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Abstract. We propose a fast disparity estimation algorithm using back-
ground registration and object segmentation for stereo sequences from
fixed cameras. Dense background disparity information is calculated in
an initialization step, so that only disparities of moving object regions are
updated in the main process. We propose a real-time segmentation tech-
nique using background subtraction and interframe differences, and a
hierarchical disparity estimation using a region-dividing technique and
shape-adaptive matching windows. Experimental results show that the
proposed algorithm provides accurate disparity vector fields with an av-
erage processing speed of 15 frames/s for 320�240 stereo sequences
on an ordinary PC. © 2006 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2183667�
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1 Introduction

With the progress of multimedia systems, a rapidly increas-
ing number of researchers are working on 3-D imaging
systems. The applications for such a system are obviously
plentiful. Immersive video conferencing can enhance the
effectiveness of interpersonal communication,1–3 3-D TV
and display systems increase the impact of news or movies
and advertising,4,5 and the 3-D mixed reality technique en-
ables remote surgery or expert consultancy in the medical
areas, and provides a means for remote maintenance in haz-
ardous environments.6,7

The most important problem in realizing these kinds of
systems is to reconstruct 3-D coordinates of captured
scenes. Thus far, many active and passive methods have
been proposed to recover depth information from a real
scene. Active techniques utilize ultrasonic transducers or
lasers to illuminate the work space, so that they yield fast
and accurate depth information.8–10 However, there are
limitations to these techniques with respect to measurement
range and hardware cost. Passive techniques based on com-
puter vision are less sensitive to environments and typically
require a simpler and less expensive setup for range sens-
ing. Those approaches are capable of estimating depth in-
formation from acquired images and camera parameters.5,11

One of the most important problems in the depth esti-
mation using passive techniques is to find the correspond-
ing pair I1 and I2 of a single world point w in two separate
image views as shown in Fig. 1. If we assume that the
cameras are identical and the coordinate systems of both
cameras are aligned in parallel, the determination of the
disparity from I1 to I2 becomes finding a function d�x ,y�
such that

I2�x,y� = I1�x + d�x,y�,y� . �1�
0091-3286/2006/$22.00 © 2006 SPIE
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Considerable effort has been expended on the disparity
stimation problem since the 1970s.12 Recently, Scharstein
nd Szeliski discussed the taxonomy of existing stereo al-
orithms in their paper,13 and Brown et al. reviewed ad-
ances in correspondence methods, methods for occlusion,
nd real-time implementation.14 Disparity estimation algo-
ithms can be classified into two categories: local methods,
ncluding area-based approaches15,16 and feature-based
pproaches,17,18 and global methods, such as
nergy-based19,20 and DSI-based21,22 approaches.

However, most of them have serious limitations in com-
on applications, since many kinds of 3-D imaging system

equire real-time calculation of disparity fields for dynamic
cenes. Most real-time implementations have made use of
pecial-purpose hardware, such as digital signal processors
DSPs� or field-programmable gate arrays �FPGAs�.23–25

ith increasing clock speeds, real-time stereo processing
as been recently realized on ordinary desktop
omputers.26–30 However, they generally show poor quality
Fig. 1 Stereo geometry.
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
in wide-ranging applications, since they use simple area-
based algorithms such as the sum of absolute differences
�SAD�.

We have previously proposed a two-stage algorithm to
find smooth and precise disparity vector fields in a stereo
image pair.31 The algorithm comprises dense disparity esti-
mation and edge-preserving regularization. It resulted in a
clean disparity map with good discontinuity localization,
but the computational cost was so high that it did not work
in real time.

In this paper, we propose a fast disparity estimation al-
gorithm using background registration and foreground seg-
mentation. We assume that the stereo camera does not
move, and that no object moves for a few seconds in an
initialization step for generating background information.

Figure 2 shows a block diagram of the proposed system.
Accurate and detailed disparity information for the environ-
ment is estimated in advance, and then only disparities of
moving object regions are calculated, using a fast algorithm
and foreground segmentation. As a preprocessing, acquired
image sequences are low-pass filtered to reduce noise ef-
fects and then rectified, since we assume that stereo images
are captured in parallel stereo cameras for disparity estima-
tion. We use a real-time stereo rectification function pro-
vided by Triclops SDK.32

The remainder of this paper is organized as follows. Pro-
posed real-time foreground segmentation and disparity es-
timation techniques are described in Sec. 2 and Sec. 3,
respectively. Then, Sec. 4 shows experimental results with
evaluation. Finally, concluding remarks and plans for future
work are presented in Sec. 5.

