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Abstract. In this paper, we introduce Saliency-Based Adaptive Mask-
ing (SBAM), a novel and cost-effective approach that significantly en-
hances the pre-training performance of Masked Image Modeling (MIM)
approaches by prioritizing token salience. Our method provides robust-
ness against variations in masking ratios, effectively mitigating the per-
formance instability issues common in existing methods. This relaxes the
sensitivity of MIM-based pre-training to masking ratios, which in turn
allows us to propose an adaptive strategy for ‘tailored’ masking ratios
for each data sample, which no existing method can provide. Toward
this goal, we propose an Adaptive Masking Ratio (AMR) strategy that
dynamically adjusts the proportion of masking for the unique content of
each image based on token salience. We show that our method signifi-
cantly improves over the state-of-the-art in mask-based pre-training on
the ImageNet-1K dataset. Code and model parameters are available at
https://github.com/doihye/SBAM.

Keywords: Self-supervised learning · Masked image modeling · Masked
autoencoder

1 Introduction

Recent drastic improvements in various Computer Vision tasks rely heavily on
Transformer architectures [12]. A critical component that enables these architec-
tures is the necessity of large-scale data [9], which is not always readily available.
Naturally, pre-training with pretext tasks has become a popular solution as a
workaround, represented by Masked Image Modeling (MIM) [1, 11, 14, 36], in-
spired by how Masked Language Modeling (MLM) [2,7,10,24] has reshaped the
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Fig. 1: Overview of SBAM. Whereas (a) Random Masking must rely completely on
chance and carefully tuned masking ratio to guarantee effective masking, (b) the pro-
posed SBAM strategically masks tokens based on the token salience. The robustness
of SBAM paved the way for the introduction of (c) AMR, which implements a tailored
masking ratio for each sample in the dataset.

Natural Language Processing landscape. These strategies involve masking a sub-
set of the input data and predicting those that have been hidden, thus forcing
the deep network to infer underlying concepts.

While MIM has significantly advanced self-supervised learning in vision, its
conventional approach to randomly selecting tokens for masking falls short of
harnessing the full potential of visual data [18]. Unlike in text, where random-
ness might obscure key semantic units, the visual domain’s complexity and token
redundancy demand a more strategic masking protocol to ensure model compre-
hension. This necessity prompts us to explore a refined masking methodology,
targeting a selection process that achieves the goal of image understanding for
pre-trained models, thereby bridging the gap in modality-specific pre-training
strategies.

Various techniques [18, 25, 35] have thus been proposed for more effective
masking. While these methods all strive toward improved pre-training, an over-
sight shared amongst all methods is that they do not regard the contribution of
each token within the overall composition of the image. It is crucial to scrutinize
the interconnections between tokens to ensure that the token masking includes
the tokens that play a pivotal role within the image. Moreover, prior masking
methodologies [18, 25, 35] fail to address the critical consideration of the mask-
ing ratio, a factor that ought to dynamically adjust in response to the size and
quantity of pivotal objects embedded within the image. This is primarily due
to the difficulty reported in various works [14, 36, 39] that minor changes in the
optimized masking ratio can lead to performance instability, rendering such con-
siderations difficult to implement. Thus, these methods must rely completely on
chance and carefully tuned masking ratio to guarantee effective masking. Be-
sides, contemporary masking strategies [18,25,35] often grapple with high com-
plexity, burdened by intricate distillation frameworks [18], auxiliary detection
processes [35], and duplicated forward processes [25].
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In this work, we introduce a simple yet novel approach that focuses on to-
ken dynamics, termed Salience-Based Adaptive Masking (SBAM), which aims
to strategically select masking locations by discerning perceptual prominence
within the visual data. Specifically, the proposed method leverages the direc-
tional emphasis from attention mechanisms to identify the image tokens piv-
otal to the visual context. Significantly, our methodology stands apart from the
conventional attention-based approach [25] by leveraging the token’s outgoing
weight to calculate its ‘token salience’ within the image and prioritizing those
that have high salience to be masked. We also infuse a degree of randomness
into token salience to enrich the diversity of mask generation. Further details of
SBAM are elaborated in Sec. 3. Thus, without any significant additional cost,
we can consider the token’s prominence within the image.

Crucially, the strength of the SBAM approach lies in its robustness to the
varying masking ratios—a notable vulnerability in established baselines [14, 36,
39], which struggles from performance instability with even minor variations in
optimized masking ratio. The robustness of SBAM is attributable to the pro-
posed analytical precision in token dynamics, selectively masking tokens pivotal
to the image’s entirety. As a result, SBAM exhibits a diminished likelihood of
masking redundant or non-essential segments, offering a stable alternative to
the random masking or preceding masking approaches. Along with improving
robustness to mask ratio variations, SBAM significantly enhances pre-training
efficiency. A comprehensive evaluation of this is provided in Sec. 4.

Establishing robustness against variations in masking ratios has empowered
us to expand the discourse on image masking into a pioneering aspect, intro-
ducing an innovative paradigm: an Adaptive Masking Ratio (AMR). We find
having masking ratios that adapt throughout training to be highly effective, as
it allows the masking process to be tailored to each sample in the dataset. For
instance, each image may benefit from different masking ratios, as one image
might have a close-up of a bear which would enjoy high masking ratios, whereas
one might have an airplane in the sky that would require a lower masking ratio;
see (c) of Fig. 1. The proposed token salience, reapplied in this context, serves
to finely determine the dynamic masking ratio by quantifying the proportion of
tokens exhibiting high salience. More details can be found in Sec. 5. The pro-
posed AMR implements an adaptive strategy that respects the distinctiveness
of visual data and thus achieves significant performance gains when applied to
various baselines (refer to Sec. 6.2 and 6.3. We note that this type of ‘tailoring’
to each image for pre-training is impossible with any existing method.

