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ABSTRACT: We propose a 3D video system that uses environmental

stereo cameras to display a target object from an arbitrary viewpoint.

This system is composed of the following stages: image acquisition,

foreground segmentation, depth field estimation, 3D modeling from
depth and shape information, and arbitrary view rendering. To create

3D models from captured 2D image pairs, a real-time segmentation

algorithm, a fast depth reconstruction algorithm, and a simple and ef-

ficient shape reconstruction method were developed. For viewpoint
generation, the 3D surface model is rotated toward the desired place

and orientation, and the texture data extracted from the original cam-

era is projected onto this surface. Finally, a real-time system that
demonstrates the use of the aforementioned algorithms was imple-

mented. The generated 3D object can easily be manipulated, e.g.,

rotated or translated, to render images from different viewpoints. This

provides stable scenes of a minimal area that made it possible to
understand the target space, and also made it easier for viewers to

understand in near real-time. VVC 2008 Wiley Periodicals, Inc. Int J Imag-

ing Syst Technol, 17, 367–378, 2007; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20130

Key words: free-view generation; multiple video; 3D modeling;
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I. INTRODUCTION

Two typical approaches can be taken when capturing visual infor-

mation. As illustrated in Figure 1a, the first approach involves using

a mobile camera manipulated by a cameraman (Ohta et al., 2002;

Yamazoe et al., 2004). Although this approach allows the recording

and transmitting of scenes with the least amount of data (i.e., a sin-

gle video stream), it may lead to inconvenience for users, because

the video data are captured from a subjective viewpoint. Viewers

are able to watch only the provided scenes from passive positions.

Another disadvantage of this approach is that the sway of the

camera may confuse viewers.

The second approach is to use several cameras that are fixed in
different locations in a given environment. Since these cameras pro-
vide objective and stable visual information from many viewpoints,
it is easier for viewers to understand. However, an enormous
amount of useless video must be captured to guarantee covering the
entire area at all times. To determine the best position for observing
an activity, it is necessary to switch between multiple videos. By
increasing the number of cameras, this switching–monitoring opera-
tion may sometimes exceed the processing ability of the viewer.

To solve the aforementioned problems, we propose a 3D video

system which can display a target object from an arbitrary view-

point, as illustrated in Figure 1b. This system generates a 3D model

of the space and target objects, and renders virtual views from any

given viewpoint, according to where the viewer decides. The tasks

required to fulfill this goal can be organized into a sequence of

stages that process multiple images. Each of these stages presents

us with its own problems. Specifically, some questions to be

addressed in this article are as follows:

� Captured images are expressed in each sensor coordinate system

so that data obtained from different viewpoints are expressed in

different coordinate systems. How can we accurately express all

the data in a single object-centered coordinate system?

� How can we reconstruct missing depth information from 2D

images?

� Can we convert separate data obtained from each camera into

a single surface description?

� How can we combine color information from the different

viewpoints with surface geometry in order to render realistic

images of the model from arbitrary viewpoints?

With recent progress in computer and video technologies, many

computer vision-based 3D imaging systems have been developed.

A shape-from-silhouette (SFS) technique is a very common way of

converting silhouette contours into 3D objects (Matusik et al.,

2002; Gross et al., 2003; Matsuyama et al., 2004; Yemeza and

Schmitt, 2004). Silhouettes are readily and easily obtainable and
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the implementation of SFS methods is generally straightforward.

The visual hulls constructed using SFS methods provide an upper

bound on the shape of the object. This inherently conservative

property is particularly useful in applications such as obstacle

avoidance and visibility analysis. However, they have serious limi-

tations when applied to concave surface regions or multiple, disjoint

convex objects.

There has also been a lot of work on stereo vision for the recov-

ery of dense scene structures from multiview images (Dhond and

Aggarwal, 1989; Pulli, 1997; Esteban and Schmitt, 2002; Cheung

et al., 2003). When monocular motion analysis and stereo vision

are considered separately, each has its own inherent difficulties.

Monocular motion analysis normally involves solving point corre-

spondences, or nonlinear equations. Thus the computations are very

sensitive to noise. Moreover, 3D motion interpretation is difficult

because of structural ambiguities. On the other hand, stereo vision

needs to solve the correspondence problem, i.e., matching features

between given stereo image pairs. This problem, in general, is

underdetermined. Other heuristics are also desirable. It is natural to

consider integrating stereo and other properties in order to comple-

ment the performance of each.

In this article, we propose a new 3D modeling and free-view

rendering system that uses both silhouette and disparity information

to carve space with stereo cameras. The system aims to reconstruct

the 3D structure of the target space from captured video streams by

using fixed environmental stereo cameras. Scenes can then be gen-

erated by a virtual camera at an arbitrary position that employs a

3D video processing technique in real-time. It provides stable

scenes of a minimal area in order to understand the target space. In

turn, this makes it easier for viewers to understand the data.

