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Abstract—Stereoscopic video generation methods can produce
stereoscopic content from conventional video filmed with mono-
scopic cameras. In this paper, we propose a stereoscopic video
generation method using motion analysis which converts motion
into disparity values and considers multi-user conditions and
the characteristics of the display device. The field of view and
the maximum and minimum disparity values were calculated
in the stereoscopic display characterization stage and were then
applied to various types of 3D displays. After motion estimation,
we used three cues to decide the scale factor of motion-to-disparity
conversion. These cues were the magnitude of motion, camera
movements and scene complexity. A subjective evaluation showed
that the proposed method generated more satisfactory video
sequence.

Index Terms—Broadcasting, image analysis, multimedia sys-
tems, three-dimensional vision.

I. INTRODUCTION

MANY researchers have developed 3D video technology
which offers stereoscopic perception of the human visual

system. This technology has been used in various applications
including information communication, broadcasting, medicine,
education, the military, computer games, animation, CAD and
so on. The 3D display devices that have been developed allow
satisfactory 3D perception and maximum eye comfort. How-
ever, 3D imaging technology has not been successful in com-
mercial applications due to several problems. One of these prob-
lems has been a lack of 3D content.

There are many ways to generate 3D content. Information can
be captured with a stereoscopic camera, and 2D content can be
manually converted into 3D graphics. However, these methods
are expensive, time-consuming and laborious. In this paper, we
propose an automatic stereoscopic conversion algorithm based
on a computer vision technique.

Automatic stereoscopic conversion (2D/3D conversion) can
provide various types of 3D content because it can produce this
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Fig. 1. Overview of the stereoscopic conversion system.

kind of content from conventional 2D videos. Fig. 1 shows the
overall concept of the stereoscopic conversion system.

2D videos obtained from conventional broadcasting, CATV
and DVDs can be converted into stereoscopic image sequences
by using stereoscopic conversion technique which allows people
to enjoy 3D images when using 3D display devices.

Several stereoscopic convergence algorithms have been pro-
posed. 2D videos also contain depth perception cues such as
superposition, linear perspectives, aerial perspectives, texture
gradients, shadows, and motion parallax variables known as
monocular cues. Stereoscopic convergence can be defined as the
process of finding these monocular cues and converting them
into stereoscopic cues (disparity).

Modified time difference (MTD) method detects the move-
ments of objects and determines the delay direction and time by
using the characteristics of the movements. Then, stereoscopic
(left and right) images can be selected according to the time
difference in the 2D image sequences [1]. The MTD method
is suitable for converting images which contain simple hori-
zontal-moving objects. However, the MTD method does not
work for images that contain objects with complicated motion
or those that contain no motion.

Computed image depth (CID) method uses the relative posi-
tion between multiple objects in still images. The image depth
is computed by using the contrast, sharpness and chrominance
values of the input images [2]. Also, depth from focus method
extracts depth data with a single image using blur analysis [3].
However, this method cannot be applied to all images.

The motion-to-disparity conversion method generates stereo-
scopic images by converting motion to disparity. This method
overcomes the limitation of MTD method that convertible mo-
tion direction is restricted to horizontal direction. In order to
eliminate the effect of vertical disparity values, the norm of the
motion vector can be converted into horizontal disparity values
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[4], [5]. Motion to disparity conversion method does not calcu-
late relative depth of scene, but it generates a depth map which
is related to attentional region of scene according to human vi-
sual system.

There are several structure estimation methods using motion
parallax. Structures are estimated in case that camera motion
is restricted to translation [6]. In addition, various type of
camera movement is considered without information about
the scene and camera [7]. There was a study about the effect
of matching algorithms which compare feature matching and
block matching [8]. By using the extended Kalman filter [9],
[10], camera motion such as rotation and translation can be
estimated and the structure of scenes can be estimated in terms
of the point-wise depth [11], [12]. However, these methods are
limited to static video scenes.