In sum, this paper offers an innovative masking strategy that enhances the
robustness and effectiveness of pre-trained models, setting the stage for a notable
shift in the field of self-supervised learning. More importantly, the proposed
method can be universally applied across any MIM framework that exploits token
masking. We evaluate our SBAM and AMR on data-hungry models like ViT-
L/ViT-B [12] on ImageNet-1K [9] datasets, achieving significant performance
improvements in both fine-tuning and linear probing accuracy.

To summarize, our contributions are:
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– we present Saliency-Based Adaptive Masking (SBAM), a novel effective
method for MIM pre-training that focuses on token salience;

– being saliency-based, without a significant increase in computation, we allow
effective masking that is robust to masking ratios;

– empowered by the robustness to masking ratio, we propose an Adaptive
Masking Ratio (AMR) that allows tailored masking for each sample;

– we evaluate our method on ImageNet-1K datasets, achieving notable en-
hancements in both fine-tuning and linear probing accuracy.

2 Preliminaries

Within the Masked Image Modeling (MIM) domain, the crux lies in the strategic
corruption and subsequent reconstruction of image segments. This process hinges
on two core operations: Random Masking of image tokens and Reconstruction
of corrupted tokens to guide the learning process.

For a given image sequence X ∈ RN×L×D, where N , L and D denote batch
size, number of tokens per image and dimensionality of each token respectively,
and specified masking proportion γ, the general random masking process con-
ducted by Φmask is defined as:

Xmasked,M = Φmask(X, γ), (1)

where Xmasked represents the visible tokens as a result of the post-application of
the random mask M , with M ∈ {0, 1}N×L indicating the presence (1) or absence
(0) of masking for each element.

The key component for learning in MIM is the reconstruction error LMIM,
which is computed by the mean squared error (MSE) between the predicted
representation of masked tokens, denoted as X̂, and their normalized original
counterparts, represented by X:

X̄ =
X − µ(X)

σ(X) + ϵ
, LMIM =

1∑
i,j Mi,j

N∑
i=1

L∑
j=1

Mi,j · ∥X̂i,j − X̄i,j∥22. (2)

Here, µ(·) and σ(·) represent the mean and standard deviation of X respectively.
∥ · ∥22 denotes the squared L2 norm and ϵ is a small value for numerical stability.
This formulation presents the core of MIM’s training objective, focusing explic-
itly on the reconstruction of the masked portions of the input, encouraging the
model to infer corrupted information from the unmasked context.

3 Salience-Based Masking (SBM)

Masked Image Modeling (MIM) has greatly pushed forward self-supervised
learning in the visual domain, yet its standard practice of randomly masking
tokens fails to fully capture the richness of visual information. To overcome this
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limitation, we present Salience-Based Masking (SBM), a novel masking method-
ology that selects masking locations by revisiting token dynamics.

Given an input tensor X ∈ RN×(L×D), the first step involves computing an
affinity matrix A ∈ RN×L×L through a batch matrix-matrix product between
X and X ′ ∈ RN×(D×L). Subsequently, we apply the softmax function ρ(·) to the
affinity matrix, resulting in a normalized affinity matrix denoted as Â = ρ(A) ∈
RN×L×L. The softmax function is implemented as follows:

ρ(A)n,i,j =
ean,i,j∑L
k=1 e

an,i,k

. (3)

Here, an,i,j represents an element of A and e is the base of the natural
logarithm. Note that, for each n-th element with a shape of RL×L, this function
normalizes the rows of it, transforming them into probabilities that sum to 1.

Crucially, our approach distinguishes itself from conventional attention-based
methods by utilizing the sum of outgoing weight of each token to determine the
‘token salience’ S ∈ RN×L in the image, which is represented by the column-wise
summed score of Â:

S = N (ΣL
j=1Â:,j,:), N (x) =

x− min(x)
max(x)− min(x)

. (4)

In the affinity map, the row-wise score represents the incoming weight, re-
flecting the extent to which other tokens influence the corresponding token.
Conversely, the column-wise score signifies the outgoing weight, indicating the
contribution of the corresponding token to others. By summing these scores, it
becomes feasible to quantify the token’s overall impact on the image, thereby
defining token salience.

The adaptive masking process of SBM is formulated with the token salience
S. Notably, exclusive reliance on S for masking can precipitate a decline in per-
formance (refer to Fig. 7). To mitigate this issue, we incorporated an element of
randomness into the masking process to get the adjusted token salience, denoted
as S̃ = S+N , where N ∼ U([0, 0.5)N×L) represents a noise realization sampled
from a multivariate uniform distribution U .

Then, the sampling of tokens for masking is guided by S̃. We sort S̃ in
ascending order and select tokens corresponding to the top K scores, where
K = ⌈L · (1 − γ)⌉. Consequently, an adaptive binary mask M is constructed,
where Mi = 0 for the K selected tokens, and Mi = 1 for the remainder.

The proposed token salience offers a more intuitive and cost-efficient strategy
for determining which tokens to mask. SBM therefore revisits token dynamics in
the image context, streamlining the conventional complex masking process and
enabling strategic masking.

4 Evaluation on SBM

In this section, the evaluation critically examines the robustness of the proposed
SBM, especially against varying masking ratios, while also assessing its enhanced
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Fig. 2: Qualitative example of SBM. SBM introduces ‘token salience’ to prioritize and
mask tokens with high significance. Hence, it is qualitatively confirmed that particularly
important objects with high contribution within the image are selectively masked.
Moreover, by integrating randomness with token salience, masks are probabilistically
assigned to the background and less significant tokens, enriching the diversity of the
token masking.

pre-training efficiency, evidenced by performance gains and faster convergence.
Moreover, Fig. 2 qualitatively shows that SBM selectively masks only those
tokens that contribute significantly to the image.