2 Foreground Segmentation
Real-time foreground segmentation is one of the most im-
portant components in the proposed system, because the

Fig. 2 Block diagram of the overall process.
performance of the segmentation decides the efficiency and g
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uality of the final disparity fields. Conventional object
egmentation algorithms are roughly classified into two cat-
gories according to their primary segmentation criteria.
he first kind use spatial homogeneity as a criterion. Mor-
hological filters are used to simplify the image, and then
he watershed algorithm is applied for region boundary
ecision.33,34 The segmentation results of these algorithms
end to track the object boundary more precisely than other
ethods because they use the watershed algorithm. The
ain drawback of these algorithms is their high computa-

ional complexity, since the watershed is a computationally
ntensive algorithm. The second approaches make use of
hange detection such as frame difference35,36 or back-
round mosaics.37,38 These algorithms work very fast and
istinguish semantic object regions from static background.

In this section, we propose a foreground segmentation
echnique based on the second approach, using both back-
round subtraction and interframe differences. Figure 3
hows a diagram of the proposed foreground segmentation
lgorithm.

First, the background masks Imin�x ,y� and Imax�x ,y� are
odeled with the minimum and maximum intensities of the
rst N frames, respectively, because the background infor-
ation is very sensitive to noise and change of illumina-

ion. Then, the frame difference mask Ifd�x ,y� is calculated
s the difference between two consecutive frames. In the
hird step, an initial foreground mask is constructed from
he frame difference and background difference masks by
he OR process, that is, if a pixel of current frame satisfies
ne of the following equations, it is determined to be be-
onged to an initial foreground region:

cur�x,y� � Imin�x,y� − Thtol, �2a�

cur�x,y� � Imax�x,y� + Thtol, �2b�

fd�x,y� � Thfd. �2c�

ere Thtol and Thfd mean the threshold values for the back-

Fig. 3 Proposed foreground segmentation algorithm.
round and frame difference regions, respectively.
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
However, due to the camera noise and irregular object
motion, there exist some noise regions in the initial mask.
One of the conventional ways to eliminate the noise regions
is using the morphological operations to filter out small
regions. Thus, we refine the initial mask by a closing pro-
cess and eliminate small regions with a region-growing
technique.39

Finally, in order to smooth the boundaries of the fore-
ground and to eliminate holes inside the regions, we pro-
pose a profile extraction technique. This technique is
adapted from Kumar’s.38 A weighted 1-pixel-thick drape
moves from one side to the opposite side. The adjacent
pixels of the drape are connected by elastic springs, so it
covers the object but does not infiltrate into gaps whose
widths are smaller than a threshold M. This process is per-
formed on all four quarters, and the region wrapped by the
four drapes is decided as a final foreground region. Figure 4
shows the profile extraction process applied to an initial
object.

Changes of lighting or background objects, however, are
serious problems in many background-registration-based
segmentation algorithms. In order to overcome these prob-
lems, the long-term behavior of the object motion accumu-
lated from past frames is observed. If a pixel is stationary
for the past ThBg frames, then the corresponding pixel and
disparity fields in the background buffer are updated by
those in the current frame.

Segmentation results by the proposed method are shown
in Fig. 5. Figure 5�b� is the result of initial object detection
from Fig. 5�a�. Main objects are detected well, but they
include noises on background and object boundaries. In
Fig. 5�c�, we can see that noises are eliminated and object
surfaces are smoothed by the morphological process. How-
ever, many holes still exist inside the objects. Figure 5�d� is
the final segmentation result. After applying the profile ex-
traction technique, good semantic foreground regions are

Fig. 4 Profile extraction.
obtained. i
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Disparity Estimation
n this section, we propose an efficient disparity estimation
lgorithm to find accurate and detailed disparity fields in a
tereo image pair. The resulting disparity map should be
mooth and detailed; continuous surfaces should produce
mooth disparity fields while preserving the discontinuities
hat result from object boundaries. In order to satisfy both
fficiency and accuracy, we propose a hierarchical ap-
roach. Initial disparity vectors of blocks are obtained from
ownsampled stereo images using a region-dividing dispar-
ty estimation technique. With the initial vectors, dense dis-
arities are estimated with shape-adaptive windows in full-
esolution images. In the case of background disparity
stimation, vector field regularization is additionally per-
ormed to provide more detailed and reliable disparity
elds.