In Section II, the proposed system, as well as a detailed descrip-

tion of the algorithms used in the system, is described. We propose

a method of constructing the geometry of scenes and cameras. We

also explain how to segment foreground regions in image sequen-

ces, how to solve correspondence problems and recover missing

depth information in stereo image pairs, and how to reconstruct 3D

models and generate dynamic scenes from arbitrary viewpoints. In

Section III, we present and discuss the results obtained from the

system. Section IV concludes by discussing some extensions of the

algorithms and proposes possible directions for future work.

II. THE PROPOSED SYSTEM

The system comprises two subsystems: object segmentation and

disparity estimation in the capturing PCs, and 3D modeling and ren-

dering in the 3D modeling servers. This is shown in Figure 2.

When target objects are captured by cameras, each capturing PC

segments the objects and estimates the disparity fields, then it trans-

mits the segmented masks, disparity fields, and color textures

of the objects to a 3D modeling server via User Datagram Protocol.

The modeling server then generates 3D models of each object from

the gathered masks and disparity fields, and tracks each object in a

sequence of 3D model frames. Finally, the server generates a video

at the designated point of view with the 3D model and texture

information.

The following subsections describe in detail the algorithms used

by the system.

A. Camera Calibration. Camera calibration refers to determin-

ing the values of the extrinsic and intrinsic parameters of the cam-

era. The key idea behind calibration is to write projection equations

linking the known coordinates of a set of 3D points and their projec-

tions, and determine the camera parameters. To find the coordinates

of some 3D points, camera calibration methods rely on one or more

images of calibration patterns, that is, a 3D object of known geo-

metry, possibly located in a known position and generating image

features which can be located accurately.

Generally, there are two approaches to camera calibration with

known geometry. The first method directly recovers the intrinsic

and extrinsic parameters, and the second method [introduced by

Trucco and Verri (1998)] estimates the projection matrix first, with-

out solving explicitly for the various parameters, which are then

computed as closed-form functions of the entries of the projection

matrix. The proposed system uses the second method because it is

simpler than the first method, and a projection matrix is used

Figure 1. Capturing visual information: (a) Conventional approaches; (b) Proposed 3D video system.

Figure 2. Overall configuration of the proposed system.
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directly to reconstruct the 3D model. The projection matrix of each

camera is extracted by using the calibration patterns and the least

square techniques, and then the following camera parameters are

calculated from the projection matrices.

Projection matrix:

P ¼
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

2
4

3
5

Extrinsic parameters:

3 3 3 rotationmatrix R ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

2
64

3
75

3D translation vector t ¼ tx ty tz½ �T

Intrinsic parameters:

Lengths of effective pixel size units sx and sy. Image center coor-

dinates cx and cy. Focal length f.

B. Foreground Segmentation. Real-time foreground segmen-

tation is one of the most important components of the proposed

system, since segmentation performance decides the quality of the

final 3D model. We segment foreground regions using background

subtraction and interframe difference.

Figure 3 shows the process of the proposed foreground segmen-

tation algorithm. At first, the background masks Imin(x,y) and

Imax(x,y) are modeled with the minimum and maximum intensities

of the first N frames, respectively, because the background informa-

tion is very sensitive to noise and change of illumination. Then, the

frame difference mask Ifd(x,y) is calculated by the difference

between two consecutive frames. In the third step, an initial fore-

ground mask is constructed from the frame difference and the back-

ground difference masks by the OR process, that is, if a pixel of the

current frame satisfy one of the conditions in Eq. (1), it is deter-

mined to belong to an initial foreground region. Thtol and Thfd

mean threshold values for the background and frame difference

regions, respectively.

Icurðx; yÞ < Iminðx; yÞ � Thtol

Icurðx; yÞ > Imaxðx; yÞ þ Thtol

Ifdðx; yÞ > Thfd

ð1Þ

However, because of camera noise and irregular object motion,

there are also noise regions in the initial mask. A conventional way of

eliminating noise regions is using a morphological operation to filter

out small regions. Therefore, we refine the initial mask by a closing

process and eliminate small regions with a region-growing technique.

Finally, to smooth the boundaries of the foreground and to elimi-

nate holes inside the regions, we propose a profile extraction tech-

nique which is improved from the single human profile extraction

algorithm proposed by Kumar et al. (2000). A weighted one pixel

thick drape is moved from one side to the opposite side. The adja-

cent pixels of the drape are connected by an elastic spring that

covers the object but does not infiltrate into gaps whose widths are

smaller than a threshold M. This process is performed from all

quarters and the region wrapped by four drapes denotes the final

foreground region. Figure 4 shows the profile extraction process as

applied to an initial object.