4.1 Robustness to Masking Ratio Variability

A crucial aspect of the evaluation of SBM focuses on the robustness, particularly
in the context of varying masking ratios. Prior established baselines, such as the
widely used Masked Autoencoder (MAE) [14], often exhibit significant perfor-
mance fluctuations with even minimal adjustments to the masking ratio. This
sensitivity undermines the practicality and generalizability of such methods, es-
pecially in diverse real-world scenarios where optimal masking ratios may not
be consistent across datasets. In contrast, SBM introduces a novel approach of
selectively masking tokens based on their salience within an image. As a result,
SBM exhibits a diminished likelihood of masking redundant or trivial tokens,
thereby maintaining a stable performance across a broad spectrum of masking
ratios.

Fig. 3 showcases the performance stability of SBM against strong baseline
MAE, underscoring its superior resilience to changes in masking ratios. Our
evaluation leverages the Performance Improvement over Masking Ratio (PIMR)
metric, a normalized measure that quantifies how each model’s performance at
a given masking ratio stands against its performance at the lowest ratio, thereby
reflecting the relative improvement. This metric is instrumental in revealing the
impact of increased masked data on model training. The PIMR is defined as
follows:

PIMR(M) =
P (M)− P (Mmin)

P (Mmax)− P (Mmin)
, (5)
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Fig. 3: Evaluation of robustness across varied masking ratios. To evaluate the robust-
ness of SBM, we report the comparative analysis of image classification performance
on ImageNet-1K dataset [9] against the baseline method, MAE [14], using ViT-L [12]
as a backbone. The upper graphs display the performance of the methods at different
masking ratios, while the lower graphs illustrate the Performance Improvement over
Masking Ratio (PIMR) and Global PIMR. These measures indicate the extent of each
model’s performance enhancement as the masking ratio increases from the lowest to
higher ratios. SBM significantly outperforms MAE in every measures, demonstrating
its superior effectiveness in handling various masking ratios and enhanced pre-training
performances.

where P (M) is the performance at masking ratio M . P (Mmin) and P (Mmax) de-
note the minimum and maximum observed performances, respectively. A PIMR
value closer to 1 signifies a substantial improvement relative to the range of ob-
served performances. The PIMR graph in classification accuracy demonstrate
the robustness of the SBM strategy, where it maintains a competitive edge over
MAE across various masking ratios. Notably, SBM shows a minimal performance
drop at lower masking ratios compared to MAE, indicating its effectiveness even
with sparse data presence.

This advantage is particularly evident in the Global PIMR metric, where
SBM’s performance remains consistently high. For the Global PIMR calcula-
tion, we normalize performance relative to the most extensive range of perfor-
mance observed among all models under comparison. This means that instead of
comparing to the best and worst performances of a single model, Global PIMR
considers the best and worst across both MAE and SBM, which provides a uni-
versal performance context. Thus, the metric reflects a model’s improvement not
in isolation but rather in relation to its peers, which can be seen in the equation:

Global PIMR(M) =
P (M)− P (MGmin)

P (MGmax)− P (MGmin)
, (6)
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Fig. 4: Performance evaluation of SBM with respect to the pre-trained epochs. We
report the comparison of image classification accuracy on ImageNet-1K [9], pre-trained
on ViT-L [12]. The left graph displays fine-tuning accuracy, whereas the right graph
illustrates linear probing accuracy, both over a range of pre-trained epochs. The curves
illustrate that SBM surpasses MAE [14] in pre-training effectiveness in every trained
epoch, and also validates its quicker attainment of converged performance levels.

where P (MGmax) and P (MGmin) are the global minimum and maximum per-
formance values observed across both MAE and SBM models, respectively. This
broader evaluation framework further underscores SBM’s superior resilience and
ability to maintain high accuracy across varying degrees of masking, outperform-
ing the MAE baseline even when less information is available for learning.

As shown in the graphs, SBM consistently outperforms MAE across a spec-
trum of masking ratios, demonstrating its remarkable stability even at lower
ratios. This is because in random masking, as the masking ratio decreases, the
chance of including a crucial token in the mask lowers; conversely, SBM consis-
tently masks pivotal tokens, regardless of the masking ratio.

Furthermore, the classification accuracy graphs displayed above demonstrate
that the application of SBM results in a notable enhancement in performance
compared to MAE for all ratios. This reveals that the proposed SBM not only
exhibits resilience to variations in the masking ratio but also significantly boosts
pre-training efficacy, irrespective of the masking ratio. Strategically masking
pivotal information enhances model performance and accelerates convergence
by encouraging a comprehensive understanding of the visual context through a
focus on essential tokens.

4.2 Enhanced Pre-training Efficiency

Beyond the robustness to masking ratio variations, SBM’s efficacy is further
demonstrated through its enhanced pre-training capabilities. Traditional MIM
strategies often require extensive computational resources and time for model
convergence, primarily due to the indiscriminate masking of image tokens which
can hinder the learning process by obfuscating essential visual cues. By strategi-
cally selecting pivotal tokens for masking, SBM ensures that crucial tokens are
leveraged during training, which leads to substantial improvement in pre-training
performance and facilitates a more focused model convergence process.
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Fig. 5: Qualitative example of SBAM, which combines SBM and AMR. Having mask-
ing ratios that adapt throughout training is highly effective, as it allows the masking
process to be tailored to each sample in the dataset, accommodating the unique com-
position and object sizes within each image, as shown in the above qualitative samples.

Fig. 4 showcases the comparative pre-training efficiency of SBM against
MAE [14], underlining SBM’s reduced pre-training duration without a trade-
off in accuracy. Initially, SBM secures a distinct lead in classification accuracy
and continues to demonstrate this advantage across the training epochs, as seen
in the left graph. The right graph, representing linear probing accuracy, further
confirms SBM’s higher initial performance, which stabilizes near peak levels well
before 800 epochs. These findings highlight SBM’s ability to prioritize signifi-
cant features during early training stages, resulting in a new alternative for both
convergence speed and pre-training performance in the pre-training of masked
image models.

5 Adaptive Masking Ratio (AMR)

Achieving stability against changes in masking ratios has enabled us to advance
the discourse on image masking, introducing a novel perspective: an Adaptive
Masking Ratio (AMR). This innovative approach acknowledges the inherently
diverse visual narratives presented by individual images and adjusts the masking
ratio to fit different object sizes and classes within them.