.1 Hierarchical Disparity Estimation with Shape-
Adaptive Windows

t the first level, feature information is extracted from the

ig. 5 Segmentation results: �a� original images, �b� initial fore-
round regions, �c� after morphological process, �d� final foreground
egions.
nput images. The Euclidean norm of the gradient,
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g
b
e
t
a
o
m
i
c
t
s
n
F
1
t
o
t

i
a
w
i
r

t
d

3
D
i

-dividin

Kim et al.: Real-time disparity estimation using foreground segmentation¼
��I� = �� �I

�x
�2

+ � �I

�y
�2�1/2

, �3�

is used as a feature, because a gradient operator is better at
estimating flows of the feature and detecting object bound-
aries. This information is also used in regularization pro-
cess of background disparity generation.

A pair of stereo images is then subsampled by a factor of
2 and split into rectangular blocks N�N in size. The maxi-
mum value of ��I� in the partitioned block represents the
feature intensity of the block.

Secondly, initial disparity vectors of blocks are esti-
mated from the subsampled images using a region-dividing
block-matching technique.31 The region-dividing technique
is based on the ordering constraint.40 The technique per-
forms point matching in the order of the possibility of cor-
rect matching and divides the region into subregions at the
true matching point. It first establishes the matching order
according to intensity of the feature of the blocks and per-
forms bidirectional matching41 in that order. If the block
matching satisfies

�d1�x� + dr�x + d1�x��� � � , �4�

the region is divided into two subregions and the search
ranges of their blocks are restricted to each subregion. Oth-
erwise, the process does not assign any disparity and skips
to the next block.

For example, Fig. 6 shows corresponding scanlines ex-
tracted from a pair of stereo images. If �A ,B� and �C ,D�
are matching pairs, point E must be matched in the region
between B and D according to the ordering constraint. We
establish the matching order according to edge intensities
by the gradient operator of Eq. �3�. We also employ a
simple SAD function as a cost function to select the best
match from a set of disparity candidates.

Thirdly, based on the initial vectors, dense disparity
fields are estimated in full-resolution images. We perform a
dense disparity estimation using the region-dividing tech-
nique and shape-adaptive windows. In order to cover all the
probable disparity candidates, nine initial vectors �one from
the current block and eight from neighboring blocks� are
tested within a small search range �. When applying the
region-dividing technique, unmatched points are considered

Fig. 6 Region
to belong to an occluded region.

Optical Engineering 037402-4
However, in the matching process, conventional rectan-
ular windows yield a false result around strong features
ecause the result is greatly influenced by the feature. For
xample, in the cases of points A and B in Fig. 7, although
hey belong to different regions, the same disparity vectors
re assigned because of the strong edge between them. In
rder to avoid this type of problem, we propose a new
atching window, which provides a high degree of reliabil-

ty around the boundary region by deforming its shape ac-
ording to the flow of the features. Let � denote the con-
our of the matching window. Starting from a sufficiently
mall contour �0, the contour expands in the direction of
onincreasing ��I� until a maximum size N�N is reached.
igure 8 shows an example of window generation in the
-D case. The window does not cross strong features, so
hat the correct sharp boundary of disparity vectors can be
btained, as shown in Fig. 9, where white lines represent
he real edges of the object.

However, the adaptive window may decrease the match-
ng power in highly textured regions. Thus, the shape-
daptive window is applied only for pixels in the block
here the maximum difference of disparity from surround-

ng blocks is larger than � �the same parameter as the bidi-
ectional matching threshold�.

The occlusion labels on each scanline are replaced by
he nearest neighboring background disparity when a full
isparity map is required.

.2 Background Disparity Refinement
ense disparity fields of background are initially estimated

n the hierarchical way proposed in Sec. 3.1. The disparity

g technique.
Fig. 7 Rectangular window and the proposed window.
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
vectors estimated by that method provide generally reliable
information. However, spatial correlation of the estimated
vector fields is not considered. The disparity fields of the
background are estimated only once �at an initialization
step� in the whole process, so we refine the fields in the
continuous domain by regularization in order to provide
more detailed and reliable background disparity fields. We
use the energy-based disparity regularization we have pre-
viously proposed.31 The energy functional consists of a fi-
delity term and a smoothing term such as

E�d� = �
�

	Il�x,y� − Ir�x + d�x,y�,y�
2 dx dy

+ ��
�

���d�x,y�, � Il�x,y�� dx dy , �5�

where � is an image plane, � a weighting factor of the
smoothing term, and ���d ,�Il� a potential function whose
gradient is given by

�����d,�Il�� =
1

�1 + �Il
2�2 � d . �6�

The minimization problem can be solved by solving the
associated Euler-Lagrange equation and the following cor-
responding asymptotic state of the parabolic system:

�d

�t
= � div� 1

�1 + �Il
2�2 � d�x,y�� + 	Il�x,y�

− Ir�x + d,y�

�Ir�x + d,y�

�x
. �7�

This partial differential equation corresponds to the nonlin-
ear diffusion equation with an additional reaction term,42

and 1/ �1+�I2�2 is a diffusivity function, which plays the

Fig. 8 Window generation in 1-D case.