Alternatively, a method which uses the detection of a van-
ishing line has been also proposed [13]. Videos can be classi-
fied into outdoor, landscape, outdoor with geometric elements
and indoor categories. When vanishing points and lines are de-
tected, the depth map can be generated according to the video
type. Another method uses the sampling density of spatial tem-
poral interpolation in human visual characteristics [14]. Some
methods use the Pulfrichi effect, the time delay measured by the
difference of the amount of light in both eyes [15], [16]. How-
ever, this method has not proven effective for either still images
or complex images.

In this paper, we propose an automatic framework of a stereo-
scopic video generation system which uses the motion-to-dis-
parity conversion method. Multi-user conditions and the char-
acteristics of stereoscopic displays were considered for stereo-
scopic content generation. We also used motion analysis which
calculated three cues that were used to decide the scale factor of
motion-to-disparity conversion. These cues were the magnitude
of motion, camera movements and scene complexity.

The rest of the paper is organized as follows. In Section II,
we describe the proposed stereoscopic convergence system and
discuss the algorithms of the proposed system. Experimental re-
sults and conclusions are provided in Sections III and IV, re-
spectively.

II. PROPOSED ALGORITHM

The proposed algorithm is a general stereoscopic video gen-
eration algorithm based on the motion-to-disparity conversion
method. A block diagram of the proposed stereoscopic conver-
sion algorithm is shown in Fig. 2. It consists of four stages:
stereoscopic display characterization, motion estimation, mo-
tion-to-disparity conversion and stereo generation. During the
stereoscopic display characterization stage, the field of view
and the maximum and minimum disparity values were deter-
mined to consider multi-user conditions and the characteristics
of the display device. Motion was estimated by using a bidi-
rectional KLT (Kanade-Lucas-Tomasi) feature tracker based on
color segmentation. After motion estimation, the scale factor
of motion-to-disparity conversion was determined with mul-
tiple cues. The estimated cues were the magnitude of motion,
camera movements and scene complexity. Finally, stereo views

Fig. 2. Block diagram of the overall system.

Fig. 3. Stereoscopic geometry.

were generated by using a computed depth map and the original
video.

A. Stereoscopic Display Characterization

In general, conversion systems must consider the cir-
cumstances in which content is displayed. These kinds of
circumstances may include not only location but also the size
of the audience, the illumination and sound conditions, and
so on. Content generators must also decide whether a specific
conversion system is a real-time or non-real time system.
For example, if the location is a theater built for hundreds
of people, a glass stereoscopic display device and a non-real
time conversion method should be chosen. For stereoscopic
PDAs (Personal Digital Assistants), a non-glass display such
as a lenticular or parallax barrier should be selected, and the
conversion method should be able to work in real-time. Once
the types of display devices, conversion methods and number
of audience are determined, we have to determine field of view,
minimum and maximum disparity values. Fig. 3 shows stereo-
scopic geometry and Fig. 4 shows the factors that form the
field of view in display devices. The field of view is generally
determined by the minimum and maximum viewing distances
and viewing angles. Field of view is important because of
narrow viewing angle of stereoscopic display.

Human visual systems perceive depth as shown by (1).

(1)
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Fig. 4. Field of view of stereoscopic displays.

where is the focal length of the camera, is the baseline be-
tween the cameras, is the distance between the cameras and
the object, as shown in Fig. 3.

It is possible to compute the disparity pixel-to-centimeter
ratio by considering the size and resolution of the display as
follows:

(2)
where is the distance between the corre-
sponding points and in image coordinate as shown in Fig. 3.

A suitable disparity value range which can enable a stere-
opsis fusion can be determined by the display device and human
depth perception characteristics. During the stereoscopic dis-
play characterization stage, we determined the field of view and
the maximum and minimum disparity values according to the lo-
cation of the user, the display size and so on. The maximum and
minimum disparity values were determined by adjusting var-
ious disparity values and verifying the success of stereoscopic
fusion, measured in terms of each viewing angle and viewing
distance. A suitable limitation of disparity was determined by a
large number of participant groups because individual discrep-
ancies existed in the stereopsis fusion process. Stereoscopic dis-
play characterization is performed one time when we choose
stereoscopic display device and viewing area. Maximum and
minimum disparity values and field of view have constant values
for given display device and viewing area. If we change the
stereoscopic display or viewing area, we have to perform stereo-
scopic display characterization again.

