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Abstract. In the realm of Adversarial Distillation (AD), strategic and
precise knowledge transfer from an adversarially robust teacher model
to a less robust student model is paramount. Our Dynamic Guidance
Adversarial Distillation (DGAD) framework directly tackles the chal-
lenge of differential sample importance, with a keen focus on rectifying
the teacher model’s misclassifications. DGAD employs Misclassification-
Aware Partitioning (MAP) to dynamically tailor the distillation focus,
optimizing the learning process by steering towards the most reliable
teacher predictions. Additionally, our Error-corrective Label Swapping
(ELS) corrects misclassifications of the teacher on both clean and adver-
sarially perturbed inputs, refining the quality of knowledge transfer. Fur-
ther, Predictive Consistency Regularization (PCR) guarantees consistent
performance of the student model across both clean and adversarial in-
puts, significantly enhancing its overall robustness. By integrating these
methodologies, DGAD significantly improves upon the accuracy of clean
data and fortifies the model’s defenses against sophisticated adversarial
threats. Our experimental validation on CIFAR10, CIFAR100, and Tiny
ImageNet datasets, employing various model architectures, demonstrates
the efficacy of DGAD, establishing it as a promising approach for enhanc-
ing both the robustness and accuracy of student models in adversarial
settings. The code is available at https://github.com/kunsaram01/DGAD.

Keywords: Adversarial Attack and Defense · Adversarial Training · Ad-
versarial Distillation

1 Introduction

Deep Neural Networks (DNNs) have significantly advanced the frontiers of image
classification [12, 19], speech recognition [11, 30], and natural language process-
ing [6,29], demonstrating remarkable success across a spectrum of complex tasks.
Despite these advancements, their susceptibility to adversarial attacks [10, 28]
poses a critical challenge, particularly in safety-sensitive domains such as au-
tonomous vehicles [8, 27] and medical diagnostics [15, 21]. This vulnerability
becomes even more pronounced in lightweight models designed for resource-
constrained environments, where their limited capacity undermines robustness.
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Fig. 1: The overview of Dynamic Guidance Adversarial Distillation (DGAD)
framework. The DGAD framework refines adversarial distillation by employing a
strategic approach: Misclassification-Aware Partitioning (MAP) categorizes inputs for
tailored learning, Error-corrective Label Swapping (ELS) fixes teacher’s mispredictions,
and Predictive Consistency Regularization (PCR) maintains learning uniformity. To-
gether, these methods improve student model accuracy and robustness. S(·) and T (·)
are the predictions of the student and teacher models, while T̂ (·) is the corrected teacher
predictions after ELS.

Adversarial Training (AT) [22, 24, 32] has emerged as a crucial strategy to
enhance the resilience of DNNs against adversarial attacks by training with
adversarial examples. Although effective, the benefits of AT are more pronounced
in larger models, leaving smaller models vulnerable due to their reduced capacity
to handle adversarial perturbations. This limitation has led to the exploration of
Adversarial Distillation (AD) [9,16,23,33] as a method to transfer the robustness
and accuracy from a larger, well-trained robust teacher model to a smaller, less
robust student model, aiming to bridge the performance gap under adversarial
conditions.

An often-overlooked issue in AD is the direct transfer of knowledge from
the teacher to the student model without addressing potential inaccuracies in
the predictions of the teacher. This oversight can significantly compromise the
robustness and accuracy of the student model. In response to this challenge, re-
cent advancements in AT have developed distinct treatment of samples according
to their classification status. Methods such as Margin Maximization [4, 7] and
Misclassification-Aware [1, 31] strategies have demonstrated that an indiscrimi-
nate approach—particularly using adversarial examples generated from misclas-
sified clean inputs—can decrease model robustness. These findings underscore
the necessity for AD to adopt a more thoughtful and strategic approach to
knowledge transfer, specifically focusing on correcting teacher errors to effec-
tively enhance the adversarial resilience of the student model.
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In this study, we introduce the Dynamic Guidance Adversarial Distil-
lation (DGAD) framework (see Fig. 1), embodying the principle of ‘dynamic
guidance’. This concept transcends the traditional static approach to weight-
ing distillation processes for clean and adversarial inputs by employing dynamic
weighting to optimize the distillation focus. Dynamic guidance entails the real-
time recognition and partitioning of training inputs within a batch, based on
the teacher model’s misclassification status of clean inputs. It is followed by the
immediate correction of any misclassified labels for both segregated clean and ad-
versarial inputs during distillation. By pinpointing and separating misclassified
samples, DGAD enables a custom distillation strategy that optimally addresses
both standard and adversarial training needs. We employ three key interventions
within this framework to ensure the precise and effective transfer of knowledge
to the student model: 1) Misclassification-Aware Partitioning (MAP): To
realize dynamic weighting, this strategy separates the training dataset into two
subsets based on the prediction of the teacher on clean inputs—The Standard
Training (ST) subset comprises clean inputs incorrectly classified by the teacher,
emphasizing correction of these misclassifications during standard training. Con-
versely, the Adversarial Training (AT) subset includes clean inputs correctly
classified by the teacher, using adversarially perturbed versions of these inputs
to increase the resistance of the student model to adversarial attacks. 2) Error-
corrective Label Swapping (ELS): Building upon the MAP, ELS is applied
to inputs where the teacher’s predictions remain incorrect, specifically including
the ST subset and adversarial examples generated using the AT subset. By re-
placing the incorrect labels predicted by the teacher with the correct ones, ELS
ensures that the student model learns from accurate labels, directly address-
ing and amending the teacher’s prediction errors observed during distillation. 3)
Predictive Consistency Regularization (PCR): PCR addresses the imbal-
ance between standard and adversarial training caused by the separate learning
of ST and AT subsets in MAP. By regularizing the prediction consistency of the
student model across the entire dataset, PCR ensures consistent predictions for
both original inputs and their adversarial examples. This approach maintains
balanced and effective learning, preventing biases toward any specific subset.

