j

(pi,j log pi,j) (3)

where p is an element of affinity matrix ψ(XX⊤) that satisfies 0 < pi,j < 1 and∑
j pi,j = 1.
Minimizing the Lspa loss on a row-wise basis ensures the preferential alloca-

tion of maximum weight amongst the interaction of visible and visible tokens
rather than the interaction of visible and masked tokens, which facilitates the
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exclusion of semantically inconsequential masked tokens from the weight aggre-
gation process of visible tokens. This assertion can be substantiated through
the proof in Section 5 of the Supplementary material. The proof explicates the
underlying operational principle of (3), elucidating that achieving minimum en-
tropy per row is contingent upon the consistent assignment of maximum weight
exclusively to interactions between visible tokens. This strategic approach plays
a pivotal role in effectively preventing the influence of masked token values on
the representation learning of visible tokens, thereby upholding the integrity of
the learning algorithm.

Furthermore, as investigated in Section 3, the parameter pertaining to the
masked token of the initial embedding is trained to exhibit a diminutive cor-
relation with the visible token to fulfill the property of data distinctiveness. In
existing methods, this property can solely be achieved by means of the model’s
convergence, which is secured through a long pre-training procedure. From the
perspective of the distinctiveness of the masked token in the initial embed-
ding, we propose to explicitly augment the heterogeneity from the visible token
rather than solely relying on model convergence. By distinctly differentiating
the masked token from the visible token, the network gains the capability to ac-
curately identify regions necessitating semantic restoration, thereby paving the
way for a more efficient learning process. The optimization for the initial masked
token embedding can be formulated as:

Le(f(I;Θ)) =
1

H0 + ϵ
, (4)

where H0 denotes heterogeneity defined in (2) of the initial embedding stage
before passing through the attention layers and ϵ is a small value to prevent zero
division. Eq. (4) augments the distinctiveness of masked tokens by maximizing
the heterogeneity of masked tokens over visible tokens.

On the other hand, masked tokens in the subsequent layers tend to exhibit a
notable correlation towards the visible tokens as they are gradually reconstructed
through interaction with neighboring tokens in the attention layers. In light of
this, with regard to the distinctiveness among tokens, we impose a constraint on
the subsequent layers to have progressively lower heterogeneity. Considering the
common direction of both aspects, we pursue a gradual reduction of heterogene-
ity. To this end, we intuitively employ the form of a ranking loss, strategically
applied to the subsequent layers:

Lr(f(I;Θ)) =

L∑
l=1

log(1 + exp(H l−1 −H l)). (5)

By means of Eq. (5), we enforce a constraint upon the masked tokens in the
subsequent layers, forcing them to exhibit diminished distinguishability from the
visible tokens. Concurrently, we grant masked tokens the capability to exert an
enhanced influence over the feature-learning process of the visible tokens. This
intricate interplay of masked tokens across entire layers strikes a balance, pro-
moting the convergence of token representations while employing only essential
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Algorithm 1 Masked Token Optimization (MTO)
1: Initialize:

f(I;Θ)← initial embedding of I with parameters Θ
2: Recalibrate Weights:

Minimize a sparsity-inducing constraint on the affinity matrix to exclude semanti-
cally inconsequential masked tokens. Lspa(f(I;Θ)) = −

∑
i/∈δM

∑
j(pi,j log pi,j)

3: Enhance Data Distinctiveness:
Maximize the heterogeneity of masked tokens in the initial embedding:
Le(f(I;Θ)) = 1

H0+ϵ

4: Progressive Refinement:
Ensure gradual reduction of heterogeneity in subsequent layers using ranking loss:
Lr(f(I;Θ)) =

∑L
l=1 log(1 + exp(Hl−1 −Hl))

5: Final Objective: Combine the losses for final optimization:
Ltotal = Lspa + Le + Lr

6: Update: Update the parameters Θ to minimize Ltotal

information within the learning framework. Finally, our method is distilled into
the steps outlined in Algorithm 1.

5 Experiments

In this section, we assess the efficacy of the proposed MTO approach through a
series of pre-training and fine-tuning experiments. As MTO is an adaptable and
plug-and-play method for any Masked Image Modeling (MIM)-based approach
that utilizes masked tokens, we apply it to multiple baseline approaches [10,13,
38, 40] to evaluate the effectiveness. Please refer to the Supplementary material
for more experimental results, detailed analysis, and ablation studies.

5.1 Metric for Efficient Pre-training

The main objective of MTO is to reduce the substantial pre-training time of
Transformer-based architecture, that is to say, accelerating the convergence speed.
The area under the curve can be one of the metrics that quantify the rate of
convergence because the faster the network converges and the better the network
performance, the higher the value. Thus, to quantify the relative performance
improvement over the baseline approaches, we propose the RAUC measure, de-
noting the relative area under the curve, as follows:

RAUC(S1, S2;E1, E2) =

∫ E2

E1
(S2(E)− S1(E1))dE∫ E2

E1
(S1(E)− S1(E1))dE

(6)

Here, E1 and E2 represent the number of epochs, and S(E) is set to the
performance of the target method S at specific epoch E. This measure serves as
a quantitative indicator, precisely delineating the extent of relative performance
improvement across a specified range of epochs.
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Fig. 4: The comprehensive performance results of applying MTO to various base-
lines [10, 13, 38, 40]. MTO achieves a substantial improvement in the efficiency of pre-
training by attaining the standard performance within approximately 400 epochs across
all baseline methods in common. This signifies that remarkable enhancement in effi-
ciency is achievable across any MIM method through the application of MTO, rendering
it a viable option for masked tokens.