C. Disparity Estimation. The most important problem in realiz-

ing 3D imaging systems is reconstructing the 3D coordinates of a

captured scene. Thus far, many active and passive methods have

been proposed to recover depth information from real scenes.

Active techniques utilize ultrasonic or lasers to illuminate the work

space, so that they yield fast and accurate depth information (Feiner

et al., 1993; Iddan and Yahav, 1994). However, there are limitations

to these techniques with respect to measurement range and hard-

ware cost. Conversely, passive techniques based on computer vision

are less sensitive to environmental conditions and typically require

a simpler and less expensive setup for range sensing. Those

approaches are capable of estimating depth information from

acquired images and camera parameters (Kanade et al., 1996; Fehn

et al., 2002).

Figure 3. Block diagram of the proposed segmentation algorithm.

Figure 4. Profile extraction.
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A problem in depth estimation with passive techniques is to find

the corresponding pairs (I1 and I2) of a single world point w in two

separate image views. If we assume that the cameras are identical

and the coordinate systems of both cameras are aligned in parallel,

the determination of the disparity from I1 to I2 becomes finding a

function d(x,y):

I2ðx; yÞ ¼ I1ðxþ dðx; yÞ; yÞ: ð2Þ

Once the disparity of the corresponding pair is extracted, we can

get the distance to the point as follows, where f is the focal length

of the camera and B is the baseline distance.

Z ¼ fB

d
ð3Þ

For these and other reasons, considerable effort has been expended

on the disparity estimation problem since the 1970s. Recently,

Scharstein and Szeliski (2002) discussed the taxonomy of existing

stereo algorithms, and Brown et al. (2003) reviewed advances in

correspondence methods, methods for occlusion, and real-time

implementation. However, most of these methods have serious limi-

tations when they are applied to common applications since many

kinds of 3D imaging systems require real-time calculation of dis-

parity fields for dynamic scenes. Most real-time systems have been

implemented by special purpose hardware, such as Digital Signal

Processors or Field Programmable Gate Arrays (Fehn et al., 2002;

Darabiha et al., 2003). With increasing clock speeds and develop-

ment of Graphics Processing Unit (GPU), real-time stereo process-

ing has recently been realized on common desktop computers

(Mühlmann et al., 2002; Yang and Pollefeys, 2005; Mairal et al.,

2006). However, these computers generally show poor quality in

wide-ranging applications since they use simple area-based algo-

rithms such as Sum of Absolute Difference.

We previously proposed a two-stage algorithm to find smooth

and precise disparity vector fields in a stereo image pair (Kim et al.,

2004). The algorithm consisted of dense disparity estimation and

edge-preserving regularization. This resulted in a clean disparity

map with good discontinuity localization, but the computational

cost proved to be so high that it is impractical in real-time. There-

fore, this algorithm was improved into a fast disparity estimation

algorithm using the results of segmentation (as discussed in the pre-

vious section). This new algorithm assumes that a stereo camera set

does not move, and there is no moving object for a few seconds in

an initialization step for generating background information. Accu-

rate and detailed disparity information for the background region is

estimated in advance, and then only the disparities of the moving

foreground regions are calculated and merged into the background

disparity fields. Figure 5 shows a block diagram of the fast disparity

estimation algorithm.

C.1. Background Disparity Estimation. Dense disparity fields of
the background regions are initially estimated in a hierarchical way.

The first step in hierarchical estimation is a B 3 B block-based ini-

tial disparity estimation. In the second step, dense disparity vectors

for each pixel are estimated based on the initial block vectors. To

cover all the probable disparity candidates, nine initial vectors (one

from the current block and eight from neighboring blocks) are tested

within a small search range a from the vector. To improve computa-

tional efficiency in disparity estimation, we use a region-dividing

technique (Kim et al., 2004). This technique performs point match-

ing in the order of the possibility of correct matching and divides

the region into subregions at the true matching point. After the

region split into two subregions during the matching process, the

search ranges of the points in each subregion are restricted to the

corresponding subregion.

The disparity vectors estimated by the aforedescribed method

provide generally reliable information. However, the spatial corre-

lation of the estimated vector fields is not considered. The disparity

fields of the background are estimated only once at an initialization

step, so we refine the fields in the continuous domain by regulariza-

tion in order to provide more detailed and reliable background

disparity fields. The energy functional consists of a fidelity term

and a smoothing term:

EðdÞ ¼
Z
X
ðIlðx; yÞ � Irðxþ dðx; yÞ; yÞÞ2 dx dy

þ k
Z
X
wðrdðx; yÞ;rIlðx; yÞÞ dx dy; ð4Þ

where X is an image plane, k a weighting factor of the smoothing

term, andC(!d,!Il) a potential function whose gradient is given by

rðwðrd;rIlÞÞ ¼
1

ð1þrI2l Þ
2
rd: ð5Þ

The minimization problem is addressed by solving the associated

Euler–Lagrange equation, and the following corresponding asymp-

totic state of the parabolic system.