The proposed token salience S = N (ΣL
j=1Â:,j,:) forms the basis for determin-

ing AMRs. The AMR Rdyna is computed based on the distribution of salience
scores across tokens, adjusted by a predefined variability parameter δ and the
base mask ratio r:

Rdyna = r −∆r + 2∆r × mean(1S>δ). (7)

Here, ∆r denotes the range of allowable variation in the masking ratio, as
Rdyna can range from r−∆r to r+∆r. δ is the salience threshold for distinguish-
ing highly salient tokens, and 1 is the indicator function that identifies tokens
exceeding δ.
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Fig. 6: Performance comparison of SBAM with respect to the pre-trained epochs. We
report the comparison of image classification accuracy on ImageNet-1K [9], pre-trained
on ViT-L [12]. The left graph illustrates classification accuracy across epochs, while the
right graph shows the accuracy obtained through linear probing. Both results indicate
a significant improvement in pre-training performance when AMR is applied, which
not only achieves higher accuracy earlier in the training process but also maintains a
lead at convergence.

With Rdyna established, we adjust the number of tokens to be masked accord-
ingly. This dynamic adjustment of masking ratios ensures that the masking pro-
cess is not uniformly applied but is instead sensitive to the visual information’s
inherent salience, promoting a more effective learning mechanism by focusing
on the informative segments of the image. Fig. 5 presents a qualitative example
of AMR, demonstrating the effectiveness of adaptive masking ratios that cus-
tomize the masking process for each dataset sample, thereby accounting for the
unique composition and object sizes within each image. As a result, the proposed
Saliency-Based Adaptive Masking (SBAM), which combines SBM and AMR,
employs an adaptive approach, leading to enhanced performance across different
models (See Fig. 6 and Tab. 1) and setting a new standard for tailored image
masking.

6 Experiments

6.1 Implementation Details

Our evaluation approach involves deploying the proposed SBM and AMR against
the baseline to assess performance enhancements of the comprehensive method,
SBAM. To ensure a fair comparison, we maintain consistency with the base-
line method’s hyperparameters and network architectures. Notably, to preserve
the integrity of our experiments, we ensured uniform hardware utilization and
experimental conditions across both our method and the reproduced baseline,
all employing 8*A6000 GPUs. Given that this fixed GPU configuration diverges
from those used in prior methods, discrepancies between our reproduced perfor-
mance and the performance documented in existing papers may arise. For the
fair experimental schedule, the reproduced 400-epoch performance of baseline
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Table 1: Comprehensive performance results of applying SBAM to various baseline
methods. We report the comparison of image classification fine-tuning accuracy on
ImageNet-1K [9] dataset. The consistent performance improvement of SBAM across
various baseline methods demonstrates the efficacy of SBAM as a scalable methodology
capable of enhancing a variety of MIM frameworks.

Method Baseline Baseline+SBAM

MAE (ViT-L) [14] 84.3 85.1
MAE (ViT-B) 82.9 83.6
BootMAE (ViT-B) [11] 84.1 84.8
iBoT (ViT-B) [43] 71.5 74.4
CMAE (ViT-B) [17] 83.8 84.5

methods and the proposed method were all equally measured in intermediate
stages in the training towards 800 epochs. A more detailed implementation de-
scription can be found in the Supplementary material.

6.2 Evaluation on SBAM

The graphs in Fig. 6 demonstrate the efficacy of the SBAM in comparison to
the MAE model throughout the pre-training phase. Specifically, the left graph
indicates that SBAM starts with a higher accuracy than MAE at the 200 epochs
mark and continues to outperform MAE [14] at every subsequent checkpoint. By
the 800 epochs mark, SBAM not only achieves a significant accuracy enhance-
ment but also shows a more rapid improvement in the earlier epochs, suggesting
that SBAM requires fewer epochs to achieve similar or better performance com-
pared to MAE. In the context of linear probing, depicted in the right graph, the
trend is similar. SBAM consistently achieves higher accuracy than MAE from
the outset, and this performance gap is maintained as training progresses. The
curves for SBAM and MAE become flat toward 800 epochs, indicating that 800
epochs or later is the point of convergence in performance. This observation un-
derscores SBAM’s substantial advantage over MAE, both in terms of converged
performance and convergence speed. Overall, the performance trends captured
in these graphs suggest that SBAM is more efficient during pre-training, reaching
higher levels of accuracy faster than MAE.

6.3 Evaluation on Various Baselines

The integration of SBAM into various baseline methodologies demonstrates a
notable enhancement in pre-training performance, as summarized in Tab. 1. All
experiments report the classification accuracy on 400 epochs, except for iBoT [43]
which is pre-trained for 100 epochs. Applying SBAM to the large-scale variant of
MAE [14] (MAE (ViT-L)) yields a noteworthy enhancement, elevating the base-
line accuracy from 84.3% to 85.1%, marking a significant advancement. Integra-
tion of SBAM to the MAE using ViT-B also experienced significant performance
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Table 2: Comparative evaluation of
SBAM against the state-of-the-art mask-
ing strategy AMT [25].

Method Acc (%)

AM [25] 82.5
AMT [25] 82.8
SBAM 83.6

Table 3: Comparative evaluation of
SBAM against the state-of-the-art mask-
ing strategy AttMask [18].

Method Acc (%)

AttMask-High [18] 72.5
AttMask-Hint [18] 72.8
SBAM 74.4
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Fig. 7: Comprehensive ablation studies of the impact of randomness, variance (∆r),
and delta (δ) of the proposed SBAM approach.

gains, underscoring that the benefits of SBAM are not limited to specific model
architectures and can provide substantial pre-training efficacy for a variety of
models. The performance enhancement of SBAM on various models including
BootMAE [11], iBoT, and CMAE [17] highlights SBAM’s generalizability and
efficacy in augmenting various model structures with significant accuracy gains.