5.2 Baseline Models

SimMIM [38] models masked image reconstruction as a pretext task for self-
supervised pre-training of Transformer architecture. In SimMIM, masked tokens
are semantically encoded with visible image tokens in the Transformer encoder
and are reconstructed with shallow MLP layers. We pre-train the ViT-B following
the same hyper-parameters as [38] and our losses are additionally adopted to the
Transformer encoder.
MAE [13]. Different from SimMIM [38], only visible image tokens pass through
the Transformer encoder for efficient pre-training. Thus, masked tokens are con-
catenated with encoded visible tokens and pass through the Transformer de-
coder, separating the semantic encoding task from the pretext prediction task. In
MAE, We pre-train the ViT-B and ViT-L following the same hyper-parameters
as [13] and losses are adopted to the Transformer decoder.
BootMAE [10] introduced bootstrapped MAE that combines a bootstrapped
feature prediction task into the original MAE. BootMAE learns separate de-
coders for pixel regression and feature prediction with the same masking strat-
egy as MAE. Thus, we adopted our masked token optimization strategy for both
pixel regression and feature prediction Transformer decoders.
ConMIM [40] taps into the significant potential of contrastive learning within
denoising auto-encoding frameworks. It focuses on generating straightforward
intra-image inter-patch contrastive constraints as the primary learning goals for
predicting masked patches. This approach eliminates the need for additional
training stages often required in customizing image tokenizers.

5.3 Performance Comparisons

We report the results of the proposed method trained on the recent baselines [10,
13,38,40] in Figure 4 and Table 1. Following the same settings for each baseline
method, we pre-trained and fine-tuned on ImageNet-1K classification dataset
for main evaluation. Note that, training recent approaches require a huge hard-
ware specification, making it increasingly difficult to reproduce the reported
results. As all experiments were conducted in our hardware configuration (8×
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RAUC(S1, S2;E1, E2)

S1 S2
(E1, E2)

(100, 400) (200, 400)

SimMIM [38] SimMIM + MTO 1.47 1.44
BootMAE [10] BootMAE + MTO 1.19 1.22

MAE [13] MAE + MTO 1.32 1.29
ConMIM [40] ConMIM + MTO 1.21 1.17

Table 1: We report the evaluation of the proposed relative area under the curve
(RAUC) measure over the baseline approaches [10, 13, 38, 40]. The same backbone
network (ViT-B) is used for pre-training.

Method Backbone Epoch RAUC
400 800 (S1, S2; 400, 800)

S1 MAE [13] ViT-L 68.5 72.7 1.20S2 MAE + MTO 72.8 74.1

S1 MAE [13] ViT-B 57.4 63.9 1.23S2 MAE + MTO 63.6 64.8

S1 BootMAE [10] ViT-B 63.8 65.4 1.22S2 BootMAE + MTO 66.1 66.8

S1 ConMIM [40] ViT-B 32.2 39.2 1.20S2 ConMIM + MTO 38.7 40.3

Table 2: We report the linear evaluation accuracy as a means to assess the capacity
of pre-trained representations to capture relevant features and demonstrate their ap-
plicability to specific tasks.

Proposed optimization Top-1 Acc(%)Lspa Le Lr

✓ 83.2
✓ 83.3

✓ 82.8
✓ ✓ 83.4
✓ ✓ 83.0

✓ ✓ 83.4
✓ ✓ ✓ 83.5

Table 3: We present the detailed ablation study conducted for the importance of the
proposed objectives.

RTX 3090) for fair comparison, the results we reported may differ from those
of their manuscript. For the fair experimental schedule, all the 400 epoch per-
formances were equally measured in intermediate stages in the training towards
800 epochs.

Figure 4 presents a main comparison of the top-1 accuracy between the base-
line models of SimMIM [38], MAE [13], BootMAE [10], ConMIM [40] and our
method with the MTO applied. We conducted experiments on ViT-B [11] and
ViT-L as a backbone attention network.

Through the application of MTO, the convergence process was significantly
accelerated in all baseline methods, with the baseline’s standard performance be-
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ing achieved within the range of 300 to 500 epochs. Specifically, in the case of the
SimMIM [38] and BootMAE [10] baseline, the application of MTO remarkably
expedited performance, achieving in merely 300 to 400 epochs what typically
requires 800 epochs, thereby realizing an impressive pre-training reduction rate
of 54% and 58%. For both MAE [13] and ConMIM [40], the performances of
the existing 800-epoch baseline were attained remarkably within just 400 epochs
with the application of MTO. Our approach facilitated a substantial pre-training
reduction rate of 50% for both methods. Moreover, even in the MAE [13] base-
line utilizing the data-hungry model ViT-L, the introduction of MTO yielded
impressive outcomes, manifesting in a pre-training epoch reduction rate of 43%.

The deployment of the proposed methodology across a range of baselines un-
equivocally validated the improvement of pre-training efficiency attributed to the
implementation of MTO. This advancement stemmed from the effective training
of masked tokens, a theme emphasized consistently throughout the manuscript,
leading to a marked enhancement in the overall efficacy of pretext prediction
and the refinement of representation learning.