@d

@t
¼ k div

1

ð1þrI2l Þ
2
rdðx; yÞ

 !

þ ðIlðx; yÞ � Irðxþ d; yÞÞ @Irðxþ d; yÞ
@x

ð6Þ

This partial differential equation (PDE) corresponds to the nonlin-

ear diffusion equation with an additional reaction term. 1/(1 1 !I2)2

is a diffusivity function which plays the role of a discontinuity marker.

Therefore, the diffusion process leads to a disparity vector map with

smooth continuous surfaces and preserves its discontinuities at the

object boundaries.

To solve Eq. (6), we discretize the parabolic system by using the

finite differences, and find the regularized disparity field in a recur-

sive manner by updating the field using Eq. (7).

Figure 5. Block diagram of the fast disparity estimation algorithm.
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dkþ1ðx; yÞ � dkðx; yÞ
s

¼ k

@
@x g @Ilðx;yÞ

@x

��� ���2� �
3

@dkðx;yÞ
@x

� �

þ @
@y g @Ilðx;yÞ

@y

��� ���2� �
3

@dkðx;yÞ
@y

� �
8>>><
>>>:

9>>>=
>>>;

þ Ilðx; yÞ � Irðxþ dkðx; yÞ; yÞ
� �

3
@Irðxþ dkðx; yÞ; yÞ

@x

þ dkðx; yÞ � dkþ1ðx; yÞ
� �

3
@Irðxþ dkðx; yÞ; yÞ

@x

� �2

ð7Þ

C.2. Foreground Disparity Estimation. The most important

requirement of foreground disparity estimation is processing speed.

This is because the fields must be updated in every frame in a real-

time system. Therefore, we use a simplified algorithm for the fore-

ground regions with additional constraints. Hierarchical disparity

estimation in the previous section is applied to the blocks which

include the foreground regions. Initial search ranges are also re-

stricted by the neighbor background disparities since foreground

objects always exist in front of the background region. Equation (8)

shows the search range decision where SRMax and SRMin refer to

the maximum and minimum search ranges, respectively, and dln
and drn are the left and right neighboring background disparities of

the foreground region on the same scanline.

For L ? R disparity

SRMax ¼ Minðdln; drnÞ: ð8Þ

For R ? L disparity

SRMin ¼ Maxðdln;drnÞ:

As a result, the search ranges are restricted by three factors: back-

ground disparities, the region-dividing technique, and hierarchical

estimation. Thus, the processing time of foreground estimation is

greatly reduced.

In background disparity estimation, wrong disparities around the

boundary regions are corrected by energy-based regularization.

However, in general, the regularization process requires such high

computational complexity that it cannot be applied to foreground

estimation. Moreover, segmentation errors may cause errors around

the borders of the foreground in the estimation. Therefore, we check

the reliability of the disparity for the pixels in the boundary blocks

which included the boundary between the background and fore-

ground regions. The final disparities of the pixels in the boundary

blocks are determined by the following conditions, where dfore is an
estimated disparity and dback is a disparity of the background region

at the same position.

If ðjIrðx; yÞ � Ilðxþ dforeðx; yÞ; yÞj jIrðx; yÞ
�Il ðxþ dbackðx; yÞ; yÞjÞ

dfinalðx; yÞ ¼ dforeðx; yÞ ð9Þ

else

dfinalðx; yÞ ¼ dbackðx; yÞ

D. 3D Modeling. The transmitted data from the capturing PCs

are used to reconstruct a 3D model of the objects. The estimated

disparity fields are converted into depth information with the cam-

era parameters, and a 3D model of the object is then reconstructed

from the silhouette and disparity fields. Figure 6 shows a simple

concept of the shape from silhouette and disparity technique on 2D

plane. There is a working volume in Figure 6a and the object which

we are trying to reconstruct is only known to be somewhere inside

of it. Figure 6b shows the carving result using the data from the

first camera. If we use only silhouette information, region�a is

carved but region�b still remains. By using depth information we

can carve the region�c . Figures 6c and 6d show the carving result

by conventional SFS technique and the proposed technique, respec-

tively. As it is shown, the result by SFS is much coarser than that

by the proposed algorithm.

Based on Pulli’s method (1997), we propose a simple volume

carving algorithm using silhouette and disparity with the camera pa-

rameters at the same time, as shown in Figure 7. All voxels M(X, Y,
X) in the 3D spaces are projected onto multiple images In using the

following equation, where Pn is the projection matrix of camera Cn.

½u; v; s�T ¼ Pn½X; Y; Z; 1�T ð10Þ

If the projected points of M are included in the foreground region of

the image, then we check if the voxel places behind the range of

depth calculated from the disparity. dvoxel, the distance from the

Figure 6. Shape from silhouette and disparity: (a) Whole volume

containing objects; (b) Carving by the first camera; (c) Result by SFS;
(d) Result by the proposed technique.