In conclusion, the consistent improvement across various baselines validates
the efficacy of SBAM as a scalable enhancement tool. It not only boosts perfor-
mance in standard settings but also bridges the gap in more challenging learning
scenarios, marking it as a pivotal development in masked image modeling pre-
training techniques.

6.4 Comparison with Masking Methods

We conducted a comparative evaluation of our SBAM masking strategy against
the established masking strategies of AMT and AttMask. This comparison was
performed by applying SBAM to the baselines previously employed by AMT [25]
and AttMask [18] methods, specifically MAE [14] (ViT-B, 400 epochs) and
iBoT [43] (ViT-B, 100 epochs), to ascertain the enhancements introduced by
our approach.

In Tab. 2, the AM and AMT strategy [25], which implement basic masking
and selective masking based on semantic importance, achieve an image classifi-
cation fine-tuning accuracy of 82.5 and 82.8, respectively. When applied to the
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same baseline model, SBAM outperforms both approaches by achieving an ac-
curacy of 83.6. This implies that the efficacy of self-supervised pre-training can
be maximized by defining token salience based on the outgoing weight of the
token, as opposed to the incoming weight [25].

Furthermore, we compare SBAM to two variants of AttMask [18], applied
within the iBoT [43] framework in Tab. 3. Both AttMask-High and AttMask-
Hint incorporate the selective masking strategy of distillation setup which lever-
ages similarity to classification token. SBAM stands out with an accuracy of
74.4%, substantially higher than AttMask-High’s 72.5% and AttMask-Hint’s
72.8%. This highlights the superiority of the SBAM method, which can effec-
tively improve the pre-training efficiency without the need for the additional
computational cost of using a complex framework.

6.5 Ablation studies

In Fig. 7, we provide comprehensive ablation studies of the impact of random-
ness, variance (∆r), and delta (δ) of the proposed SBAM approach. We report
the ImageNet-1K [9] classification accuracy achieved by SBAM using the baseline
approach of MAE [14], trained for 400 epochs on ViT-L [12] as the backbone. The
first graph depicts the impact of the incorporated randomness in the SBAM on
model performance over various epochs. The plot reveals that integrating ran-
domness with token saliency markedly enhances pre-training accuracy as the
number of pre-trained epochs increases. The second and third graphs show the
fine-tuning accuracy and linear probing performance ablations for the hyperpa-
rameters of SBAM. While fine-tuning accuracy remained stable across various
hyperparameters, linear probing accuracy demonstrated relative sensitivity. We
chose ∆r = 0.15 and δ = 0.1 as optimal hyperparameters in both figures and
were universally applicable across all baseline methodologies.

7 Related Work

7.1 Masked Language Modeling

Masked Language Modeling (MLM) [2,7,8,10,13,24,31,33,34,40] has become a
keystone self-supervised learning paradigm in NLP, exemplified by groundbreak-
ing models like BERT [10] and GPT [29,30]. By predicting masked tokens from
their context, MLM has propelled NLP forward, enabling models to scale and
perform adeptly on diverse tasks [3]. However, the considerable training time
and computational demands of these models have spurred innovations aimed at
increasing pre-training efficiency. For example, ALBERT [19] reduced parame-
ters through embedding matrix factorization and shared layer parameters, while
EarlyBERT [6] applied the principles of network pruning to optimize the train-
ing process. The curriculum masking approach of CCM [20] represents another
advancement, strategically increasing the complexity of token masking to en-
hance learning. These efforts reflect a broader trend in the quest for efficiency,
leading to models that maintain or exceed the capabilities of their predecessors
with a fraction of the resource investment.
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7.2 Masked Image Modeling

In computer vision, Masked Image Modeling (MIM)) [1,4,5,11,14–16,23,26–28,
36, 37, 41–43] has emerged as a transformative technique, drawing parallels to
the success of Masked Language Modeling (MLM) in NLP. MIM’s central tenet
involves predicting occluded parts of images to foster a nuanced understand-
ing of visual content sans explicit labels. Early efforts adapting MLM concepts
for visual data, such as iGPT [5], paved the way for more sophisticated meth-
ods. BEiT [1] utilized a pre-trained discrete variational autoencoder (dVAE) to
produce target visual tokens. Further refinements in the technique have been
observed in methods such as MAE [14] and SimMIM [36], which focus on di-
rect prediction from unmasked image areas, refining the process of visual un-
derstanding. Efficiency in pre-training has been a critical frontier, leading to
innovations like GreenMIM [16] and HiViT [42], which optimize hierarchical Vi-
sion Transformers (ViTs) by processing only the visible patches, significantly
reducing computational overhead.

Recent advances in model pre-training have honed in on the strategic use of
masking to enhance learning efficiency, with a particular emphasis on selecting
which image regions to mask. Initiating this trend, ADIOS [32] leverages ad-
versarial training to smartly select challenging segments for masking, setting a
foundation for intelligent masking approaches. AttMask [18] and SemMAE [21]
further this by utilizing self-attention and semantic information, respectively,
to pinpoint and mask the most informative parts of an image, thereby prior-
itizing high-value areas over random masking. The Attention-Driven Masking
and Throwing Strategy (AMT) strategy [25] refines this focus on semantics by
employing self-attention to identify and eliminate redundant patches, achiev-
ing a delicate balance between precision and efficiency. In the realm of CLIP
models, ACLIP [38] and Fast CLIP (FLIP) [22] adopt attentive masking strate-
gies to optimize training, with Fast CLIP demonstrating the effectiveness of
masking substantial portions of images for accelerated learning. MaskAlign [37]
introduces an innovative teacher-student framework that bypasses the need for
masked region reconstruction, aligning visible features with semantically rich
intact image features to concentrate on the most informative parts. Together,
these approaches illustrate a shift towards more strategic, intelligent masking
techniques, significantly boosting the pre-training process by leveraging both
the quantity and quality of masked inputs.