RAUC: Table 1 reports the evaluation using the proposed relative area under
the curve (RAUC) measure over the baseline approaches [10, 13, 38, 40]. This
introduced metric effectively highlights the relative performance enhancements,
offering a clear and immediate understanding upon initial observation. Across
the range from 200 to 400 epochs, the relative performance improvement rates
for SimMIM [38], BootMAE [10], MAE [13], and ConMIM [40] are 44%, 22%,
29% and 17%, respectively. Besides, in the overall range from 100 to 400 epochs,
the relative performance increase rate was amplified further, showing rates of
47%, 19%, 32%, and 21% for each baseline. The result accentuates the diverse
degrees of enhancement achieved by applying MTO to each method. Moreover, it
confirms MTO’s efficacy in reducing the pre-training epochs across all baselines,
encompassing the full spectrum of the training procedure.

Furthermore, we report the linear evaluation accuracy in Table 2 as a means
to assess the capacity of pre-trained representations to capture relevant features
and demonstrate their applicability to specific tasks. Upon the application of
MTO, the performance achieved at 400 epochs highly surpasses the performance
achieved at the same epoch by all the baseline methods [10, 13, 40], manifesting
an acceleration in the convergence process. Especially for MAE, the application
of MTO demonstrated superior efficiency with both ViT-B and ViT-L architec-
tures, highlighting the method’s adaptability and effectiveness across different
architectures.

Table 2 additionally reports the evaluation using the proposed relative area
under the curve (RAUC) measure over the baseline approaches [13,38] by setting
the baseline method as S1 and the MTO application as S2, using the equation
(8). Within the range of 400 to 800 epochs, MTO exhibits a substantial relative
performance improvements of 20% overall. The comprehensive results in Table 2
reveal that the MTO method significantly enhances performance and accelerates
convergence in methods employing masked tokens. This broad efficacy suggests
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that MTO exhibits excellent generalizability across a range of masked image
modeling methods.

5.4 Ablation on Objectives

In our approach, we introduce three novel objectives, denoted as ‘Lspa’, ‘Le’ and
‘Lr’ specifically designed for masked token optimization. Table 3 presents the
detailed ablation study conducted for the importance of these objectives. All
experiments report the ImageNet-1K classification accuracy on 400 epochs of
SimMIM [38] using ViT-B as a backbone architecture.

Broadly speaking, each objective contributed notably to enhancing the per-
formance and expediting the convergence process. Upon delving into the specifics,
it becomes apparent that Lr, when utilized in isolation, emerged as a factor
contributing to the destabilization of performance outcomes. This phenomenon
arises due to the fact that ranking loss merely modulates the magnitude of
heterogeneity for each layer sequentially. Such a singular approach carries the
risk of systemic collapse, potentially leading to scenarios where all heterogeneity
converges to zero, thus undermining the model’s structural integrity. Neverthe-
less, the simultaneous application of Lr with Le leads to a harmonized effect.
The entropy maximization impact of Le at the first layer acts as a regulatory
mechanism, effectively elevating the overall performance to a notable 83.4. More-
over, both Lspa and Le demonstrate meaningful importance within the overall
methodology. The sole application of each led to favourable enhancements in
overall performance, elevating it to 83.2 and 83.3, respectively, underscoring
their individual efficacy in the process. Consequently, the synergistic integration
of all three optimizations emerged as a requisite for achieving the zenith of con-
vergence acceleration and performance enhancement, highlighting the necessity
of their collective implementation for optimal results.

6 Related Work

6.1 Masked Language Modeling

Masked Language Modeling (MLM) [2, 7–9, 12, 22, 29–31, 41] predicts removed
tokens based on remained ones to inject the ability of learning semantic repre-
sentation of a corpus to the network. While MLM has brought rapid advances
in natural language processing (NLP) and have been shown to scale and gener-
alize well on downstream tasks [3], the problem of prelonged convergence time
and immense computation of naive MLM still remained. Amid these challenges,
more efficient self-supervised pre-training approaches [6,17,18,20,34] have been
proposed. ALBERT [17] proposes two parameter reduction techniques, factor-
ized embedding parameterization and cross-layer parameter sharing, for memory
efficiency and shortening the training time. Based on the Lottery Ticket Hy-
pothesis (LTH), EaryBERT [6] prunes the network for efficient pre-training and
fine-tuning. CCM [18] designs a curriculum masking framework that gradually
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masks similar tokens of similar concepts in an easy-to-difficult order. Similar to
MAE [13], 3ML [20] learns the encoder by separating the mask tokens from the
sequence and conducts reconstruction only through the decoder.

6.2 Masked Image Modeling

Masked Image Modeling (MIM) [1, 4, 5, 10, 13–15, 21, 25–27, 36, 38, 39, 43–45] is
a relatively new technique that has gained popularity in the field of computer
vision and machine learning in recent years. The basic idea behind MIM is to
predict missing or occluded parts of an image using a neural network trained on
partially masked images. Inspired by NLP, iGPT [5] and iBERT [36] have at-
tempted to transfer the pretext task of masked prediction from language to image
data, but these have caught less attention due to their inferior performance to
other approaches. Different from iBERT which directly reconstructs the masked
patches, BEiT [1] uses a two-stage approach that requires a pre-trained discrete
variational autoencoder (dVAE) to generate discretized target visual tokens. In
contrast, MAE [13] and SimMIM [38] are end-to-end training methods of masked
autoencoders. MAE predicts masked patches directly from unmasked ones with
a high masking ratio of 75%. SimMIM has a similar structure to MAE but with
a larger patch size and multiple masking strategies.

