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Abstract — We propose a novel framework for up-
conversion of depth video resolution in both spatial and time 
domains considering spatial and temporal coherences. 
Although the Time-of-Flight (TOF) sensor which is widely 
used in computer vision fields provides depth video in real-
time, it also provides a low resolution and a low frame-rate 
depth video. We propose a cheaper solution that enhances 
depth video obtained from a TOF sensor by combining it with 
a Charge-coupled Device (CCD) camera in 3D contents 
which consist of 2D-plus-depth. Temporal fluctuation 
problems are also considered for temporally consistent frame-
rate up-conversion. It is important to maintain temporal 
coherence in depth video, because temporal fluctuation 
problems may cause eye fatigue and increase bit rates on 
video coding. We propose a Motion Compensated Frame 
Interpolation (MCFI) using reliable and rich motion 
information from a CCD camera and 3-dimensional Joint 
Bilateral Up-sampling (3D JBU) extended into the temporal 
domain of depth video. Experimental results show that depth 
video obtained by the proposed method provides satisfactory 
quality1.

Index Terms — TOF sensor, depth video, up-conversion, 
resolution, frame-rate . 

I. INTRODUCTION

Recently, the depth sensor has been widely used in computer 
vision research fields. It is generally classified into three 
categories: the laser scanning method, the stereoscopic 
method, and the range sensor method using Time-of-Flight 
(TOF) sensors. The laser scanning method provides an 
accurate reconstruction of 3D objects, but its acquisition 
process is time-consuming, and the device is expensive. It has 
been widely used when reconstructing 3D modeling or 
making a test bed for evaluating the performance of 
stereoscopic methods [1], [2]. However, its application is 
limited to static scenes only, since it scans 3D geometry 
information in the unit of a line. Stereoscopic methods 
estimate a disparity map using multiple images taken by two 
or more cameras. The estimated disparity map can then be 
converted into a depth map using  camera parameters. 
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However, the depth map estimated by stereoscopic methods is 
still not accurate, especially for texture-less, occluded and 
repeated pattern regions. Moreover, the computation 
complexity is generally high [3]. 

Fig. 1. An example of a 3DTV system. 

Range sensor methods using TOF sensors estimate the 
distance between a sensor and object using a pulse of light. 
The time taken for the pulse of light to reflect from the object 
back to the sensor is used to estimate the depth. These 
methods are cheaper than a laser scanner device, and can be 
used in real-time applications. In other words, range sensor 
methods using TOF sensors can provide depth video in real-
time, whereas 3D laser scanning is very expensive and limited 
to the static scene. However, these methods provide low 
resolution, low frame-rate depth video, and the noisy results 
of an object that has high reflectance due to the physical limits 
of TOF sensors [4]. In contrast to using TOF sensors only, 
CCD cameras, used in combination with TOF sensors, provide 
sufficiently high resolution and frame-rate video. Therefore, 
CCD cameras can be used to overcome the disadvantages of 
TOF sensors.

Fig. 1 represents an example of a 3DTV system using a 
TOF sensor and CCD camera. 2D video and the 
corresponding depth video are transmitted through the 
broadcasting network, and a user can then select a viewing 
mode in the 3DTV system based on 2D-plus-depth in the 
receiver part. Therefore, high-quality depth video 
corresponding to 2D video is required in the 3DTV system. In 
this paper, we propose a novel method that can improve depth 
video with a CCD camera for overcoming the weakness of 
TOF sensor. Depth video in both the spatial and temporal 
domains can be improved by up-sampling and motion 
compensated frame interpolation (MCFI) using CCD video. 
The depth map has characteristics such that most regions are 
homogeneous, since depth values change smoothly inside an 
object. Thus, most energy in the frequency domain is 
concentrated at low frequencies, which is different from the 
natural images acquired by CCD cameras. Fig. 2 shows 
examples of the Fast Fourier Transform (FFT) for both the 
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depth map and CCD image. These inherent characteristics of 
depth map make up-sampling and MCFI of depth video 
insensitive to error. That is, the up-conversion process of 
depth video in both the spatial and temporal domains can be 
implemented more easily than that of CCD video. In this 
paper, the proposed method is also meaningful in a sense that 
the existing image up-conversion technique can be extended 
to video. 

(a) (d)(c)(b)

Fig. 2. CCD and depth image analysis in the frequency domain: (a) CCD 
image, (b) FFT result of CCD image, (c) original depth map, (d) FFT 
result of original depth map. 