By integrating these innovative strategies, DGAD transcends traditional dis-
tillation enhancements, dynamically rectifying teacher model inaccuracies while
fine-tuning the knowledge transfer. This dual-action approach not only elevates
the student model’s defense against adversarial attacks but also significantly
boosts its precision on clean data, setting a new standard for both robustness
and accuracy in adversarial distillation.

2 Related Work

2.1 Adversarial Training

Adversarial Training (AT) [10,22] is a defensive strategy against adversarial at-
tacks, which aim to deceive machine learning models with subtly altered inputs.
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The central goal of AT is to train models to accurately classify these manip-
ulated inputs. However, treating all adversarially perturbed examples with the
same target labels can lead to overfitting these adversarial examples. To address
the trade-off between accuracy and robustness, approaches like Adversarial Logit
Pairing (ALP) [17] focus on maintaining consistency between the logits of orig-
inal and adversarial examples, while TRADES [32] and SCORE [24] introduce
surrogate loss based on the Kullback-Leibler divergence and Squared Error loss,
respectively, between the probability distributions of original and adversarial
inputs.

Despite these advancements, previous research often overlooked whether ad-
versarial examples were generated from correctly classified clean inputs. It has
been highlighted that generating adversarial examples from misclassified images
can exacerbate overfitting to adversarial examples. In response, methods such as
MMA [7] and Misclassification-Aware Adversarial Training (MART) [31] suggest
adjusting the weight of the adversarial perturbation or the loss function during
adversarial training based on the misclassification of samples. These proposals
underscore the importance of distinguishing between correctly classified and mis-
classified samples in generating adversarial examples, aiming to improve model
robustness without compromising the model’s ability to generalize.

2.2 Adversarial Distillation

Adversarial Distillation (AD) emerged from the desire to convey the adversar-
ial robustness of a well-trained teacher model to more compact student model.
Adversarial Robust Distillation (ARD) [9] pioneered this realm by integrating
Knowledge Distillation [14] with Adversarial Training. RSLAD [34] emphasized
the significance of using robust soft labels in the inner optimization to gener-
ate adversarial examples. AdaAD [16] further refined this approach, optimiz-
ing the adversarial example generation to account for discrepancies between
teacher and student predictions and leveraging these refined adversarial exam-
ples for more effective training. Introspective Adversarial Distillation (IAD) [33]
addresses teacher’s unreliability in later training stages by incorporating a partial
reliance on teacher’s predictions, increasingly favoring the student’s self-derived
knowledge as training advances.

3 Preliminaries

There is active exploration into machine learning models based on the adver-
sarial distillation (AD) that appropriately balance accuracy and resilience to
adversarial attacks. Central to this challenge is an effective transfer of knowl-
edge from an adversarially trained teacher model to a student model, aiming to
instill both accuracy and robustness.

The foundation of our investigation is knowledge distillation (KD) [14], where
a smaller student model is trained to mimic a more complex teacher model by
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aligning its predictions with those of the teacher, following the objective function
in Eq. (1):

argmin
θ

(1− α) · CE(Sθ(x), y) + α · τ2 · KL(Sτ
θ (x) ||T τ (x)) (1)

where CE is the cross-entropy loss assessing the accuracy for an input x of the
student with a ground truth y, KL measures the disparity between the soft-
ened outputs of the student Sτ

θ (x) with learnable parameters θ and a pretrained
teacher model T τ (x) modulated by a temperature parameter τ , and α weights
the importance of classification accuracy versus prediction similarity.