Despite the impressive performance, masked autoencoder approaches require
a large amount of computation with large-scale training datasets. Researchers
have explored using hierarchical Vision Transformers (ViTs) to improve the effi-
ciency of pre-training models for masked image modeling by enabling the ViTs
to discard masked patches and only operate on visible ones. GreenMIM [15] in-
troduced group window attention, while HiViT [44] and MixMAE [21] enable
masking in hierarchical ViT. In contrast to prior methodologies, the proposed
method considers the inherent properties of the tokens employed by MIM as a
fundamental approach to effective pre-training.

7 Conclusion

This work delves into the properties of masked tokens, examines their hetero-
geneity with visible tokens, and proposes a novel approach termed masked token
optimization (MTO). MTO boosts both pretext prediction and semantic en-
coding by emphasizing data distinctiveness of the masked token, achieving a
considerable improvement on pre-training efficiency. Also, our method can be
applied to any method in a plug-and-play manner thanks to a simple approach
that only adds loss functions.
Limitations Within the scope of this manuscript, the triad of properties at-
tributed to masked tokens, are not to be deemed immutable, but rather dynamic
concepts subject to evolution. With the continual progression in the realm of
Masked Image Modeling, it becomes imperative that these attributes undergo
constant updates and refinement. Embracing this process of perpetual revision
and advancement is vital to remain abreast of the ever-evolving landscape of
research in this specialized field.
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1 Evaluation on Transfer Learning

We further conducted an extensive evaluation of the transfer learning perfor-
mance of pre-trained models utilizing the proposed MTO by examining their
effectiveness in various downstream tasks, including semantic segmentation, ob-
ject detection, and instance segmentation.
Semantic segmentation: Table 1 presents a comprehensive analysis of the
transfer learning performance on ADE20K [16], highlighting a comparative eval-
uation between the application of our proposed MTO approach and the baseline
methods [3, 6, 15] using ViT-B as the backbone. The application of MTO re-
sulted in a remarkable improvement in the training efficiency of the semantic
segmentation task, where training for just 400 epochs on both baselines exhib-
ited a performance comparable to that achieved on 800 epochs of the baseline
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Method Epoch mIoU

MAE [6] 800 47.5
MAE + MTO 400 44.1
MAE + MTO 800 48.4
BootMAE [3] 800 49.1
BootMAE + MTO 400 49.4
BootMAE + MTO 800 50.3
ConMIM [15] 800 49.8
ConMIM + MTO 400 49.1
ConMIM + MTO 800 50.2

Table 1: Our study includes an in-depth evaluation of transfer learning on
ADE20K [16], comparing the efficiency of our MTO approach with baseline meth-
ods [3, 6, 15], all utilizing ViT-B as the backbone. Implementing MTO significantly
enhanced the training efficiency in the semantic segmentation task. Remarkably, a 400-
epoch training period using MTO on both baselines matched the performance level of
the 800-epoch training period using the baseline methods.

Method Epoch AP bb APmk

MAE [6] 800 46.9 41.6
MAE + MTO 400 46.5 40.8
MAE + MTO 800 47.2 41.5
BootMAE [3] 800 48.5 43.4
BootMAE + MTO 400 48.4 43.1
BootMAE + MTO 800 49.1 43.4
ConMIM [15] 800 47.8 42.5
ConMIM + MTO 400 47.6 42.2
ConMIM + MTO 800 48.8 42.9

Table 2: Our study involved a detailed assessment of transfer learning on COCO [7],
focusing on the effectiveness of the MTO approach relative to existing methods [3, 6,
15], all using the ViT-B architecture. The results of these experiments demonstrated
a notable improvement in transfer learning in both the AP bb and APmk measures,
through the application of MTO. These findings robustly affirm the significant influence
and efficiency of MTO in enhancing training processes and elevating the transferability
of pre-trained models.

method. Furthermore, it is worth noting that the performance at 800 epochs
with the proposed MTO exceeded the performance achieved on 800 epochs of all
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the baseline methods, demonstrating a significant improvement in overall perfor-
mance. This outcome signifies that an adept configuration of masked tokens not
only catalyzes rapid convergence but also aids in the acquisition of vital features
that exhibit a high degree of generalizability.
Object detection and instance segmentation: Table 2 shows an evaluation
of the transfer learning performance on COCO [7], meticulously examining the
impact of our MTO approach in comparison to the baseline methods [3,6,15] us-
ing ViT-B as the backbone. The experimental results on BootMAE [3] and Con-
MIM [15] showcased a remarkable enhancement in transfer learning performance
by harnessing the power of MTO in both the AP bb and APmk measures. This
substantiates the compelling impact and effectiveness of MTO in facilitating su-
perior training efficiency and improving the overall transferability of pre-trained
models. However, in the MAE [6] experiment, the application of MTO posed
challenges in improving the APmk measure, thereby indicating the marginal
improvement of final converged performance. Nevertheless, we successfully ac-
complished our objective of enhancing training efficiency on the AP bb measure
of MAE. Overall, MTO not only augmented the training efficiency across all
baseline methods but also enhanced their converged performance in the final
800 epochs. These favourable achievements underscores the effectiveness of the
proposed masked token optimization in enhancing the overall efficiency of the
training process of transfer learning.