B. Motion Estimation

Stereoscopic video generation using motion-to-disparity con-
version assigns depth to moving objects. Therefore, acquiring
dense and accurate motion maps is an important process.

In our experiments motion maps were calculated by using
color segmentation and the KLT feature tracker. A color seg-
ment-based method was used for robust estimation in texture-
less regions and at the boundaries of objects, and it was also

Fig. 5. Block diagram of motion estimation.

used in the stereoscopic matching algorithm [17], [18]. We as-
sumed that the level of motion was uniform in each segment.
Using this assumption, we were able to track a few features in
the segments and generate an accurate and dense motion map
by using the KLT feature tracker.

The motion estimation process consisted of five stages: color
segmentation, labeling, boundary extraction, feature selection
and feature tracking. The color segmentation stage separated
the images with similar color areas. The labeling stage num-
bered the separated areas so that they could be distinguished
from other areas. After color segmentation and labeling, the
feature points were extracted from the boundary of the color
segments and bidirectional motion estimation was performed.
Fig. 5 shows a block diagram of the motion estimation process.

The mean shift algorithm (MSA) was utilized for color seg-
mentation [19]. In general, the MSA estimates the density gra-
dient of feature spaces and does not require multiple parame-
ters. These are important characteristics for robust color seg-
mentation. The MSA was used to calculate the mean of the
high density areas in feature spaces. Conventional segmenta-
tion algorithms require the size and shape parameters of ker-
nels and the number of neighboring pixels, but the MSA utilizes
a sphere-shaped-window kernel to minimize these parameters.
After color segmentation, labeling was performed which num-
bered connected pixels with the same value. In order to select
the feature points after the labeling process, the size and con-
tour information of each segment were calculated. The size of
the segmented areas was calculated by the number of pixels with
the same label. The segmented areas were organized by size and
contour information in order to select many features from large
segments.

Motion estimation was performed with the KLT feature
tracker, which was composed of the feature tracking and
extraction stages, which selected features by detecting large
luminance gradients and matched them by comparing their
similarity values with consecutive frames [20]. In the proposed
method, feature points were selected from the contours of the
color segmented area and features were tracked by the KLT
feature tracker. Motion was computed by calculating the dis-
crepancy of corresponding feature points in successive frames.
Bidirectional tracking was then performed to increase the ac-
curacy of feature tracking. Bidirectional tracking detected false
matching that occurred with fast moving objects. When feature
tracking failed or when features were not extracted from the
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Fig. 6. Conversion of motion map to disparity map.

segments, interpolation was performed with the neighboring
segment’s color and distance information.

C. Motion-to-Disparity Conversion

The estimated motion vectors were converted into disparity
vectors. Fig. 6 shows an example of scaling the motion vectors
to the disparity vectors in a histogram. In Fig. 6, histogram of
motion map and disparity map are shown. Data range of his-
togram of motion map is determined negative motion search
range to positive motion search range. Because we use the mag-
nitude of motion value to convert motion map into disparity
map, range is 0 to search range of motion estimation. We have
to adjust these motion values to disparity values whose range is
determined by stereoscopic display characteristics.

The maximum and minimum values of the disparity vectors
were already known by the display characteristic parameters
that were determined in the stereoscopic display characteriza-
tion stage. It is important to classify the scale factor of mo-
tion-to-disparity conversion without reverse depth or fatigue,
because converted disparity vectors represent pseudo depth per-
ceptions.

We used three cues to determine the scale factor of motion-to-
disparity conversion: magnitude of motion, camera movements
and scene complexity. The maximum disparity value was as-
signed when each cue indicated the maximum value. In mo-
tion-to-disparity conversion method, we utilize motion informa-
tion to assign depth feeling in moving objects which are sup-
posed to be attentional region in scene. In this case, it is difficult
to deal with problem of far objects with fast motion and near
objects with slow motion. This is a weak point of motion to dis-
parity conversion method. That is why we use motion analysis
to avoid these situations. We control the scale factor of motion
to disparity conversion, in the several cases such as slow mo-
tion, camera motion and complicated motion scene. However,
if we encounter with a scene of far objects with fast motion and
near objects with slow motion, we can expect the best case that
each motion is quantized to same value of maximum disparity
values, and reversed depth map in the worst case.