Adversarial Robustness Distillation (ARD) [9] formulates the adversarial
training in KD framework, harnessing the insights from a pretrained teacher
model to guide a student model through adversarial scenarios. In contrast to
AT, they use the predictions from the teacher model as reference signals. These
signals aid the learning process of the student, encompassing both clean and ad-
versarially perturbed inputs. AD adopts a min-max optimization framework that
is similar to AT but is distinctively enhanced by the knowledge of the teacher
model. The AD process is captured by the following optimization function:

argmin
θ

(1− α) · CE(S(x), y) + α · KL(S(x′), T (x))

where x′ = argmax
||δ||p<ϵ

CE(Sθ(x+ δ), y).
(2)

Robust Soft Label Adversarial Distillation (RSLAD) [34] showcases the use
of robust soft labels, generated by a larger, robust teacher model, to guide the
student model’s training on both clean and adversarial examples. This approach
includes generating adversarial examples that leverage these robust soft labels
for an enhanced training process. They apply robust soft labels in both of two
processes:

argmin
θ

(1− α) · KL(Sθ(x)||T (x)) + α · KL(Sθ(x
′)||T (x)),

where x′ = argmax
||δ||p<ϵ

KL(Sθ(x+ δ), T (x)).
(3)

In Eq. (3), the prediction deviation between the student and teacher models
is assessed using both a clean input x and its corresponding adversarial example
x′. The adversarial example is produced during an inner-maximization phase,
where a deliberate perturbation δ is applied to the clean input within an ϵ-
constrained sphere to maximize the divergence and hence challenge the model.
The outer-minimization phase then involves the student model training, thereby
bolstering the resilience of model to adversarial perturbations and mirroring
robust predictive qualities of the teacher model.

Adaptive Adversarial Distillation (AdaAD) [16] further enhances adversarial
distillation by integrating the teacher model in the generation of adversarial ex-
amples and guiding the student model with well-estimated probabilities for each
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data point and its ϵ-neighborhood region. This approach mitigates model over-
smoothness, thereby reducing the adversarial trade-offs for enhanced generaliza-
tion. The AdaAD objective, shown in Eq. (4), emphasizes the teacher-directed
adversarial learning:

argmin
θ

(1− α) · KL(Sθ(x)||T (x)) + α · KL(Sθ(x
′)||T (x′)),

where x′ = argmax
||δ||p<ϵ

KL(Sθ(x+ δ), T (x+ δ)).
(4)

A key advance lies in the inner-maximization process, which creates adver-
sarial examples that maximize the discrepancy between the predictions of the
student and teacher models on adversarially perturbed inputs. The teacher pre-
dictions on these adversarial examples are then used as supervisory signals to
guide the training of the student model.

4 Dynamic Guidance Adversarial Distillation

4.1 Motivation of DGAD

In the realm of Adversarial Distillation (AD), reliance on static weighting for
loss across all samples, notably in frameworks like AdaAD [16] and similar ap-
proaches [9, 23, 33, 34], often results in an imbalance between maintaining ac-
curacy on original inputs and ensuring robustness against adversarial threats.
This issue becomes more pronounced when adjusting the weighting parameter α,
as depicted in Fig. 2. Static weights fail to account for the varying importance
of individual samples, leading to a suboptimal balance between accuracy and
robustness. This lack of consideration for sample importance means that some
samples, particularly those misclassified by the teacher model, are not properly
weighted during training. Consequently, the inaccuracies of the teacher model
can disproportionately influence the training process, propagating these errors
to the student model and undermining the overall effectiveness of the distillation
process.

Our Dynamic Guidance Adversarial Distillation (DGAD) framework addresses
this problem through dynamic adjustment of weighting, tailored to the precision
of the teacher model’s predictions. DGAD hinges on a critical insight: the im-
portance of each sample should be dynamically adjusted based on the accuracy
of the teacher model’s predictions on clean inputs. When the teacher model’s
predictions on clean inputs are incorrect, using these misclassified samples to gen-
erate adversarial examples can degrade the student’s learning experience during
distillation. To mitigate this, DGAD dynamically adjusts the weights assigned
to each sample based on whether the teacher model’s prediction for clean inputs
is correct. By deliberately excluding misclassified samples from the adversarial
generation process and focusing adversarial training on accurately classified sam-
ples, DGAD ensures that the student model’s training benefits from the most
reliable information. For samples misclassified by the teacher model, the focus
is on improving the student’s performance on clean data. This methodological
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Fig. 2: Necessity of dynamically varying AD loss weights for individual sam-
ples. We compare the performance of AdaAD [16], which originally proposes to employ
a static weight α in (Eq. (4)), against our Dynamic Guidance Adversarial Distillation
(DGAD) that adapts the weight dynamically per sample as in Eq. (5). To validate the
importance of dynamical weights, we adjust α for AdaAD and compare it across clean
and adversarial scenarios. The blue solid line represents AdaAD’s performance with a
fixed α across all samples, while the red dotted line indicates DGAD’s performance,
showing improved accuracy due to its dynamic weighting approach.

pivot enhances the student model’s resilience to adversarial manipulations while
either maintaining or improving accuracy on clean data, thereby strengthening
the model’s overall performance.