2 Evaluation on Different Architectures

In the realm of masked image modeling, two distinct methodologies have gar-
nered significant attention. In the first approach, masked tokens are employed at
the encoder level. This method involves selectively masking certain image seg-
ments before the encoding process, where the visible tokens and masked tokens
are encoded simultaneously. By doing so, the encoder is compelled to develop
a more nuanced understanding of the image context and the relationships be-
tween visible and masked tokens, thereby improving the model’s prediction accu-
racy and feature extraction capabilities. This encoder-centric method of utilizing
masked tokens is also referred to as the ‘Inpainting-style’ [14] approach. Notable
studies of this methodology include exemplars such as BEiT [1], SimMIM [13],
ConMIM [15], MaskFeat [11], MVP [12] and BEiT V2 [10].

Conversely, the second approach in masked image modeling applies masked
tokens within the decoder framework. This technique exclusively utilizes visible
tokens as the input for the encoder, followed by the application of a multi-layer
Transformer. This architecture is designed to decode the masked features, strate-
gically incorporating the use of masked tokens prior to initiating the decoding
process. Also termed as the ‘Decoder-style’ method [14], this approach is distin-
guished by its relatively superior linear probing accuracy, a notable advantage
over the inpainting-style technique. Representative studies of this approach in-
clude MAE [6], CAE [2], MCMAE [5], and BootMAE [3].
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Fig. 1: The implementation of MTO in two different MIM architectures showed vary-
ing results. MTO successfully facilitated rapid convergence in both methodologies,
extending up to 400 epochs. However, at the 800 epoch juncture, the efficacy of MTO
becomes strikingly evident with SimMIM [13], an inpainting-style method, demonstrat-
ing an overwhelming superiority in performance over MAE [6], which adheres to the
decoder style approach.

The result derived from implementing MTO within these two distinct MIM
methodologies revealed variances. As shown in Figure 1, MTO successfully fa-
cilitated rapid convergence in both methodologies, extending up to 400 epochs.
However, at the 800 epoch juncture, the efficacy of MTO becomes strikingly
evident with SimMIM [13], an inpainting-style method, demonstrating an over-
whelming superiority in performance over MAE [6], which adheres to the decoder
style approach.

The root of this outcome can be traced back to the specific application locus
of the proposed masked token optimization method. The concurrent occurrence
of pretext prediction and representation learning within the inpainting-style
method provides fertile ground for the MTO method to enhance representation
learning performance, showcasing a synergistic interplay that elevates the over-
all efficacy of the process. However, within the decoder-style methodologies, the
MTO method engages less intrusively in the depths of the representation learn-
ing process, maintaining a relatively peripheral influence compared to its impact
in the inpainting-style approaches. Hence, while the MTO method universally
enhances convergence speed and overall performance across all masked token
methodologies, its zenith of potential is most prominently realized when applied
to the inpainting style method, where its capabilities are optimally harnessed.

3 Ablation on Decoder Depth

We conducted a comprehensive investigation into the influence of layer depth
on the performance of MTO. In essence, our study delved into the varying de-
grees of optimization efficacy exhibited by MTO, contingent upon the number
of layers dedicated to pretext prediction under decoder conditions where feature
encoding is absent, thus providing insights into the performance dynamics of
MTO. Figure 2 presents a detailed ablation study on the number of decoder
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Fig. 2: We conducted a comprehensive study that delves into the varying degrees of op-
timization efficacy exhibited by MTO, contingent upon the number of layers dedicated
to pretext prediction under decoder conditions where feature encoding is absent, thus
providing insights into the performance dynamics of MTO. We report the ImageNet-
1K classification accuracy achieved by the MAE [6] model trained for 400 epochs using
ViT-B as the backbone. Superior MTO optimization performance was achieved when
an ample number of layers were used in both fine-tuning and linear probing perfor-
mance.

config value

optimizer AdamW [9]
pre-training base learning rate 1e-4
pre-training weight decay 0.05
pre-training optimizer momentum β1, β2 = 0.9, 0.999
pre-training batch size 2048
learning rate schedule cosine decay [8]
pre-training warmup epochs 10
fine-tuning base learning rate 5e-3
fine-tuning weight decay 0.05
fine-tuning optimizer momentum β1, β2 = 0.9, 0.999
layer-wise learning rate decay 0.9
fine-tuning batch size 2048
fine-tuning warmup epochs 10
fine-tuning training epochs 100

Table 3: Hyperparameters used for SimMIM [13] experiments. All configs follow the
setting of [13].

blocks. All experiments report the ImageNet-1K classification accuracy achieved
by the MAE model trained for 400 epochs using ViT-B as the backbone.