8 Conclusions

The proposed Saliency-Based Adaptive Masking (SBAM) approach and the
Adaptive Masking Ratio (AMR) significantly progress the field of MIM by in-
troducing a method that adaptively masks image tokens with dynamic masking
ratios based on their token salience. SBAM not only enhances pre-training ef-
ficiency and model performance on ImageNet-1K datasets but also introduces
a novel way of considering the importance of token dynamics, thereby enabling
models to learn more pivotal representations.
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Within this additional document, we aim to offer a more comprehensive anal-
ysis alongside in-depth details that we couldn’t include in the main paper due to
the page limits. The following contents are provided in the subsequent sections:

1. Analysis of Robustness for Different Attention-Based Masking

2. Shape-Biased Attribute of the SBAM

3. Ablation Study on the Methodological Components of SBAM

4. Ablation Study on the Decoder Depth

5. Ablation Study on Where Saliency is Computed

6. Transfer Learning Performance of SBAM

7. Implementation Details

1 Analysis of Robustness for Different Attention-Based
Masking

The prowess of the proposed SBAM method, particularly in terms of its robust-
ness concerning the masking ratio, serves as an important premise in the main
paper. The following question then arises: Even if not specifically SBAM, can
any method employing attention-based masking inherently sustain robustness to
the varying masking ratio? Stemming from this, we comprehensively investigated
the consistency of performance for different masking methods that incorporate
attention as a fundamental component, especially under fluctuating conditions
imposed by different masking ratios.

The most state-of-the-art approach in masking technologies, AMT [6] is based
on the attention mechanism in a manner distinctly divergent from the approach
adopted by SBAM. Consequently, we undertook a thorough comparative analysis



2 H. Choi et al.

Fig. 1: Qualitative analysis of robustness for different attention-based masking. De-
termining token scores on an incoming weight basis for masking [6] often results in
masking out tokens that occupy a large portion of the image (e.g., background) as
it offers insights into the token’s contextual dominance, thereby missing out on truly
crucial information, such as objects. On the other hand, under the assumption that
softmax is already done row-wise, column-wise summed scores offers a clearer picture
of a token’s overall influence on the token dynamics and on the image context. As
can be observed in the figure, token masking based on the outgoing weights of SBAM
enables the stable masking out of image tokens corresponding to areas of high saliency,
such as objects.

between our method and AMT, focusing on both the methodological aspect of
the masking approach and the robustness of performance against variations in
the masking ratio. Although the AMT method employs a distinct structure from
SBAM by performing masking through a redundant forward process, this section
will solely concentrate on comparing and analyzing how AMT leverages attention
against the way SBAM utilizes attention.

Given an input tensor X ∈ RN×(L×D), the first step involves computing an
affinity matrix A ∈ RN×L×L through a batch matrix-matrix product between
X and X ′ ∈ RN×(D×L). Within the methodology, self-attention is leveraged to
assign weights to tokens, signifying their importance within the context of the
task at hand. To obtain the attention scores for each token from the affinity
matrix A, AMT calculates scores for each token by summing up the row-wise
weights across the A. In contrast, SBAM utilizes the min-max normalized sum
of column-wise scores S = N (ΣL

j=1Â:,j,:) from the row-wise softmaxed affinity
map Â as the token scores, where N is the min-max normalization. These two
different methods can be interpreted as incoming weights and outgoing weights,
respectively.
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Fig. 2: Quantitative analysis of robustness for different attention-based masking. While
the attention method of AMT [6] shows no significant difference or only slight improve-
ment in robustness compared to MAE [4], the proposed SBAM exhibits far superior
robustness to masking ratios than both AMT and MAE. Similar to the main paper,
for evaluating the relative robustness of SBAM, we also conducted comparative anal-
ysis using both PIMR and Global PIMR metrics. Overally, SBAM exhibits relatively
superior stability in relation to the masking ratio.

The distinction between incoming and outgoing weights offers a deeper in-
sight into how tokens influence each other within the model. The row-wise
summed scores to represent a token’s incoming weight provides a measure of
how many tokens are relatively similar to the corresponding token. While this
can offer insights into the token’s contextual dominance, it does not necessarily
reflect its impact on other tokens and the image as a whole. Indeed, as shown in
the second and fifth columns of Fig. 1, determining token scores on the incoming
weight basis for masking often results in masking out tokens that occupy a large
portion of the image (e.g ., background), thereby missing the masking on truly
crucial information, such as objects. On the other hand, the column-wise scores
depict the outgoing weights of tokens, providing a measure of how much atten-
tion the corresponding token gives to other tokens. Thus, under the assumption
that softmax is already done row-wise, these column-wise summed scores offer
a clearer picture of a token’s overall influence on the token dynamics and, sub-
sequently, on the image context. As observed in the third and sixth columns
of Fig. 1, token masking based on the outgoing weights of SBAM enables the
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stable masking of image tokens of high saliency, such as objects. Despite both
AMT and SBAM employ attention-based masking approaches, the significant
differences in their methodologies result in substantial disparities in terms of
effectiveness.

Our analysis is further extended to the robustness of performance in relation
to masking ratios. As demonstrated in Fig. 1, by utilizing the summed scores for
each column, we can more accurately identify and prioritize tokens for masking
based on the saliency. This method ensures that tokens with higher impact on
the overall context of the image are reliably selected regardless of the masking
ratio, enhancing the model’s robustness to variations in the masking ratio. Fig. 2
reports the fine-tuning accuracy for the image classification task on ImageNet-1K
dataset [1] with respect to the masking ratio. Evaluations were conducted on the
performance at the intermediate 400 epochs of an 800-epoch schedule. MAE [4]
was utilized as a baseline to incorporate the masking techniques of SBAM and
AMT [6], applying both methods within the MAE framework for a fair com-
parison. While the AMT method shows no significant difference or only slight
improvement in robustness compared to MAE, the proposed SBAM exhibits far
superior robustness to masking ratios than both AMT and MAE. Similar to the
main paper, for evaluating the relative robustness of SBAM, we also conducted
comparative analysis using both PIMR and Global PIMR metrics. Across all
evaluations, SBAM exhibits relatively superior stability in relation to the mask-
ing ratio.