The motivation behind DGAD is to navigate and mitigate the intrinsic trade-
offs present in AD, employing a dynamic and discerning strategy for knowledge
transfer that focuses exclusively on transmitting dependable insights from the
teacher model. The subsequent sections will delve deeper into the strategies
that embody this approach—Misclassification-Aware Partitioning (MAP), Error-
corrective Label Swapping (ELS), and Predictive Consistency Regularization
(PCR)—showcasing DGAD’s commitment to achieving both effectiveness and
efficiency in enhancing model robustness and accuracy.

4.2 Misclassification-Aware Partitioning in AD

Dynamic sample weighting is essential for effective knowledge distillation. Our
DGAD framework implements this through the Misclassification-Aware Parti-
tioning (MAP) strategy, which categorizes the dataset into two subsets for spe-
cialized training: (1) Standard Training Subset (xST ) consists of samples
where the teacher model’s predictions for clean inputs x are incorrect, denoted
as xST = {x | argmax(T (x)) ̸= y}. These samples are used in the standard
distillation path to improve the student’s accuracy on clean data; (2) Adver-
sarial Training Subset (xAT ) consists of samples correctly classified by the
teacher, represented as xAT = {x | argmax(T (x)) = y}. These samples are used
for adversarial distillation to enhance the student model’s robustness against
adversarial perturbations.

This partitioning allows for targeted distillation, optimizing the contribution
of each sample to the student’s learning process. The training objective combines
standard and adversarial distillation to balance and streamline the learning pro-
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cess:

argmin
θ

KL(Sθ(xST )||T (xST ))︸ ︷︷ ︸
Standard Training Distillation LST

+ KL(Sθ(x
′
AT )||T (x′

AT ))︸ ︷︷ ︸
Adversarial Training Distillation LAT

where x′
AT = argmax

||δ||p<ϵ

KL(Sθ(xAT + δ)||T (xAT + δ)).
(5)

where x′
AT represents adversarially perturbed inputs from xAT .

Standard Training Distillation (LST ): Aims to minimize the divergence
between the student and teacher model predictions for the standard training
subset xST , comprising samples inaccurately classified by the teacher. This fo-
cuses the distillation on enhancing the student’s accuracy on clean data, ensuring
the student model learns more precisely from foundational data, contributing to
overall performance improvements.

Adversarial Training Distillation (LAT ): Targets adversarial resilience
by distilling knowledge from adversarially perturbed examples x′

AT , derived from
samples correctly identified by the teacher. This approach supports the student
model in maintaining robustness in adversarial situations.

MAP’s approach of generating adversarial examples from accurately classi-
fied samples avoids propagating teacher model inaccuracies. This precision in
knowledge transfer, as our ablation study (Tab. 2) demonstrates, substantially
boosts the learning dynamics of the student model, marking a significant advance
in adversarial distillation efficacy.

4.3 Error-corrective Label Swapping

Error-corrective Label Swapping (ELS) is a pivotal strategy designed to rec-
tify inaccuracies in the predictions of the teacher model, especially focusing on
samples misclassified after implementing MAP. ELS comes into play when a
discrepancy is identified—specifically, when the teacher model wrongly places
higher confidence in an incorrect label ŷ over the correct label y. This discrep-
ancy is measured through a negative margin M , which triggers the corrective
mechanism of ELS. By swapping the labels in such instances, ELS ensures that
the student model receives and learns from correct labels, enhancing the pre-
cision and reliability of knowledge transfer. This corrective action is crucial for
two scenarios.

All samples in clean inputs xST undergo label swapping to rectify the
teacher’s initial misclassifications, ensuring xST contributes positively to the
student’s learning. Here, y is a true label and ŷ is a predicted label, PT is a
softmax probability of the teacher model, and P̂T is the adjusted probability
after swapping the incorrect prediction with the correct label:

P̂T ← SWAP(PT (ŷ|xST ), PT (y|xST )), ∀xST . (6)

Adversarial examples x′
AT are generated based on the student model using

xAT . According to IAD [33], the teacher’s predictions on x′
AT may become unre-

liable as student model training progresses. To prevent the propagation of these
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unreliable predictions during later stages of training, ELS is applied only when
the teacher’s predictions on x′

AT are incorrect. This ensures that the adversarial
training of the student model is based on accurate teacher feedback:

P̂T ← SWAP(PT (ŷ|x′
AT ), PT (y|x′

AT )), if M < 0,

where M = PT (y|x′
AT )− PT (ŷ|x′

AT ), for generated x′
AT .