Overall, superior MTO optimization performance was achieved when an am-
ple number of layers were used in both fine-tuning and linear probing perfor-
mance. When an insufficient number of layers are employed, the rank objective
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config value

optimizer AdamW [9]
pre-training base learning rate 1.5e-4
pre-training weight decay 0.05
pre-training optimizer momentum β1, β2 = 0.9, 0.95
pre-training batch size 4096
learning rate schedule cosine decay [8]
pre-training warmup epochs 40
fine-tuning base learning rate 1e-3
fine-tuning weight decay 0.05
fine-tuning optimizer momentum β1, β2 = 0.9, 0.999
layer-wise learning rate decay 0.75
fine-tuning batch size 1024
fine-tuning warmup epochs 5
fine-tuning training epochs 100 (ViT-B), 50 (ViT-L)

Table 4: Hyperparameters used for MAE [6] experiments. All configs follow the setting
of [6].

integral to this optimization method falters, leading to suboptimal results. This
inadequacy is reflected in the diminished fine-tuning accuracy and linear prob-
ing performance, which were recorded at the lowermost figures of 82.9 and 60.5,
respectively.

Fine-tuning accuracy reached its pinnacle when the number of layers was set
to either 2 or 8. This outcome suggests that MTO operates effectively with a
layer count as minimal as two, showcasing its versatility and efficiency in various
configurations.

Conversely, linear probing accuracy consistently exhibited superior results
when the layer count was extended to 8 or more, indicating a positive correla-
tion between increased layer numbers and enhanced linear probing efficacy. This
observation aligns seamlessly with the experimental findings of MAE [6], which
highlight the necessity of a sufficiently deep decoder to attain high linear probing
accuracy. It is stated that this requirement stems from the inherent difference
between pixel reconstruction and recognition tasks. Nevertheless, the efficiency
of MTO exhibited a slight diminution when the layer count was increased to as
many as 12, suggesting a balance between layer quantity and optimization effi-
cacy. In contrast to fine-tuning, linear probing displayed a pronounced variance
in performance contingent on the layer count. Hence, to achieve optimal results
in linear probing, it becomes imperative to meticulously calibrate the number of
layers through experimental fine-tuning within the masked token optimization
process.
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config value

optimizer AdamW [9]
pre-training base learning rate 1.5e-4
pre-training weight decay 0.05
pre-training optimizer momentum β1, β2 = 0.9, 0.95
pre-training batch size 4096
learning rate schedule cosine decay [8]
pre-training warmup epochs 40
fine-tuning base learning rate 5e-3
fine-tuning weight decay 0.05
fine-tuning optimizer momentum β1, β2 = 0.9, 0.999
layer-wise learning rate decay 0.75
fine-tuning batch size 1024
fine-tuning warmup epochs 20
fine-tuning training epochs 100

Table 5: Hyperparameters used for BootMAE [3] experiments. All configs follow the
setting of [3].

4 Implementation Details

We list configurations for each baseline approach [3,6,13] used in the experiments
of the original manuscript. The hyperparameters are categorically segregated
into two distinct domains: pre-training and fine-tuning, each representing a spe-
cific aspect of the model’s training process. Note that we followed the settings
of each method for a fair comparison.

4.1 SimMIM Experiments

Table 3 presents the hyperparameters utilized in the experimental setup of Sim-
MIM [13], encompassing key configurations and settings employed throughout
the study. In the SimMIM experiments, we adopt ViT-B [4] as the default back-
bone to align with the setting of the baseline approach.

4.2 MAE Experiments

Table 4 provides an overview of the hyperparameters employed in the experi-
mental setup of MAE [6], offering a comprehensive insight into the crucial con-
figurations and settings of the study. In an effort to evaluate scalability while
maintaining fidelity to the fundamental approach, we strategically employ ViT-B
and ViT-L as the backbones in the MAE experiments.
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config value

optimizer AdamW [9]
pre-training peak learning rate 5e-4
pre-training base learning rate 1e-5
pre-training weight decay 0.05
pre-training optimizer momentum β1, β2 = 0.9, 0.98
pre-training batch size 2048
learning rate schedule cosine decay [8]
pre-training warmup epochs 10
fine-tuning peak learning rate 1e-3, 2e-3, 3e-3, 4e-3, 5e-3
fine-tuning minimal learning rate 1e-6
fine-tuning weight decay 0.05
fine-tuning optimizer momentum β1, β2 = 0.9, 0.999
layer-wise learning rate decay 0.65
fine-tuning batch size 1024
fine-tuning warmup epochs 20
fine-tuning training epochs 100

Table 6: Hyperparameters used for ConMIM [15] experiments. All configs follow the
setting of [15].

4.3 BootMAE Experiments

The hyperparameters employed in the experiment of BootMAE [3] are presented
in Table 5. We adopt ViT-B as the default backbone in the BootMAE experi-
ments. By doing so, we ensure an environment of consistent and reliable evalu-
ation throughout our study.

4.4 ConMIM Experiments

Table 6 outlines the hyperparameters used in the ConMIM [15] experiment’s
design, detailing essential configurations and settings. For the ConMIM experi-
ments, ViT-B is chosen as the backbone encoder, maintaining consistency with
the baseline approach’s settings.

5 Full Proof for Equation (3) of manuscript

Definition 1. Let (X, d) be a metric space, E be a subset of X and f a real-valued
function with domain E. Suppose that p is a limit point of E. The function f has
a limit at p if there exists a number L ∈ R such that given any ε > 0, there
exists a δ > 0 for which



Abbreviated paper title 9

|f(x)− L| < ε (1)

for all points x ∈ E satisfying 0 < d(x, p) < δ. If this is the case, we write

lim
x→p

f(x) = L or f(x) → L as x → p (2)

Let U = {x |x ∈ A} ∪ {y | y ∈ B} be a single row of the affinity map where
the x-axis and y-axis are both arranged in the order of masked token XM

and visible image token XV . Without loss of generality, we assume that A =
{p1, p2, . . . , pn−1, pn} and B = {pn+1, pn+2, . . . , pN−1, pN} refers to the weights
between the visible-masked tokens and visible-visible tokens, respectively. Here,
n = |δM | and N indicate the number of masked tokens and the number of all
tokens, respectively. The entropy of U is expressed as EU = −

∑N
l=1(pl log pl).