Figure 7. 3D modeling with a shape from silhouette and disparity.
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camera to point M, and dsurf, the distance from the camera to the

surface, are calculated by Eqs. (11) and (12). f is the focal length of

the camera extracted as a intrinsic camera parameter, B is the base-

line distance between the lenses of the camera, d(u,v) is the dispar-
ity of the projected point I(u,v), and tx, ty, and tz are translation of

the camera in extrinsic camera parameters.

dvoxel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXM � txÞ2 þ ðYM � tyÞ2 þ ðZM � tzÞ2

q
ð11Þ

dsurf ¼ � fB

dðu; vÞ ð12Þ

If all projected points of M are included in the foreground region

and behind the distance to the surface of multiple images, we select

the point as the inside voxel of the object. The pseudo-code for the

function is given as

Modeling funtionðÞ

for ðall points in themodelling spaceÞ

count ¼ 0

forðt ¼ 0 ; t < number of cameras ; tþþÞ

calculate½u; v; s�T ¼ P½X; Y; Z; 1�T

u ¼ u=s

v ¼ v=s

ifðmðu; vÞ is included in the shapeÞ

calculate dvoxel and dsurf

ifðdvoxel � dsurfÞ

countþþ

ifðcount ¼ number of camerasÞ

MðX;Y;ZÞ is inside themodel

else

MðX;Y;ZÞ is outside themodel

Testing all the points in a 3D model is, however, a very time-con-

suming process and results in heavy data. Therefore, we use an

octree data structure for modeling. For each voxel of a given level,

27 points (i.e., each corner and the centers of the edges, faces, and a

cube) are tested. If all checking points are either included in or

excluded from an object, the voxel is assigned as a full or empty

voxel, respectively. Otherwise, the voxel is split into eight subvox-

els and is tested again at the next refinement level. Figure 8 shows

the structure of the octree. This structure dramatically reduces the

modeling speed and the amount of data.

E. Virtual View Rendering. In the rendering stage, a virtual

view of the objects is synthesized from the 3D model and texture

information. The proposed system employs the projective texture

mapping method (Everitt, 2001). This mapping method projects the

texture image onto the 3D objects like a slide projector, as shown

in Figure 9. Consequently, the resolution of the texture image is

retained during the texture mapping process, regardless of the

resolution and the shape of the mapped 3D model. Moreover, this

method can be implemented as an OpenGL functional library. This

makes it possible to take advantage of a high-speed graphic acceler-

ator. By merging the working space (background), which was mod-

eled in advance, a complete 3D model of the working space and

object is reconstructed.

Finally, the scenes at viewpoints requested by users are gener-

ated. This system provides the following modes of controlling the

viewpoint of a virtual camera.

Tracking mode. In this mode, the virtual camera observes the

object from a position above and behind the target object. The

direction of movement is estimated by tracking a global path of

objects from the movements in the previous consecutive

frames.

Orbiting mode. We can make the virtual camera go around the

object like a satellite when the target object stops in one posi-

tion. Thus, the orbiting mode makes it possible to observe blind

(self-occluded) spots.

User-control mode. We can set and move the position of the

virtual camera manually so that we can observe the target

object from any point of view.

Stereo mode. Two frames are consecutively rendered at view-

points which are 6.5 cm away (in the horizontal direction) from

each other. This produces scenes much like those captured by a

virtual stereo camera. The rendered scenes are shown with a

sense of reality on a stereo display.

Figure 8. Octree structure.
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III. EXPERIMENTAL RESULTS

Figure 10 shows the layout of the experimental studio. We imple-

mented a distributed system using five PCs and four stereo cameras

(two Digiclops1 and two Bumblebee1 cameras; http://www.

ptgrey.com/). The systems were realized with commercially avail-

able hardware. Four Pentium IV 3.0-GHz PCs were used to capture

the video streams, segment objects, and estimate the disparity fields

linked with each camera. The modeling PC contained a Pentium IV

CPU and a Quadro FX1300 graphic accelerator.

A. Camera Calibration. To extract the camera parameters of the

four stereo cameras, we implemented the 2D pattern-based camera

calibration technique based on the projection matrix as discussed in

Section II.A. A chessboard with 40 corners derived from 0.12 m 3

0.12 m was used for calibration. We took two shots at different

board positions where the world coordinates were known. We then

calculated the projection matrix by solving the homogeneous linear

system with the Single Value Decomposition (Trucco and Verri,

1998). Corners were detected by the functions cvFindChessBoard-
CornerGuesses( ) and cvFindCornerSubPix( ) provided in the

OpenCV open library (http://www.opencv.com/).