Fig. 9 Matching results using �a� a rectangular window and �b� the
proposed window.
d
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ole of a discontinuity marker, as shown in Fig. 10. There-
ore, the diffusion process leads to a disparity vector map
ith smooth continuous surfaces and preserves its discon-

inuities at the object boundaries.
In order to solve Eq. �7�, we discretize the parabolic

ystem by finite differences, and find the regularized dis-
arity field in recursive manner by updating the field using

dk+1�x,y� − dk�x,y�
	

= �� �

�x
�g�� �Il�x,y�

�x
�2� �

�dk�x,y�
�x

�
+

�

�y
�g�� �Il�x,y�

�y
�2� �

�dk�x,y�
�y

�

+ 	Il�x,y�

− Ir�x + dk�x,y�,y�

�Ir�x + dk�x,y�,y�

�x

+ 	dk�x,y� − dk+1�x,y�


�� �Ir�x + dk�x,y�,y�
�x

�2

. �8�

.3 Foreground Disparity Estimation

he most important requirement of foreground disparity es-
imation is processing speed, because the fields must be
pdated in every frame.

Hierarchical disparity estimation as in Sec. 3.1 is applied
o the blocks that include foreground regions. Initial search
anges are also restricted by the neighbor background dis-
arities, since the foreground objects always exist in front
f the background region. The following equations show
he search range decision, where SRmax and SRmin mean the
aximum and minimum search ranges, respectively, and

ln and drn are the left and right neighboring background

Fig. 10 Diffusivity function.
isparities of the foreground region on the same scanline:

March 2006/Vol. 45�3�
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
for L→R disparity,

SRmax = min�dln,drn� , �9a�

for R→L disparity,

SRmin = max�dln,drn� . �9b�

As a result, search ranges are restricted by three factors:
background disparity, region-dividing technique, and hier-
archical estimation. Thus, the processing time of fore-
ground estimation is greatly reduced.

In background disparity estimation, wrong disparities
around boundary regions are corrected by energy-based
regularization. However, the regularization process in-
volves such high computational complexity that it cannot
be applied to foreground estimation. Moreover, segmenta-
tion errors may cause errors around the border of the fore-
ground in the estimation. Therefore, we check the reliabil-
ity of the disparity for the pixels in boundary blocks that
include the boundary between background and foreground.
The final disparities of the pixels in boundary blocks are
determined by the following conditions, where dfore is an
estimated disparity and dback is the disparity of the back-
ground at the same position:

if ��Ir�x,y� − Il�x + dfore�x,y�,y�� � �Ir�x,y�

− Il�x + dback�x,y�,y���

dfinal�x,y� = dfore�x,y�
�10�

else

dfinal�x,y� = dback�x,y� .

4 Simulation Results
Figure 11 shows the left image captured by a stereo camera
and the estimated background disparity map. We can see
that the proposed algorithm results in a clean map with
good discontinuity localization. However, the results from
the video are difficult to evaluate objectively, since there is
no ground truth. Therefore, we first applied our algorithm
to stereo image sets whose ground truth disparity fields are
known, then tested it with sequences from a stereo camera.

The parameters used in the simulation are listed in Table
1. Most parameters were selected experimentally, and the
same set of parameters was used for all the experiments

Fig. 11 Test sequence and estimated background disparity.
described in this section. “
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.1 Results from Still Image Sets
e measured the performance by applying the algorithm to

he two still stereo image sets in Fig. 12, provided on
charstein’s home page with ground truth disparity maps.43

e compared the proposed algorithm with the following
our fast algorithms.

1. multiwindow44—multiple-window-based method
2. max-surface45—3-D maximum-surface techniques
3. real-time DP46—real-time dynamic programming
4. MMHM28—correlation-based method.