These findings reveal that not all attention-based masking methods are ro-
bust to changes in the masking ratio. The methodology of SBAM, which lever-
ages the proposed outgoing weights, stands out as a particularly effective ap-
proach in deriving accurate token salience. To sum up, by prioritizing the mask-
ing of influential tokens, the proposed SBAM is able to harness the full potential
of visual data and maintain the model’s performance across a range of mask-
ing ratios, thereby enhancing the overall robustness of MIM-based pre-trained
models.

2 Shape-Biased Attribute of the SBAM

In the realm of image classification, the importance of shape bias [3,5,9] cannot
be overstated. Unlike texture or color, which can vary widely even within the
same category, shapes provide a consistent and reliable cue for identifying ob-
jects across global contexts. This inherent reliability of shape as a distinguishing
feature is crucial for developing robust image classification models that can gen-
eralize well beyond their training datasets. Moreover, shape bias aligns closely
with the way humans perceive and categorize the world around us, suggesting
that models with a strong shape bias may perform more intuitively and effec-
tively in real-world scenarios.

The proposed SBAM is an effective masking approach for modeling shape
bias within pre-trained models. A qualitative analysis of SBAM’s masking ap-
proach, as shown in Fig. 3, reveals that the proposed SBAM proficiently identifies
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Fig. 3: Qualitative analysis of shape-biased attribute of the SBAM. The examples
highlight SBAM’s effectiveness in object-boundary identification and masking. We in-
tentionally reduced the masking ratio for a focused assessment. SBAM excels in cap-
turing both the objectness and intricate edge details of a wide variety of objects, from
large to small and thin, demonstrating its robust capability in modeling shape-bias of
pre-trained models.

objects by simultaneously capturing and masking the boundary information of
the objects. Note that, in the experiment, we intentionally reduced the mask-
ing ratio to more thoroughly analyze the areas on which SBAM predominantly
focuses. Specifically, SBAM not only adeptly identified and masked the ’object-
ness’ of items ranging from large objects such as human lower body or weighing
machine to smaller entities like bird and insect, but it also incorporated the
edge information of these objects into the masking process. SBAM also demon-
strates its capability to effectively model shape information for challenging, thin
objects within images, such as small circular plastics, dog legs, and car hoses.
This showcases SBAM’s adeptness at capturing the intricacies of shape details
across a diverse range of object types. These findings suggest that SBAM’s token



6 H. Choi et al.

salience is higher at the boundaries than inside the object itself, aligning with
the essential shape-biased properties critical for image understanding. Conse-
quently, it becomes evident that the token salience of SBAM is a well-designed
and reliable indicator for discerning essential image features.

Furthermore, the proposed saliency-based masking technique is remarkably
efficient, as it is performed without the need for extracting edge maps or perform-
ing segmentation within the image, thus avoiding extra computational efforts.
This efficiency is attributed to SBAM’s cost-effective strategy of leveraging the
outgoing weights that are simply computed from the visual token’s affinity map.

The Transformer [2] is well-regarded for their capacity to effectively model the
shape bias. The proposed SBAM enhances this capability by enabling more effi-
cient concentration on object boundaries during pretraining. This synergy with
the Transformer amplifies the shape-bias modeling ability of the Transformer-
based Masked Image Modeling (MIM) methods. To sum up, the shape-biased
attributes of SBAM, by adeptly capturing global shapes, further augment the
discrimination ability of pre-trained models. This results in a substantial im-
provement in classification accuracy, as shown in Fig. 4 and Fig. 6 of the main
paper.

3 Ablation Study on the Methodological Components of
SBAM

In this section, we present an ablation study that dissects the impact of the
SBAM method’s application on the performance of the baseline method, MAE [4].
The study is structured to evaluate the fine-tuning accuracy and the linear prob-
ing accuracy of the ImageNet-1K [1] image classification task on three key con-
figurations: the baseline MAE, the integration of SBAM with MAE, and the
combined effect of SBAM and AMR on MAE. We provide a clear comparison in
Tab. 1 across different epochs, including 400 and 800.

As demonstrated, the MAE achieves fine-tuning accuracy of 84.3 and 85.1
and linear probing accuracy of 68.5 and 72.1 for 400 and 800 epochs, respec-
tively. The integration of SBAM contributes to a notable improvement, with
the 400-epoch configuration achieving a fine-tuning accuracy comparable to the
800-epoch baseline. More pronouncedly, when AMR is applicated together at 800
epochs, we observe the highest fine-tuning accuracy of 85.8 and linear probing ac-
curacy of 75.4, underscoring the synergistic benefit of the proposed method. This
increment in performance illuminates the potential of each component within the
proposed SBAM method and its favourable influence on the baseline model.

4 Ablation Study on the Decoder Depth

Fig. 4 presents the ablation study concerning the influence of decoder depth
on the ImageNet-1K [2] image classification fine-tuning accuracy and the linear
probing accuracy of both the SBAM method and the baseline method, MAE [4].
We measured the performance at 400 epochs using ViT-L as a base architecture.
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Table 1: Ablation study on the methodological components of the SBAM. The in-
tegration of SBAM with the baseline MAE model notably enhances fine-tuning and
linear probing accuracies, peaking when combined with AMR at 800 epochs. The result
indicates the synergistic potential of SBAM’s components on model performance.

Method Epoch AMR Fine-tuning Linear Probing

MAE [4] 400 84.3 68.5
SBAM 400 85 73.1
SBAM 400 ✓ 85.1 73.5
MAE [4] 800 85.1 72.1
SBAM 800 85.4 74.7
SBAM 800 ✓ 85.8 75.4
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Fig. 4: Ablation study on the decoder depth. We present the ablation study concerning
the influence of decoder depth on the ImageNet-1K [2] image classification fine-tuning
accuracy and the linear probing accuracy of both the SBAM method and the baseline
method, MAE [4]. Overally, SBAM displayed superior performance and stability across
all layer depths compared to MAE, with the optimal decoder depth being either 4 or
8.