(7)

By systematically correcting these errors, ELS substantially enhances the
quality of knowledge distilled to the student model and ensures a more effec-
tive and accurate learning process. This strategy is instrumental in overcoming
the limitations posed by misclassifications, significantly contributing to the ro-
bustness and accuracy of the student model as demonstrated in our subsequent
ablation studies. The training objectives, LST for standard inputs and LAT for
adversarial inputs, are refined through corrected teacher predictions T̂ (·) to en-
sure an optimal distillation path.

argmin
θ

KL(Sθ(xST )||T̂ (xST ))︸ ︷︷ ︸
Standard Training Distillation LST

+ KL(Sθ(x
′
AT )||T̂ (x′

AT )).︸ ︷︷ ︸
Adversarial Training Distillation LAT

(8)

4.4 Predictive Consistency Regularization

Predictive Consistency Regularization (PCR) directly addresses the challenge of
maintaining consistency in the student model’s predictions across both Standard
Training (ST) and Adversarial Training (AT) subsets. Given that ST focuses on
correcting misclassifications of clean inputs and AT concentrates on enhancing
resilience against adversarial perturbations, an inherent risk emerges: the stu-
dent model might develop inconsistent responses to similar inputs under different
contexts. PCR works to bridge this gap, ensuring that the student model applies
a consistent learning approach to both subsets. By doing so, PCR mitigates the
potential for divergent behaviors, fostering a unified model performance regard-
less of the input’s nature—clean or adversarially perturbed.

PCR introduced via LPCR, harmonizes the student model’s responses to clean
(x) and their corresponding adversarial (x′) inputs. This regularization approach
is instrumental in fostering a balanced learning process, as evidenced by our ab-
lation study results in Tab. 2. Here, LPCR = ||Sθ(x)−Sθ(x

′)||2. The comprehen-
sive approach to adversarial distillation is encapsulated in the total loss LDGAD,
defined as follows:

LDGAD = LST + LAT + β · LPCR, (9)

This loss function strategically emphasizes predictive consistency through the
parameter β, enhancing the student model’s accuracy and robustness in a com-
prehensive manner.

Implementing insights from AT research [24,32], PCR distinctly tailors these
principles to our framework in AD, achieving a strategic balance between accu-
racy and adversarial resilience. Along with MAP and ELS, significantly elevates
defense mechanisms against adversarial threats, a claim substantiated by our
ablation study’s robust performance enhancements against a range of attacks.
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Table 1: Performance of Teacher Models on CIFAR10/ CIFAR100 and Tiny-
ImageNet.

Dataset Teacher Clean FGSM PGD CW AA

CIFAR10 ResNet18 [32] 82.94 59.02 53.71 77.04 49.34
CIFAR10 WideResNet-34-10 [25] 87.20 62.14 55.90 77.80 51.79
CIFAR10 WideResNet-34-20 [3] 86.03 66.01 63.33 82.60 57.71
CIFAR100 WideResNet-34-10 [3] 64.07 39.83 36.61 56.22 30.57
Tiny ImageNet PreActResNet18 [13] 46.04 22.36 20.85 41.00 15.45

5 Experiments

Experimental Setup. The performance of DGAD was assessed on the CI-
FAR10, CIFAR100 [18], Tiny ImageNet [20] datasets, normalized between [0,1].
Benchmarks included PGD-AT [22], TRADES [32], and several AD methods
(ARD [9], IAD [33], RSLAD [34], AKD [23], AdaAD [16]). We employed ResNet18
[12] and MobileNetV2 [26] as students, and WideResNet-34-10 (both datasets),
WideResNet-34-20 (CIFAR10) [3,25], PreActResNet18 [13] (Tiny ImageNet) as
teachers. Tab. 1 provides the performance of the teacher models used in our
experiments. For fair comparison, models were trained following AdaAD’s basic
settings. We used SGD with an initial learning rate of 0.1, momentum of 0.9,
weight decay of 5e-4, and standard data augmentation. Training duration var-
ied: PGD-AT stopped at 110 epochs, TRADES and AD methods [9, 23, 33, 34],
including DGAD, ran for 200 epochs with learning rate adjustments at epochs
100 and 150. Inner optimization parameters for adversarial training included 10
iterations, a step size of 2/255, and a perturbation bound of 8/255 under L∞
constraint. Hyper-parameters α and distillation temperature τ were set as rec-
ommended. For the loss function, LPCR weight β was set to 5 for ResNet18, 10 for
MobileNetV2, and 15 for PreActResNet18 models. Experiments were conducted
in PyTorch with an adversarial training library.
Evaluation Metrics. Model performance is gauged through natural accuracy
on clean samples and robust accuracy against adversarial samples, tested using
FGSM [10], PGD [22], CW2 [2], and AutoAttack (AA) [5]. Perturbation size for
FGSM, PGD, and AA is set at 8/255, with PGD utilizing 10 steps of 2/255 each.
CW2’s equilibrium constant is 0.1. Results reflect the best PGD-10 checkpoint.