For the objective evaluation of the proposed algorithm,
e used two measures of quality. The first is the bad match-

ng percentage �BMP� of the estimated disparity map em-
loyed by Zitnick and Kanade,47 which is defined as

ig. 12 Test image sets: Left image and ground truth disparity of �a�

Table 1 Parameters used in simulations.

Stage Parameter Value

oreground
egmentation

Background generation N=50

Background difference Thtol=10

Frame difference Thfd=5

Profile extraction M=5

Background update ThBg=300

isparity
stimation

Block size B=8

Bidirectional matching �=1

Dense disparity range �=2

isparity
egularization

Lagrange multiplier �=2000

Time step size 	=0.0001

Number of iteration T=150
Sawtooth,” �b� “Head and Lamp.”

March 2006/Vol. 45�3�
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B =
1

N
�
�x,y�


�de�x,y�,dT�x,y��, where


�a,b� = �1 if �a − b� � 1,

0 else.

 �11�

The second is root-mean-squared error �RMSE� of the es-
timated map. The RMSE between the estimated map
de�x ,y� and the ground truth map dT�x ,y� can be calculated
by

RMSE = � 1

N
�
�x,y�

	de�x,y� − dT�x,y�
2
1/2

. �12�

The proposed algorithm and other comparative algo-
rithms do not deal with an image boundary problem; thus
most of them show serious errors in the boundary regions.
Even the ground truth disparity map of “Head and Lamp”
in Fig. 12�b� does not provide true disparity around image
boundaries, for that reason. Therefore, a border of 20 pixels
was excluded from the evaluation.

Table 2 shows comparative performances of the algo-
rithms. In the table, the “Hierarchical” and “Regulariza-
tion” rows mean the results before and after regularization,
respectively. That is, we can regard the former as the per-
formance of background estimation, and the latter as the
performance of foreground estimation, though the effect of
the segmentation is not considered. We first measured the
BMP in the unoccluded region of the “Sawtooth” and the

Table 2 Comparison of disparity estimation results.

Algorithm

Bad matching percentage �%�
RMSE �pixels�,
whole regionUnoccluded Depth discontinuity

�a� “Sawtooth”

Multiwindow 1.16 19.84 1.2973

Max-surface 4.82 37.68 1.6933

Real-time DP 4.30 34.92 1.7542

MMHM 2.13 25.34 1.2069

Hierarchical 1.20 19.17 1.1340

Regularization 1.24 19.50 0.9032

�b� “Head and Lamp”

Multiwindow 3.58 16.84 1.3980

Max-surface 7.49 40.29 1.5294

Real-time DP 2.43 20.97 1.1255

MMHM 6.63 26.03 1.6242

Hierarchical 2.76 20.58 1.0235

Regularization 2.81 19.89 0.9165
“Head and Lamp” image pairs in order to appraise the gen- “

Optical Engineering 037402-7
ral performance of the proposed algorithm. The unoc-
luded regions of both images are displayed in Fig. 13�a�.
s shown in Table 2, the proposed algorithms were good

econds to the multiwindow algorithm with “Sawtooth”
nd to the real-time DP algorithm with “Head and Lamp.”
e then examined the performance in the depth disconti-

uity region, as shown in Fig. 13�b�, in order to test the
eliability of the fields around the object boundary region.
able 2 shows that the performance of the proposed algo-
ithms is best with “Sawtooth,” and second best with the
Head and Lamp.” Finally, we measured the RMSE of the
mages over the entire regions. The results show that the
roposed methods efficiently restrict errors, even in mis-
atched pixels. We can also observe that the regularization

rocess provides very smooth and refined disparity fields,
or it improved the performance in RMSE evaluation but
ot in BMP evaluation.

ig. 14 Initial disparity maps and dense maps with occlusion: �a�

ig. 13 Test region of the “Sawtooth” and “Head and Lamp”: �a�
noccluded region, �b� depth discontinuity region.
Sawtooth,” �b� “Head and Lamp.”

March 2006/Vol. 45�3�
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
Figure 14 shows the results of initial disparity estimation
and dense disparity estimation with occlusion detection. In
both results, we can see that the proposed hierarchical tech-
nique produces very reliable disparity vectors.

Figures 15 and 16, respectively, show estimated dispar-
ity maps and differences from the ground truth disparity of
the “Sawtooth” image. In the difference images, correct
matches appear in medium gray �128�, and brighter and
darker pixels show the extent of deviation from the ground
truth. In examining the results, the multiwindow and the
real-time DP algorithms are superior in finding discontinui-
ties, but they have problems in error propagation in the
horizontal direction. The max-surface algorithm shows a
clean map, but serious errors appear around the object
boundary region. This indicates that the algorithms have
problems in detecting disparity discontinuity.