It is evident that as the number of decoder layers increases, both methods
generally improve in performance, with SBAM consistently outperforming MAE
at all depths. The fine-tuning accuracy of MAE is significantly improved with in-
creasing decoder layers, indicating a correlation between decoder depth and the
efficiency of the method. However, the proposed method demonstrated relative
robustness to variations in decoder layers when compared to the baseline. The
linear probing accuracy demonstrates a steep ascent for both SBAM and MAE,
plateauing at a higher accuracy level as compared to MAE. For both methods,
linear probing accuracy exhibited a higher sensitivity to the number of decoder
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Table 2: Ablation study on where saliency is computed. Later layers provide marginal
differences in performance at much more computational costs.

MAE Baseline Ours (@ Input) Ours @ Layer 1 Ours @ Layer 3 Ours @ Layer 5

Accuracy (%) 84.3 85.1 84.7 85.3 85.2
Training Time (Hours) 91.7 92.5 122.6 140.1 153.9

Table 3: Transfer learning performance on semantic segmentation task. We report the
semantic segmentation performance on ADE20K [10], comparing the efficacy of the
proposed SBAM approach with baseline method, MAE [4]. The result substantiates
the benefit of SBAM in capturing complex visual relationships pertinent to semantic
segmentation.

Method Epoch AMR mIoU

MAE [4] 400 51.4
SBAM 400 52.4
SBAM 400 ✓ 52.5
MAE [4] 800 52.7
SBAM 800 53.1
SBAM 800 ✓ 53.5

layers than full fine-tuning accuracy. Overally, SBAM displayed superior perfor-
mance and stability across all layer depths compared to MAE, with the optimal
decoder depth being either 4 or 8.

5 Ablation Study on Where Saliency is Computed

Immediately after computing the patch embeddings, we compute token saliency
from their affinity map. Because this is done at an input stage, our method is
highly efficient.

We provide an ablation study on where saliency is computed in Tab. 2. Later
layers provide marginal differences in performance at much more computational
costs. This shows that our way of computing saliency at the input level is already
highly effective and does not need to dive into deeper layers, potentially due to
the outgoing weights that focus on different parts of the image.

6 Transfer Learning Performance of SBAM

We report the transfer learning performance of the SBAM method across dif-
ferent downstream tasks: semantic segmentation, object detection, and instance
segmentation. Each task is measured by its respective metric: mean Intersection
over Union (mIoU) for semantic segmentation, and Average Precision bounding
box (AP bb) and mask (APmk) for object detection and instance segmentation,
respectively.
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Table 4: Transfer learning performance on object detection and instance segmenta-
tion tasks. We present a comparative analysis of the SBAM with baseline method,
MAE [4], for object detection and instance segmentation tasks. The result underlines
the strength of SBAM in enhancing model precision for tasks demanding accurate ob-
ject detection and instance segmentation, revealing the importance of well-designed
masking in transference to downstream tasks as well.

Method Epoch AMR AP bb APmk

MAE [4] 400 50.2 44.8
SBAM 400 51.7 45.4
SBAM 400 ✓ 51.4 45.2
MAE [4] 800 52.6 45.5
SBAM 800 53.1 46.5
SBAM 800 ✓ 53.7 47.1

In Tab. 3, we report the semantic segmentation performance on ADE20K [10],
comparing the efficacy of the proposed SBAM approach with baseline method,
MAE [4]. We utilize ViT-L as the backbone. The results demonstrate a clear
trend: extending the number of epochs from 400 to 800 improves mIoU for both
the MAE and SBAM methods, with SBAM exhibiting a superiority. Notably,
the integration of AMR with SBAM at 800 epochs resulted in the highest mIoU
score, substantiating the proposed method’s benefit in capturing complex visual
relationships pertinent to semantic segmentation.

Tab. 4 presents a comparative analysis of the SBAM with baseline method,
MAE [4], for object detection and instance segmentation tasks. From the results,
extending the training to 800 epochs generally yields an improvement in all
metrics compared to 400 epochs for both MAE and SBAM methods. Moreover,
the inclusion of the AMR in SBAM further enhances performance, achieving the
highest AP scores at 800 epochs. This finding underlines the strength of SBAM
in enhancing model precision for tasks demanding accurate object detection and
instance segmentation, revealing the importance of well-designed masking in
transference to downstream tasks as well.

To summarize, the proposed SBAM method, by focusing on masking to-
kens with high saliency, enhances the generalization capabilities of pre-trained
models, leading to consistently high performance in transfer learning to various
downstream tasks. This indicates that the proposed masking technique possesses
the ability to globally capture image context, facilitating the ease of transfer to
different datasets and tasks.

7 Implementation Details

In Tab. 5, we detail the configuration parameters of the baseline method, MAE,
which is used as the default baseline within this manuscript. These parameters
are divided into two phases: pre-training and fine-tuning, each tailored to the
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Table 5: Default hyperparameters used for baseline approach, MAE [4]. All configs
follow the established configurations of the original manuscript [4].

config value

optimizer AdamW [8]
pre-training base learning rate 1.5e-4
pre-training weight decay 0.05
pre-training optimizer momentum β1, β2 = 0.9, 0.95
pre-training batch size 4096
learning rate schedule cosine decay [7]
pre-training warmup epochs 40
fine-tuning base learning rate 1e-3
fine-tuning weight decay 0.05
fine-tuning optimizer momentum β1, β2 = 0.9, 0.999
layer-wise learning rate decay 0.75
fine-tuning batch size 1024
fine-tuning warmup epochs 5
fine-tuning training epochs 50

respective stages of model development. It is important to note that our ex-
perimental framework adheres to the established configurations of the baseline
method to ensure equitable benchmarking.
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