5.1 Ablation Study

Efficacy of Individual Components. The comprehensive ablation study pre-
sented in Tab. 2 meticulously dissects the distinct and combined influences of the
proposed components, revealing a clear trajectory of performance enhancements
and robustness against adversarial threats.

When Misclassification-Aware Partitioning (MAP) is applied independently,
it yields a significant and vital enhancement in model robustness. This under-
scores the fundamental efficacy of MAP in directing the student model’s focus
towards the most reliable predictions of the teacher.
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Table 2: Efficacy of DGAD Components on CIFAR10. We utilize
ResNet18 (student) and WideResNet-34-10 (teacher) to test components including
Misclassification-Aware Partitioning (MAP), Error-corrective Label Swapping (ELS),
and Predictive Consistency Regularization (PCR). Notations are as follows: x′ - mis-
classified adversarial examples without consider misclassification on clean inputs, xST

– misclassified clean inputs, x′
AT – misclassified adversarial examples.

Method Clean FGSM PGD CW AA

Baseline [16] 86.75 60.37 54.13 78.18 50.06
+MAP 86.92 61.40 54.94 78.34 50.82
+MAP+PCR 87.19 61.14 54.92 78.72 50.52
+ELS(x′) 87.27 60.66 54.47 78.42 50.13
+MAP+ELS(x′

AT ) 87.28 61.48 54.97 77.85 50.80
+MAP+ELS(xST ) 87.81 61.14 54.89 78.36 50.26
+MAP+ELS(xST )+ELS(x′

AT ) 87.53 61.23 54.77 78.49 50.33
+MAP+ELS(xST )+ELS(x′

AT )+PCR 87.58 61.72 55.29 78.36 50.63

Table 3: Impact of different labeling methods in DGAD on CIFAR10. The
experimental setup is identical to that described in Tab. 2.

Method Clean FGSM PGD CW AA

Label Smoothing 87.24 61.97 56.09 77.51 49.86
Label Mixing 87.59 61.90 55.22 78.64 50.64
Label Swapping 87.58 61.72 55.29 78.36 50.63

Error-corrective Label Swapping (ELS) presents its own set of advantages.
When ELS is applied to adversarial examples x′ generated without MAP, we
observe enhanced robustness and accuracy. Further improvements in robustness
are noted when applying ELS on x′

AT after MAP, highlighting the benefits of
excluding misclassified clean inputs and the crucial role of addressing misclassi-
fications in bolstering adversarial resilience. Using ELS in xST with MAP ampli-
fies performance. This demonstrates the critical role of rectifying teacher errors,
as correcting misclassifications on clean data substantially boosts learning and
robustness. Applying ELS to both xST and x′

AT with MAP enhances this effect,
highlighting the synergy of these strategies in improving the performance of the
student model.

Predictive Consistency Regularization (PCR) not only maintains robustness
gains from MAP but also enhances accuracy on clean inputs, showcasing the
synergistic effect of the two components. The integration of all components,
including MAP and PCR, significantly outperforms configurations without PCR,
highlighting the role of PCR in complementing and augmenting MAP and ELS.

The initial addition of MAP notably improved AA performance by 0.77%,
with subsequent ELS and PCR enhancements showing smaller AA improve-
ments. In total, these components resulted in an improvement of 0.57% over the
baseline in AA. This non-linear improvement arises because our method aims to
balance clean accuracy and adversarial robustness.

Effectiveness of Labeling Techniques in DGAD. Within the DGAD,
we evaluate labeling techniques for correcting teacher misclassifications. Label
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Table 4: Evaluating on CIFAR10. RN-18 and MN-V2 denote the student models
ResNet-18 and MobileNetV2, respectively. Best results in bold; next-best underlined.

Teacher Model WideResNet-34-10 WideResNet-34-20

model method Clean FGSM PGD CW2 AA Clean FGSM PGD CW2 AA

RN-18

PGD-AT [22] 82.95 57.16 52.87 77.56 47.69 82.95 57.16 52.87 77.56 47.69
TRADES [32] 83.00 58.42 53.18 76.92 49.21 83.00 58.42 53.18 76.92 49.21
ARD [9] 84.04 58.26 52.67 74.95 48.62 84.03 58.16 53.11 79.13 48.07
IAD [33] 83.19 57.76 53.17 76.77 48.82 84.71 61.28 54.92 79.44 49.85
RSLAD [34] 83.60 57.45 52.60 76.85 48.45 83.52 58.36 53.46 78.36 48.66
AKD [23] 84.69 58.97 53.28 77.25 48.37 83.22 58.63 54.16 78.44 49.26
AdaAD [16] 86.75 60.37 54.13 78.18 50.06 85.58 60.85 56.40 80.83 51.37
DGAD 87.58 61.72 55.29 78.36 50.59 85.75 62.28 58.05 81.60 52.34