We tested the accuracy of the matrices by projecting other world

points to the image plane by computing the pixel coordinates (u, v)
of the points using the estimated projection matrices. Then, we

computed the error mean between the computed (u, v) by the pro-

jection matrices and detected (u, v) by corner detection. We tested

40 points within 1.5 m from the center of the world coordinates for

each matrix. Table I shows the average errors in pixels for each

camera and matrix. The average errors were less than 1 pixel in the

horizontal (u) direction and 0.5 pixel in the vertical (v) direction.
From the projection matrices, we calculated all the camera

parameters including the intrinsic and extrinsic parameters. The

projection matrices and parameters were used in depth reconstruc-

tion, 3D modeling, and the rendering process.

B. Depth Estimation. To verify the accuracy of the recon-

structed depth information from the estimated disparity fields, we

tested the algorithm for the scene with clearly known depth infor-

mation in a virtual environment. Table II shows the parameters

used in the simulation, and Figure 11 shows the setup of the objects,

the stereo images captured by the virtual cameras, and an estimated

disparity map of the left image using the background estimation

algorithm.

From the estimated disparity fields, we reconstructed the depth

information for each point using Eq. (3) since an ideal parallel

stereo camera was used. The evaluation of accuracy for the particu-

lar points in Figure 11a is shown in Table III, and Table IV shows

the root-mean-square-error (RMSE) of the estimated depth of each

object. In Table IV, the RMSE is calculated for the inside pixels of

the objects, except at the border of two pixels. When the boundary

pixels were included, the RMSE increased considerably because of

errors around the object boundaries. More research concerning

boundary detection and accurate disparity estimation at the regions

is clearly needed. The RMSE was stepped up as the object receded

in the distance. As the distance between the cameras and the object

increased, depth errors, caused by disparity errors, were increas-

ingly amplified since depth are inversely proportional to disparity,

as shown in Eq. (3). For example, a 0.1 pixel disparity error at 3 m

leads to a depth error of 0.017 m, but the same disparity error at 10

m leads to a 0.195 m depth error. As a result, the accuracy of depth

reconstruction depends on the distance to the object as well as the

Figure 9. Projective texture mapping (Everitt, 2001).

Figure 10. Experimental room.

Table I. Average errors of the estimated projection matrices

Camera

Average Projection Errors (pixels)

Horizontal Vertical

Cam1 0.98445 0.55464

Cam2 0.91357 0.44827

Cam3 0.57490 0.46410

Cam4 0.77927 0.45470
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accuracy of the disparity fields. However, this can be overcome by

adjusting the camera parameters.

The proposed algorithm was then applied to a set of stereoscopic

sequences captured by the Digiclops camera, which provides a

rectified stereo sequence at a speed of 30 frames/s.

Figure 12 shows several frames of the resulting sequences; the

left column shows the left images, the middle column shows the

segmented foregrounds, and the right column shows the final

disparity fields. The image sequences were captured in a typical

office environment without any special lighting equipment or any

arrangement of objects.

In the segmentation results, we can see that most moving objects

are segmented without holes. However, some parts of the back-

ground are included in the foreground when the object moves fast

or when two objects overlap in a scene because of frame differences

and profile extraction, respectively. Once in a while, infiltration of

the background into an object is also observed. In the results of the

final disparity fields, a 3D structure of the scene can be imagined.

C. 3D Modeling. To verify the proposed shape from silhouette

and disparity algorithm, models from the same data set with the

SFS algorithm and the proposed algorithm were compared. The

segmentation and disparity information from each camera were

captured at a resolution of 640 3 480 pixels and the 3D space was

modeled at a resolution of 256 3 256 3 256 on a 1 cm 3 1 cm 3

1 cm voxel grid.

Figure 13 shows the captured images and Figure 14 shows the

segmentation masks with the disparity fields. Segmentation in this

test was performed in a semimanual way to confirm the contribution

of the disparity fields to modeling. Figures 15a and 15c show mod-

els generated by the SFS method. We can see that the final models

generated by the SFS method are very coarse and bulky, especially

in the Z-direction. This is because the camera distance between

Cam1 and Cam2 was larger than that between Cam2 and Cam3, as

shown in the experimental setup depicted in Figure 10. On the other

hand, Figures 15b and 15d show models generated by the proposed

method. The models look more natural because the redundancies in

the models produced by the SFS method are removed by the depth

information. However, the wrong disparity fields do not take any

effect in refining the models. They sometimes go even as far as

damaging the models. We can see that the right arm of the model is

thinner than the left arm in Figure 15b, and the left leg appears

unnatural in Figure 15d.

D. Real-Time System and Arbitrary View Rendering. A

real-time 3D modeling system was realized using the proposed

techniques. In this system, the resolution of each camera was

reduced to 320 3 240 pixels since the computational cost dramati-

cally increases as the resolution of the images increases. Table V

shows a run-time analysis with the proposed system. The times

listed are the average processing times when one man moves in the

experimental space.