Eq. (3) shows the maximum disparity value for motion-to-dis-
parity conversion using the proposed three cues. The maximum

Fig. 7. Block diagram of camera movement recognition.

disparity value was calculated by multiplying the three cues with
the maximum disparity value of the stereoscopic display device.

(3)
where represents the maximum disparity for motion-to-
disparity conversion, and represents the max-
imum disparity value allowed for the characteristics of the dis-
play device.

1) Magnitude of Motion: Motion is an important factor that
can be used to divide a given image into static background and
dynamic foreground regions. If a moving object contains a large
portion in the image and shows a different motion tendency than
the surroundings, a maximum disparity value can be assigned,
assuming that users are more interested in moving objects. Eq.
(4) shows the magnitude of motion.

(4)

where represents the mean of the upper ten percent of the
estimated motion vectors and represents the weighting factor
of Cue 1.

2) Camera Movement: Stereoscopic conversion can generate
disorderly results when a camera is moving because it is difficult
to distinguish background and foreground regions with motion
information captured with a moving camera. Users cannot ex-
perience 3D perceptions in foreground objects when using the
same algorithm that is used with a fixed camera, because the
motion of foreground regions is smaller than that of background
regions.

Several algorithms for camera movement recognition have
been proposed. The optical flow method directly analyzes
patterns of optical flow by using angular distribution and the
power of optical flow vectors [21]. The MPEG compressed
video method directly manipulates encoded sequences in order
to recognize camera motion [22].
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We used a cue that recognizes camera movements in terms of
fixed, panning and zooming cameras. In order to recognize pan-
ning and zooming, the motion value of the image’s boundary
was calculated and the most frequent value was determined.
Fig. 7 shows a block diagram of camera movement recognition.
This kind of recognition showed smaller computational com-
plexity than conventional algorithms because it used only the
information from the boundary regions.

Fig. 8 shows the recognition method for panning and
zooming. Panning directions were classified by checking the
motion tendency for three boundaries except the bottom part
of the boundary in the motion map. The bottom part of the
boundary is not suitable because the probability of errors
caused by foreground objects is higher than that of the other
boundaries. Zoom-in and zoom-out functions were classified
by checking the motion tendencies in four corners of the motion
map. When there was camera movement, scaling the motion
vector to the disparity vector was not suitable.

When panning occurred, motion in the background and fore-
ground regions was different. Smaller disparity values were as-
signed for panning because a reverse depth effect map occurred
when the motion of the background region was larger than that
of the foreground region. For zoom-in and zoom-out functions,
the minimum disparity value was assigned in order to reduce eye
fatigue. Eq. (5) shows the second cue which controlled the scale
factor for the panning and zooming functions. This cue showed
a lower value when the camera was moving.

(5)

where represent weighting factors for panning and zooming
in Cue 2 and and represent the ar-
rowed areas of panning and zooming in Fig. 8, respectively.

3) Scene Complexity: The cue for scene complexity analyzed
images and computed the complexity of the scenes. This cue as-
sumed that it was hard to assign large amounts of disparity to
images with complex motion patterns. For real-time implemen-
tation, the images were divided into macro blocks. The number
of blocks with large differences was counted, as shown in the
following equation.

(6)

where represents the number of blocks where the
difference between the current block and the previous block was
larger than the threshold.

4) Combining the Three Cues: The scaling factors computed
by the multiple cues were combined to adjust the value
obtained by (3). After scaling the motion vector, a histogram of
scaled motion was analyzed and equalization was performed.
This is because 3D perceptions were maximized when disparity
distribution was regularized.

Besides the proposed scaling factors, additional cues can be
used according to various conditions. Also, real-time or non-real
time cues can be selected according to stereoscopic conversion
application.

Fig. 8. Camera movement recognition using motion information.