+0.83 +1.35 +1.16 +0.17 +0.53 +0.17 +1.00 +1.65 +0.77 +0.97

MN-V2

PGD-AT [22] 77.54 53.58 49.90 72.54 44.56 77.54 53.58 49.90 72.54 44.56
TRADES [32] 79.80 54.84 50.51 75.30 45.67 79.80 54.84 50.51 75.30 45.67
ARD [9] 84.63 58.00 50.82 72.93 46.48 79.56 53.17 49.06 74.51 44.04
IAD [33] 82.11 55.27 50.20 75.41 45.66 83.31 58.29 52.98 78.03 47.11
RSLAD [34] 83.24 56.69 51.57 76.52 47.18 81.11 56.39 51.66 76.20 46.75
AKD [23] 82.64 56.17 50.49 75.31 45.67 83.41 57.71 52.35 77.97 46.82
AdaAD [16] 86.80 58.56 52.00 78.27 47.97 83.79 57.29 53.04 79.24 47.66
DGAD 87.19 60.11 53.56 79.40 49.19 85.30 61.20 56.77 80.98 51.10

+0.39 +1.55 +1.56 +1.13 +1.22 +1.51 +3.49 +3.73 +1.74 +3.44

Swapping is compared with Label Smoothing, represented as (1−α) · y+α · 1
C ,

where C is the number of classes, and Label Mixing, shown as α ·T (x)+(1−α)·y
(Tab. 3). While Label Smoothing slightly improves clean data accuracy, its im-
pact on robustness varies. Label Mixing and Label Swapping show similar results
in enhancing accuracy and robustness. However, Label Mixing’s reliance on the
hyperparameter α can complicate corrections, especially with overly confident
incorrect predictions. Label Swapping directly corrects misclassifications, sim-
plifying the training process and ensuring precise knowledge transfer without
complex parameters tuning. This highlights its advantage in adversarial training
and provides a clear rationale for its use in DGAD.

5.2 Adversarial Robustness

CIFAR10/CIFAR100. We compared the performance of our DGAD with
other existing methods on CIFAR10 and CIFAR100 datasets, focusing particu-
larly on the best checkpoint results against PGD attacks, as established in [16].

For CIFAR10 evaluations in Tab. 4, our DGAD framework marks a distinct
advancement in model performance. With the WideResNet-34-10 as the teacher
model paired with ResNet18 as the student, DGAD has achieved a remarkable
0.83% uplift in clean data accuracy, surpassing the already impressive teacher
model’s score with an overall accuracy of 87.20%. Moreover, DGAD’s fortifica-
tion against attacks is evident with gains of 1.35% against FGSM and 1.16%
against PGD attacks, showcasing a strengthened defense mechanism.

Switching to WideResNet-34-20 and MobileNetV2, DGAD achieves a notable
1.18% increase in clean accuracy and consistent robustness gains—3.49% against
FGSM, 3.73% on PGD, 1.74% on CW2, and 3.44% on AA attacks—validating
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Table 5: Evaluating on CIFAR100. RN-18 and MN-V2 denote the student models
ResNet-18 and MobileNetV2, respectively. Best results in bold; next-best underlined.

Teacher Model WideResNet-34-10

Model Method Clean FGSM PGD CW2 AA

RN-18

PGD-AT [22] 56.27 32.08 29.84 49.05 24.99
TRADES [32] 57.82 32.52 30.38 51.30 25.02
ARD [9] 60.94 35.31 32.72 53.67 26.04
IAD [33] 60.43 35.75 32.80 52.71 26.84
RSLAD [34] 59.55 35.68 33.35 52.89 27.77
AKD [23] 57.84 34.32 31.98 51.06 26.06
AdaAD [16] 62.19 35.33 32.52 54.67 26.74
DGAD 63.24 36.09 33.68 55.47 27.66

+1.05 +0.76 +1.16 +0.80 -0.11

MN-V2

PGD-AT [22] 51.55 29.34 27.26 45.73 22.07
TRADES [32] 53.05 29.07 27.44 47.62 21.82
ARD [9] 57.18 33.13 30.91 51.50 24.20
IAD [33] 56.33 32.88 30.18 49.00 24.07
RSLAD [34] 56.04 32.76 30.29 50.14 24.56
AKD [23] 56.75 33.11 30.50 49.53 24.65
AdaAD [16] 61.44 34.75 31.97 54.21 25.91
DGAD 62.25 34.90 32.64 54.54 26.56

+0.81 +0.15 +0.67 +0.33 +0.65

Table 6: Evaluating on Tiny ImageNet. The teacher model was trained with
TRADES (λ=6) for 110 epochs.