Figures 17 and 18 show the same types of results for the
“Head and Lamp” image pair. The same problems occur in
the results of comparative algorithms. The MMHM algo-
rithm shows a good result with “Sawtooth,” but produces
prominent errors in some regions with “Head and Lamp.”
The proposed algorithm results in reasonably clean maps
with good discontinuity localization. However, the algo-
rithm fails to find disparity in a narrow background such as
the area between the arms of the lamp.

Fig. 15 Disparity maps of “Sawtooth”: �a� multiwindow, �b� max-
surface, �c� real-time DP, �d� MMHM, �e� hierarchical, �f�
regularization.

Fig. 16 Difference images of “Sawtooth”: �a� multiwindow, �b� max-
surface, �c� real-time DP, �d� MMHM, �e� hierarchical, �f�

regularization. r

Optical Engineering 037402-8
.2 Results from Stereo Sequence
he proposed algorithm was applied to stereoscopic se-
uences captured by Digiclops®, which provides a rectified
tereo sequence with a speed of 24 frames/s.32 The size of
mages is 320�240, and we simulated the algorithm on a
C with a Pentium IV 3.0-GHz CPU, 512-Mbyte RDRAM,
nd Visual C�� with Intel C�� compiler 8.1 on a Win-
ows XP operating system.

Figure 19 shows several frames of the resulting se-
uences; the left column is left images, the middle columns
egmented foregrounds, and the right column final disparity
elds. The image sequences are captured in absolutely
atural condition without any special lighting equipment or
ny arrangement of objects.

In the segmentation results, we can see that most mov-
ng objects are segmented without holes. However, some
arts of the background are included in the foreground
hen an object moves fast or two objects are overlapped in
scene because of frame difference or a profile extraction,

espectively. Once in a while, infiltration of background
nto an object is also observed. In the results of final dis-
arity fields, we can easily imagine the 3-D structure of the
cene from the fields.

Table 3 shows the average-running-time analysis of our
lgorithm when one person moves in a scene. The system
equires about 6 to 7 s for initialization before it works.

ig. 17 Disparity maps of “Head and Lamp”: �a� multiwindow, �b�
ax-surface, �c� real-time DP, �d� MMHM, �e� hierarchical, �f�

egularization.

ig. 18 Difference images of “Head and Lamp”: �a� multiwindow, �b�
ax-surface, �c� real-time DP, �d� MMHM, �e� hierarchical, �f�
egularization.

March 2006/Vol. 45�3�
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Kim et al.: Real-time disparity estimation using foreground segmentation¼
After that, our algorithm shows an average speed of
15 frames/s. According to the referenced papers, multiwin-
dow shows about 5 frames/s, max-surface 2 frames/s,
real-time DP 8 frames/s without MMX optimization, and
MMHM 5 frames/s.

Considering both processing speed and quality of dispar-
ity fields, the proposed algorithm shows the best results.

5 Conclusion
In this paper, we have proposed a near-real-time disparity
estimation algorithm using background registration and ob-
ject segmentation. Dense background disparity information
is calculated in advance, and only disparities of moving
object regions are updated in the main process. For efficient
and accurate estimation, a real-time segmentation algo-
rithm, hierarchical disparity estimation using a region-
dividing technique, and shape-adaptive matching windows
for disparity estimation are proposed.

The performance of the proposed algorithm was evalu-
ated in objective and subjective ways. The computation
time mainly depends on the image size, and it was about
67 ms per image pair having a resolution of 320�240 on
an ordinary PC. If we embody the algorithm on a field-
programmable gate array �FPGA� or a digital signal proces-
sor �DSP�, the processing time can be further reduced.

In future work, we have to develop a more powerful
segmentation algorithm. The performance of the segmenta-
tion decides the efficiency and quality of the final disparity
fields. When the object regions are oversegmented, the pro-
cessing slows down, but the accuracy of the disparity fields
is not affected, because the disparity fields of the object
regions are recalculated. However, undersegmented fore-
ground regions classified as background due to wrong seg-
mentation lead to serious errors in final fields, since the
fields are not updated. The second goal of our work will be
to improve the accuracy of disparity fields in object bound-
ary regions.

It is also planned to develop a complete 3-D modeling
algorithm from multiple stereo cameras. We are currently
investigating a depth-field merging algorithm with camera

Fig. 19 Results of foreground segmentation and final disparity.
calibration.
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