Fig. 9. Test image sequence sets. (a) Aquarium; (b) Flower Pot; (c)
Akko&Kayo; (d) Flamenco.

D. Stereo Generation Obtained From Depth Maps

In the previous section, the motion vector was converted into
a disparity vector using three cues. To generate a stereoscopic
image pair based on disparity vectors, we used the algorithm
proposed in [23]. This algorithm provided a solution for the oc-
clusion problem in depth image based rendering using the depth
smoothing method. They generated stereoscopic images with
original views and corresponding depth images. However, we
generated both left and right images from the reference image
and the depth image which enabled stable and seamless results
with the same disparity value. This approach can be extended to
multi-view video generation when appropriate disparity values
for multi-view displays are available.

III. EXPERIMENTAL RESULTS

In order to evaluate the proposed algorithm, several se-
quences were used. We used two 1920 1080 stereoscopic
image sequences called ‘Aquarium’ and ‘Flower Pot’, and two
640 480 multi-view image sequences ‘Akko & Kayo’ and
‘Flamenco’, as shown in Fig. 9. ‘Aquarium’, ‘Akko & Kayo’,
and ‘Flamenco’ were captured with a fixed camera, and ‘Flower
Pot’ was composed of scenes captured with a fixed camera as
well as a panning camera.

We used a Pentium PC with a 17-inch polarized stereoscopic
display device. This glass display offered a resolution of 1280
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Fig. 10. Test stereoscopic image in side-by-side format for disparity and depth
fusion.

TABLE I
EXAMINATION OF DEPTH FUSION ACCORDING TO VARYING DISPARITY VALUES

1024 pixels in 2D mode and 1280 512 pixels in stereo-
scopic mode [24]. The display characteristics were calculated
through a centered striped fish in a synthesized stereoscopic
image sequence, as shown in Fig. 10. The stereoscopic image
was synthesized according to varying disparity values, and then
we found the maximum and minimum disparity values and the
field of view for the display device. These display characteris-
tics were determined by repeated experiments.

Table I shows an example of whether depth fusion succeeded
or not, according to each disparity value when the viewing angle
was 130 . We marked “O” when the participants of experiments
are possible to make stereopsis fusion, in other words they do
not see the split right and left images. The unit of disparity is the
pixel, which was converted into centimeter units by using (2) as
follows.

(7)

We performed the experiment in Table I for every ten degrees
in the field of view of the stereoscopic display. Table II shows
how the field of view was set between 50 and 90 and 90 and
130 in symmetry. In Table II, we found that the maximum and
minimum disparity values for display were 1.06 centimeters to

0.53 centimeters, according to Table I.
Figs. 11 to 14 shows the results of motion estimation for the

four test sequences. In this figure, we found that the shape of the
objects were well represented enough to assign depth percep-
tions to the moving objects. Note that in ‘Flower Pot’, there was

TABLE II
MINIMUM AND MAXIMUM DISPARITY VALUES ACCORDING

TO VARYING ANGLES

reverse depth of the background and foreground regions. This
verifies that the camera movement recognition process is essen-
tial. In general, errors may occur when the original images are
roughly segmented or when there are variations in the amount
of illumination.

Fig. 15 shows the results of the three cues for the four video
sequences. Figs. 15(a)–(c) are the results of the three cues,
respectively. Large disparity values were assigned when there
were larger motion sizes, fewer camera movements, and sim-
pler scene complexity values. Fig. 15(a) shows that ‘aquarium’
has the biggest magnitude of motion and Fig. 15(b) shows that
the camera movements are detected in ‘Flower Pot’. Weighting
factors of three cues , , are empirically set to 1, 0.7,
0.7. We choose the largest weighting factors for magnitude of
motion based on the assumption that motion-to-disparity con-
version method assigns large disparity for fast moving object.
We choose smaller values for other cues; camera movement
and scene complexity. As previously mentioned, besides these
proposed scaling factors, additional cues can be used and
corresponding weighting factors should be carefully chosen.