It can be decomposed as EU = EA + EB, where EA = −
∑n

l=1(pl log pl) and
EB = −

∑N
l=n+1(pl log pl).

U = {x |x ∈ A} ∪ {y | y ∈ B} , (3)
A = {p1, p2, . . . , pn−1, pn} , (4)
B = {pn+1, pn+2, . . . , pN−1, pN} , (5)

EU = −
N∑
l=1

(pl log pl), (6)

EA = −
n∑

l=1

(pl log pl), (7)

EB = −
N∑

l=n+1

(pl log pl) (8)

ε > 0 (9)

The following conditions apply:
Condition 1. p1 = p2 = . . . = pn−1 = pn
Condition 2. ∀p ∈ A : 0 < p < 1

n
Condition 3. if max pi ∈ A : max pi ≈ 1

n ,
if max pi ∈ B : max pi ≈ 1,
min pj = ε (i ̸= j, 1 ≤ i ≤ N, 1 ≤ j ≤ N)
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Proof. We proceed by induction on n ≥ 1. When max pi ∈ B, the value of EU

is lower than when max pi ∈ A. (except for n = 1)

Step 1: if n = 1
A = {p1} , B = {p2, p3, . . . , pt, . . . , pN−1, pN}

By Condition 2. ∀p ∈ A : 0 < p < 1

i) Case 1
If max pi ∈ A
By Condition 3. p1 ≈ 1
p2 = p3 = · · · = pN−1 = pN = ε

EU = EA + EB

= −p1 log p1 +

N∑
l=2

(−pl log pl)

= lim
x→1−

(−x log x) +

N∑
l=2

lim
yl→0+

(−yl log yl)

→ 0 (|EU − 0| < ε, which satisfy Definition 1. )

(10)

ii) Case 2
If max pi ∈ B
pt = max pi(2 ≤ t ≤ N), by Condition 3. pt ≈ 1
By Condition 3. ∀p ∈ A : p < pt
pt ≈ 1− p1
∴ p1 = ε, p3 = p4 = · · · = pt−1 = pt+1 = · · ·
= pN−1 = pN = ε

EU = EA + EB

= (−p1 log p1) +

−pt log pt +

N∑
l=2,l ̸=t

(−pl log pl)


= lim

x→0+
(−x log x)

+

 lim
y→1−

(−y log y) +

N∑
l=2,l ̸=t

lim
zl→0+

(−zl log zl)


→ 0 (|EU − 0| < ε, which satisfy Definition 1. )

(11)

It is impossible to compare which of EUcase1 and EUcase2 is higher.

Step 2: if n = 2
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A = {p1, p2} , B = {p3, p4, . . . , pt, . . . , pN−1, pN}

By Condition 2. ∀p ∈ A : 0 < p < 1
2

i) Case 1
If max pi ∈ A
By Condition 1. and Condition 2. ∀p ∈ A : p ≈ 1

2
p3 = p4 = · · · = pN−1 = pN = ε

EU = EA + EB

=

2∑
l=1

(−pl log pl) +

N∑
l=3

(−pl log pl)

=

2∑
l=1

lim
xl→ 1

2−
(−xl log xl) +

N∑
l=3

lim
yl→0+

(−yl log yl)

→ log 2 (|EU − log 2| < ε, which satisfy Definition 1. )

(12)

ii) Case 2
If max pi ∈ B
pt = max pi (3 ≤ t ≤ N), by Condition 3. pt ≈ 1
By Condition 3. ∀p ∈ A : p < pt
pt ≈ 1− (p1 + p2)
∴ p1 = p2 = ε, p3 = p4 = · · · = pt−1

= pt+1 = · · · = pN−1 = pN = ε

EU = EA + EB

=

2∑
l=1

(−pl log pl) +

−pt log pt +

N∑
l=3,l ̸=t

(−pl log pl)


=

2∑
l=1

lim
xl→0+

(−xl log xl)

+

 lim
y→1−

(−y log y) +

N∑
l=3,l ̸=t

lim
zl→0+

(−zl log zl)


→ 0 (|EU − 0| < ε, which satisfy Definition 1. )

(13)

Always EUcase1 > EUcase2

Step 3: if n = k
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A = {p1, p2, . . . , pk−1, pk} ,
B = {pk+1, pk+2, . . . , pt, . . . , pN−1, pN}

By Condition 2. ∀p ∈ A : 0 < p < 1
k

i) Case 1
If max pi ∈ A
By Condition 1. and Condition 2. ∀p ∈ A : p ≈ 1

k
pk+1 = pk+2 = · · · = pN−1 = pN = ε

EU = EA + EB

=

k∑
l=1

(−pl log pl) +

N∑
l=k+1

(−pl log pl)

=

k∑
l=1

lim
xl→ 1

k−
(−xl log xl) +

N∑
l=k+1

lim
yl→0+

(−yl log yl)