The modeling and rendering process ideally takes about 16

frames/s. However, in practical systems when working with camera

clients, the process also needs idle time in order to get the full infor-

mation that is necessary to make 3D models from all clients at a

speed of 7–8 frames/s. The modeling speed theoretically cannot

exceed the speed of the camera client. The frame rate of the whole

system also depends on the complexity of the objects.

It is difficult to compare the computational efficiency with other

methods precisely because they are executed under different

Table II. Parameters used in simulation

Stage Parameter Values

Virtual camera Focal length 35 mm

Baseline distance 176 mm

Pixel size 0.1165 mm

Foreground segmentation Background generation N5 50

Background difference Thtol 5 10

Frame difference Thfd 5 5

Disparity estimation Block size B5 8

Dense disparity range a 5 2

Disparity regularization Lagrange multiplier k5 2000

Time step size s5 0.0001

Number of iterations T5 150

Figure 11. System setup and simulation results. (a) Setup for simulation; (b) Stereo pair; (c) Estimated disparity field.
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conditions. According to referenced papers of SFS methods, the

system by Matsuyama et al. (2004) shows a speed of 6 frames/s

with 24 PCs by distributed processing, and the system by Cheung

et al. (2003) works in 5 frames/s. Comparing with these systems,

the running time of the proposed system shows good performance

in processing speed.

Figure 16 shows snapshots of a rendered 3D model in various

rendering modes. We selected the nearest camera from a given

viewpoint and projected the texture from it to the model using pro-

jective texture mapping. Therefore, in the rear part of the model as

seen from the selected camera, the textures appear distorted and

cause unnaturalness. However, the system generally renders proper

scenes.

IV. CONCLUSION AND FUTURE WORKS

We have presented a complete 3D imaging system using multiple

stereo cameras. The system begins with estimating the geometry of

real objects and finally displays realistic images of those objects

from arbitrary viewpoints in real-time.

Stages of this system include image acquisition, foreground seg-

mentation, depth field estimation, 3D modeling from depth and

shape information, and arbitrary view rendering. The generated 3D

object can easily be manipulated, e.g., rotated or translated, to

render images from different viewpoints. The system provides sta-

ble scenes that enable viewers to understand the activities of users

in near real-time. The system has the following advantages:

1. Speed. The set of algorithms produce one of the fastest run-

ning times of all current algorithms, and the overall speed of

the full system works at a speed of 8 frames/s. The speed

adapts both to the size of the images and the number of input

cameras.

2. Robustness. The system works without problems for the ma-

jority of different scenes since it relies mainly on the quality

of both foreground segmentation and the disparity estimation

algorithms.

3. Low cost. No active devices (for example, 3D range scan-

ners) need to be used; only a few stereo digital video cam-

eras. Moreover, the systems are realized with common PCs

used in everyday life. The cost of the stereo cameras is still

high, but these can also be substituted by two normal cameras

with external rectification functions.

Table III. Depth of the particular points shown in Figure 11a

Point

Estimated

Disparity

(Pixel)

Estimated

Depth

DE (m)

True

Depth

DT (m)

Error

DT 2 DE

(m)

A 17 3.1453 3.11 20.0353

B 12.6 4.2316 4.22 20.0116

C 8.4 6.3297 6.22 20.1097

D 6.2 8.5633 8.815 20.2517

E 4.7 11.2851 11.78 0.4949

Table IV. RMSE of depth for each object in Figure 11

Object RMSE (m)

Teapot 0.0367

Robot 0.0856

Snowman 1 0.1268

Snowman 2 0.1857

Figure 12. Test sequence and simulation results.
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4. Quality. Although the proposed system gives only an approx-

imate voxel-based geometry, the quality of the reconstructed

models is apparently better than the quality achieved when

using previous approaches.

Although significant advances have been made in this article,

there are still many areas that need to be explored in future

research.

In terms of camera calibration, it is necessary to consider the

intercamera calibration between each camera in order to increase

efficiency and the accuracy of the calibration. This will result in

more accurate depth reconstruction and 3D modeling. Several

intrinsic parameters such as radial distortion and skew parameters

were not considered in this article. Several previous approaches

have already proposed methods of estimating these parameters

(Tsai, 1987; Zhang, 1999). Further consideration of the parameters

would help improve the overall accuracy of the system.

We have to develop a more powerful segmentation algorithm ro-

bust to variations in lighting conditions and shadows. The perform-

ance of the segmentation decides the efficiency and quality of the

final disparity fields as well as the quality of the model recon-

structed by the silhouette information. Especially, when foreground

regions are classified into background regions because of wrong

segmentation, this causes serious errors in the final disparity fields

since the fields are not updated.