Model Method Clean FGSM PGD CW2 AA

RN-18

ARD [9] 41.66 24.47 23.30 37.76 17.23
RSLAD [34] 40.83 23.45 22.58 37.12 17.05
AdaAD [16] 47.54 24.22 22.82 42.79 17.41
DGAD 47.92 24.42 23.05 42.81 17.18

its efficacy in improving both accuracy and defense in a cohesive manner. For
WideResNet-34-10 with MobileNetV2, the results highlight its adaptability and
strength in countering varied adversarial strategies while preserving or improving
the accuracy of clean data.

For CIFAR100 in Tab. 5, DGAD has shown significant improvements over
the AdaAD method. Specifically, for ResNet18 with WRN-34-10, there is an
increase in clean accuracy by 1.05% and a boost in robustness against the PGD
attack by 1.16%. For MobileNetV2, For the MobileNetV2 model, we observe a
clean accuracy improvement of 0.81%, alongside a 0.67% uptick in PGD attack.

Tiny ImageNet. To evaluate performance on a more complex dataset,
we tested DGAD on Tiny ImageNet using a PreActResNet18 teacher and a
ResNet18 student model. As shown in Tab. 6, DGAD outperforms all other
methods, including ARD, RSLAD, and AdaAD, achieving the highest accuracy
on both clean and adversarial examples.

Transfer-based Attacks on CIFAR10. We tested DGAD against transfer-
based attacks using surrogate models such as ResNet34 and VGG16 on CIFAR10.
Our evaluation simulates real-world scenarios, where attackers lack specific de-
tails of the target models. In Tab. 7, DGAD outperforms all other methods,
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Table 7: Evaluating Transfer-based Attacks Using Various Surrogate Models
on CIFAR10 with a ResNet18 Target Model.

Surrogate Model ResNet34 VGG16
Method FGSM PGD JSMA FGSM PGD JSMA

PGD-AT [22] 63.05 60.58 84.90 64.06 62.78 85.77
TRADES [32] 65.57 63.93 84.71 66.88 66.00 85.36
ARD [9] 65.26 63.20 86.06 66.64 65.43 87.03
IAD [33] 65.48 63.23 84.71 66.62 66.06 86.04
RSLAD [34] 65.06 62.77 85.43 65.91 64.83 86.26
AKD [23] 64.34 62.23 85.22 65.24 64.30 86.24
AdaAD [16] 66.81 64.57 88.00 68.74 67.89 88.39
DGAD 67.77 65.20 90.56 70.92 70.29 90.34

Table 8: Evaluating Self-Adversarial Distillation on CIFAR10 using a
TRADES (λ = 6) trained ResNet18 Teacher Model.

Method Clean FGSM PGD CW2 AA

PGD-AT [22] 82.95 57.16 52.87 77.56 47.69
ARD [9] 80.66 55.68 50.90 74.87 46.61
IAD [33] 81.32 57.54 52.91 75.69 48.20
RSLAD [34] 81.92 57.94 53.29 76.26 49.06
AKD [23] 83.74 58.87 54.17 77.97 48.84
AdaAD [16] 83.13 57.54 53.30 77.62 49.61
DGAD 83.26 58.91 54.37 77.90 50.54

including the state-of-the-art AdaAD, across all metrics, demonstrating superior
transferability and robustness against diverse surrogate model-based attacks.

Adversarial Self-Distillation on CIFAR10. As shown in Tab. 8, DGAD
outperforms both AdaAD and AKD [23] in adversarial resilience, achieving su-
perior performance against FGSM, PGD, and AA attacks. While AKD is specif-
ically designed for self-distillation within the same architecture, DGAD demon-
strates superior performance in various setups, although it may occationally lag
behind AKD in scenarios tailored to AKD’s design.

6 Conclusion

In this study, we presented the Dynamic Guidance Adversarial Distillation (DGAD)
framework, a novel strategy designed to enhance both the adversarial robustness
and clean data accuracy of student models through a tailored approach in adver-
sarial distillation. DGAD leverages Misclassification-Aware Partitioning (MAP),
Error-corrective Label Swapping (ELS), and Predictive Consistency Regular-
ization (PCR) to meticulously correct the inaccuracies in the teacher model’s
predictions and fine-tune the student’s learning process.

Our findings affirm the effectiveness of DGAD, demonstrating substantial
improvements in the model’s defense against adversarial threats and its accu-
racy on clean data. This advancement in adversarial and knowledge distillation
sets new standards for developing resilient and accurate machine learning mod-
els, paving the way for future research in enhancing model robustness without
compromising performance.
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