→ log k (|EU − log k| < ε, which satisfy Definition 1. )

(14)

ii) Case 2
If max pi ∈ B
pt = max pi (n+ 1 ≤ t ≤ N), by Condition 3. pt ≈ 1
By Condition 3. ∀p ∈ A : p < pt
pt ≈ 1−

∑k
l=1 pl

∴ p1 = p2 = · · · = pk−1 = pk = ε,
pk+1 = pk+2 = · · · = pt−1 = pt+1 = · · ·
= pN−1 = pN = ε

EU = EA + EB

=
k∑

l=1

(−pl log pl)

+

−pt log pt +

N∑
l=k+1,l ̸=t

(−pl log pl)


=

k∑
l=1

lim
xl→0+

(−xl log xl)

+

 lim
y→1−

(−y log y) +

N∑
l=k+1,l ̸=t

lim
zl→0+

(−zl log zl)


→ 0 (|EU − 0| < ε, which satisfy Definition 1. )

(15)
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Always EUcase1
> EUcase2

Step 4: if n = k + 1

A = {p1, p2, . . . , pk, pk+1} ,
B = {pk+2, pk+3, . . . , pt, . . . , pN−1, pN}

By Condition 2. ∀p ∈ A : 0 < p < 1
k+1

i) Case 1
If max pi ∈ A
By Condition 1. and Condition 2. ∀p ∈ A : p ≈ 1

k+1
pk+2 = pk+3 = · · · = pN−1 = pN = ε

EU = EA + EB

=

{
k∑

l=1

(−pl log pl) + (−pk+1 log pk+1)

}

+

{
N∑

l=k+1

(−pl log pl)− (−pk+1 log pk+1)

}

=

k+1∑
l=1

lim
xl→ 1

k+1−
(−xl log xl) +

N∑
l=k+2

lim
yl→0+

(−yl log yl)

→ log (k + 1)

(|EU − log (k + 1)| < ε, which satisfy Definition 1. )

(16)

ii) Case 2
If max pi ∈ B
pt = max pi (n+ 2 ≤ t ≤ N), by Condition 3. pt ≈ 1
By Condition 3. ∀p ∈ A : p < pt
pt ≈ 1−

∑k+1
l=1 pl

∴ p1 = p2 = · · · = pk = pk+1 = ε,
pk+2 = pk+3 = · · · = pt−1 = pt+1 = · · ·
= pN−1 = pN = ε
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EU = EA + EB

=

{
k∑

l=1

(−pl log pl) + (−pk+1 log pk+1)

}

+


(−pt log pt)+

N∑
l=k+1,l ̸=t

(−pl log pl)− (−pk+1 log pk+1)


=

k+1∑
l=1

lim
xl→0+

(−xl log xl)

+

 lim
y→1−

(−y log y) +

N∑
l=k+2,l ̸=t

lim
zl→0+

(−zl log zl)


→ 0 (|EU − 0| < ε, which satisfy Definition 1. )

(17)

When n ≥ 2, the value of EU is lower which satisfy max pi ∈ B than the value
of EU which satisfy max pi ∈ A.



Abbreviated paper title 15

References

1. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: Bert pre-training of image transformers.
In: International Conference on Learning Representations (2021)

2. Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y., Han, S., Luo, P., Zeng, G.,
Wang, J.: Context autoencoder for self-supervised representation learning. arXiv
preprint arXiv:2202.03026 (2022)

3. Dong, X., Bao, J., Zhang, T., Chen, D., Zhang, W., Yuan, L., Chen, D., Wen,
F., Yu, N.: Bootstrapped masked autoencoders for vision bert pretraining. In:
European Conference on Computer Vision. pp. 247–264. Springer (2022)

4. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

5. Gao, P., Ma, T., Li, H., Lin, Z., Dai, J., Qiao, Y.: Mcmae: Masked convolution
meets masked autoencoders. Advances in Neural Information Processing Systems
35, 35632–35644 (2022)

6. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 16000–16009 (2022)

7. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

8. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

9. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

10. Peng, Z., Dong, L., Bao, H., Ye, Q., Wei, F.: Beit v2: Masked image modeling with
vector-quantized visual tokenizers. arXiv preprint arXiv:2208.06366 (2022)

11. Wei, C., Fan, H., Xie, S., Wu, C.Y., Yuille, A., Feichtenhofer, C.: Masked feature
prediction for self-supervised visual pre-training. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 14668–14678 (2022)

12. Wei, L., Xie, L., Zhou, W., Li, H., Tian, Q.: Mvp: Multimodality-guided visual
pre-training. In: European Conference on Computer Vision. pp. 337–353. Springer
(2022)

13. Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A
simple framework for masked image modeling. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 9653–9663 (2022)

14. Xue, H., Gao, P., Li, H., Qiao, Y., Sun, H., Li, H., Luo, J.: Stare at what you see:
Masked image modeling without reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 22732–22741 (2023)

15. Yi, K., Ge, Y., Li, X., Yang, S., Li, D., Wu, J., Shan, Y., Qie, X.: Masked image
modeling with denoising contrast. arXiv preprint arXiv:2205.09616 (2022)

16. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 633–641 (2017)


	MTO
	Emerging Property of Masked Token for Effective Pre-training

	MTO-supple
	Emerging Property of Masked Token for Effective Pre-training- Supplementary material