Future work on disparity estimation will follow two main direc-

tions. Since most parameters are determined experimentally, param-

eter optimizing techniques are needed to render the system stable

and efficient. In particular, time step size s and the number of itera-

tions T must be carefully decided. A large s value can speed up the

algorithm, but may lead to a divergence in the PDE solution. On the

other hand, a small s and a large T will slow the computational time

for the algorithm without improving the quality of the disparity

fields. A statistical analysis of input images as a preprocessing step

may help in finding the optimal parameters. Another perspective of

future work will be to improve the accuracy of the disparity fields

at the object boundary regions. The proposed regularization tech-

nique still blurs the disparity fields around the object boundaries

though it uses an edge-preserving regularization technique. The am-

biguous fields around the regions can damage the final model in 3D

reconstruction.

We developed a simple volume carving algorithm for 3D model-

ing. However, the reconstructed 3D model is still rough when ren-

dering natural virtual scenes. Fundamentally, a voxel-based struc-

ture is not a very good approximation for the object surface since

the mesh obtained from the voxel is too dense, and the orientations

of the mesh faces suffer from severe quantization as they are strictly

aligned with the coordinate axes. In future work, we will examine a

mesh optimization process. A marching cube algorithm and an

energy optimization method may reveal possible solutions

Figure 13. Captured images: (a) Set 1; (b) Set 2.

Figure 14. Extracted shape and disparity: (a) Set 1; (b) Set 2.
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(Lorensen and Cline, 1987; Pulli, 1997). Secondly, the overall qual-

ity of the output video stream should be improved. The resolution

of the final rendered scene can be improved if we can use the 640

3 480 video streams at 30 frames/s. Moreover, the number of video

streams can be increased in order to improve the quality. All of

these goals can be achieved by using hardware accelerators such as

GPU (Akbarzadeh et al., 2006; Mairal et al., 2006) and by employ-

ing further optimizations to the implementation.

Virtual view rendering was not a central part of this research,

since we only used a simple projective texture mapping method.

Figure 15. Results of 3D modeling: (a) Set 1 by conventional SFS algorithm; (b) Set 2 by the proposed algorithm; (c) Set 2 by conventional SFS

algorithm; (d) Set 2 by the proposed algorithm.

Table V. Processing speed analysis of the system

Camera Clients 3D Modeling and Rendering

Function Time (ms) Function Time (ms)

Capturing 28.26 Initialization 12.00

Segmentation 19.53 3D Modeling 23.59

Disparity estimation 17.81 Tracking 0.24

Transmission 1.25 Rendering 26.30

Total time 66.85 Total time 62.13
Frames/second 14.96 f/s Frames/second 16.10 f/s

Figure 16. Rendered scenes: (a) Orbiting mode; (b) Zooming mode; (c) Stereo mode.
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We projected a texture of the nearest camera from the viewpoint, so

it produced coarse rendered scenes especially in the rear region

from the selected camera. To improve the quality of rendering, a

view-dependent texturing technique should be developed.

Although the system still has problems to be overcome, we

believe that the proposed algorithms and the system set a frame-

work for many future algorithms and applications.

REFERENCES

A. Akbarzadeh, J.M. Frahm, P. Mordohai, B. Clipp, C. Engels, D. Gallup, P.

Merrell, M. Phelps, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius,

R. Yang, G. Welch, H. Towles, D. Nister, and M. Pollefeys, Towards Urban

3D Reconstruction From Video, Proc 3DPVT, 2006, pp. 1–8.

M. Brown, D. Burschka, and G.D. Hager, Advances in computational stereo,

IEEE Trans PAMI 25 (2003), 993–1008.

G.K.M. Cheung, S. Baker, and T. Kanade, Visual hull alignment and refine-

ment across time: A 3D reconstruction algorithm combining shape-from-sil-

houette with stereo, Proc CVPR, 2003, pp. 375–382.

A. Darabiha, J. Rose, and W.J. MacLean, Video-rate stereo depth measure-

ment on programmable hardware, Proc CVPR, 2003, pp. 203–210.

U. Dhond and J. Aggarwal, Structure from stereo: A review, IEEE Trans

Syst Man Cybern 19 (1989), 1489–1510.

C.H. Esteban and F. Schmitt, Multi-stereo 3D object reconstruction, Proc

3DPVT, 2002, pp. 159–167.

C. Everitt, Projective texture mapping, NVIDIA SDK White Paper, 2001.

C. Fehn, E. Cooke, O. Schreer, and P. Kauff, 3D analysis and image-based

rendering for immersive TV applications, Signal Process Image Commun 17

(2002), 705–715.

S. Feiner, B. Maclntyre, and D. Seligmann, Knowledge-based augmented

reality, Commun ACM 36 (1993), 53–62.
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