The performance of generated stereoscopic video was evalu-
ated in a subjective manner by comparing a conventional stereo-
scopic video with a stereoscopic video that was generated from
one view. Subjective evaluation was performed by surveying
participants after watching the stereoscopic video. Participants
were composed of 30 people with normal visual acuity and
stereo-acuity. They watched a randomly-ordered stereoscopic
video twice and assigned the video a grade from 1 to 10, ac-
cording to three evaluation items: sense of presence, protrusion,
and fatigue.

We then provided three types of video sequences: videos that
were acquired by a stereoscopic camera, videos that were gener-
ated by the proposed algorithm and videos that were generated
by the conventional stereoscopic conversion algorithm using
Dynamic Depth Cueing [25].

Fig. 16 shows the results of interlaced video of generated
stereoscopic video which represent the disparity of stereo-
scopic video. Fig. 17 shows the results of subjective evaluation.
Figs. 17(a)–(c) represent the mean of the values acquired by
experiments for the four evaluation sequences. Fig. 17(d) repre-
sents the weighted sum of the three evaluation terms. A higher
weighting factor was assigned to evaluation terms with lower
variance values, which were considered to be reliable terms.

(8)
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Fig. 11. Results of motion estimation (Aquarium). (a) Original image; (b) color segmentation; (c) feature selection; (d) motion estimation.

Fig. 12. Results of motion estimation (Flower Pot). (a) Original image (b) color segmentation; (c) feature selection; (d) motion estimation.

where represents the mean of evaluation terms from the par-
ticipants, represents the variance of the evaluation terms from
the participants. The weighted value was calculated by

(9)

The stereoscopic video captured with the stereoscopic
camera obtained the highest score, and the proposed algo-
rithm was superior to the conventional algorithm in terms of
presence and protrusion. However, the stereoscopic camera
did not obtain the highest score in terms of fatigue because
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Fig. 13. Results of motion estimation (Akko&Kayo). (a) Original image; (b) color segmentation; (c) feature selection; (d) motion estimation.

Fig. 14. Results of motion estimation (Flamenco). (a) Original image; (b) color segmentation; (c) feature selection; (d) motion estimation.

the camera arrangement was not similar to the human visual
system. General expectation to have most comfortable results
in stereoscopic camera was conflicted by several distortion
factors which were not similar to human visual system. Various
kinds of stereoscopic distortions make visual fatigue. Andrew

Woods discussed the types of image distortion in stereoscopic
video systems [26]. When filming stereoscopic video, we must
consider the capturing parameters of stereoscopic video filming
which includes camera baseline, focal length and convergent
angle should be considered to adapt human visual system.
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Fig. 15. Results of the three cues. (a) Magnitude of motion; (b) camera move-
ments; (c) scene complexity.

Fig. 16. Interlaced stereoscopic video. (a) Aquarium; (b) Flower Pot; (c)
Akko&Kayo; (d) Flamenco.

Fig. 17. Subjective evaluation. (a) Sense of presence; (b) protrusion; (c) fa-
tigue; (d) evaluation with weighted sum.

IV. CONCLUSION

In this paper, we proposed a stereoscopic video generation
method using motion-to-disparity conversion. In order to con-
sider multi-user conditions and stereoscopic display devices, a
stereoscopic display characterization process was performed.
We obtained the field of view and the maximum and min-
imum disparity values for a stereoscopic display device in the
stereoscopic display characterization process. Motion vectors
were estimated by using color segmentation and the KLT
feature tracker. After motion estimation, motion-to-disparity
conversion was performed by scale factors computed by several
proposed cues. Subjective evaluation showed that the generated
stereoscopic videos were stable and comfortable. The proposed
algorithm can be improved by additional conditions of the
scale factor decision method. Also, the fast motion estimation
method can be used to make the use of the proposed system in
real-time applications possible.

In future work, we will work on scene change detection. For
example, it is hard to detect blending between shots, because
current algorithms simply compare the mean of image se-
quences for scene change detection. Moreover, present research



KIM et al.: STEREOSCOPIC VIDEO GENERATION USING DISPLAY CHARACTERIZATION AND MOTION ANALYSIS 197

is targeted to stereoscopic content generation, but this research
can be further extended to multi-view content generation using
depth map scaling.
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