The performance of MCFI in CCD video depends 
significantly on the accuracy of motion estimation. However, 
in the case of depth maps, there is little difference between 
those interpolated by various motion estimation algorithms. 
The interpolated results seem to be similar to each other due to 
characteristics of the depth map, which is insensitive to 
motion error. Therefore, a relatively accurate and complex 
motion estimation algorithm is not needed in the proposed 
method. By using a simple motion estimation algorithm that 
has low computation complexity, it is possible to reduce 
computation time while maintaining the quality of interpolated 
depth maps.  In the case of up-sampling in the spatial domain, 
Joint Bilateral Up-sampling (JBU) [5] may work well, because 
it preserves the edge of up-sampled depth maps accurately. 
However, it may cause temporal fluctuation problems, 
because it performs the up-sampling process without 
considering any temporal information. To address this 
problem, we extended JBU into a 3-dimension volume 
including the temporal domain. The contributions of this 
paper are as follows: 1) we propose a novel framework for 
fusing range sensor images with CCD camera images. It can 
improve the resolution of depth video in the spatial and 
temporal domains. 2) A 3D JBU model is proposed to reduce 
the temporal fluctuation of depth video. It can help reduce the 
bit rate in depth coding and eye fatigue on the 3D display. 

The remainder of this paper is organized as follows. We 
introduce the background for the fusion of sensors and MCFI 
in Section 2. We describe the problems involved in generating 
3D content based on 2D-plus-depth in Section 3. In Section 4, 
we present the proposed method. Finally, we present 
experimental results and conclusions in Sections 5 and 6, 
respectively.

II. BACKGROUND

A. Fusion of CCD image and Depth Map 
A number of methods have been proposed to combine 

depth sensors with CCD cameras to enhance the resolution of 

depth map [6]-[8]. The depth image of TOF sensors can be 
up-sampled by using the information of CCD images or depth 
estimated with stereo images. Most regions of a depth image 
are generally homogeneous except for object boundaries. In 
order to obtain high-quality depth maps, bilateral filtering of 
the cost volume [9] and the Joint Bilateral Up-sampling 
method [5] were used. These methods, based on the bilateral 
filter, can preserve the edge of depth maps very well [10]. 
However, edge blurring or texture copying problems 
frequently occur, since such methods assume that information 
from the color image is correlated with depth information. 
Sebastian et al. propose a method that uses several depth 
images for the super-resolution reconstruction of a depth 
image in order to avoid these problems [6],[7]. However, it is 
impossible to apply this method in real time and to a dynamic 
scene. Such methods use a range sensor and CCD camera. 

 In contrast, there are methods that improve depth accuracy 
by fusing a stereo camera and range sensor. J. Zhu et al. used 
a stereo camera and range sensor (SwissRanger SR3000) to 
improve the depth accuracy [11]. In [11], a depth probability 
distribution function from each sensor is calculated and 
merged, and the depth map is then optimized by a global 
method, such as belief propagation (BP). It was extended to 
the use of the Spatial-Temporal Markov Random Field 
(STMRF) concept [12]. The depth map is optimized by BP, 
considering the temporal axis for temporal denoising. Such 
methods focus on the depth map estimated with the stereo 
camera, while depth information obtained by the range sensor 
is used additionally to improve depth accuracy. On the other 
hand, the proposed method focuses on the depth information 
obtained by the range sensor which is more accurate and 
natural than the stereoscopic method for overcoming the 
weakness of TOF sensor in itself. Therefore, computational 
complexity is much lower than stereoscopic setting because 
there is no disparity estimation process. 

B. Motion Compensated Frame Interpolation 
Motion estimation is the most important process in MCFI, 

which is widely used in video coding. Intermediate frames of 
video in the temporal domain are generally synthesized by 
frame interpolation. The Full-search Block Matching 
Algorithm (FBMA) is widely used in video coding. The 
accuracy of the motion vector depends on the block sizes, 
since motion estimation is performed for each block. Local 
methods, such as FBMA, use the dissimilarity between the 
intensity values in windows. They can process quickly and 
acquire accurate results in highly textured regions but often 
produce inaccurate results in texture-less regions. In contrast, 
there are global methods that address the problem in 
homogeneous regions successfully using the smoothness 
constraint. Energy-based techniques of global methods that 
seek to minimize variational formulations use derivative data 
and smoothness constraints [13], [14]. Energy-based 
techniques include the Graph cut, BP, and variational 
methods, among others. The Dynamic Programming (DP) 
algorithm is one of the motion estimation methods [15]. 
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However, DP may cause streaking effects because it considers 
only the horizontal direction. The algorithms based on global 
optimization such as BP [16], [17], Graph cut [18], and the 
variational method [19] provide more accurate motion vectors, 
as compared to other algorithms. However, global methods 
are not efficient in terms of processing time due to high 
computational complexity from iteration and constraints. 
MCFI algorithms usually use the FBMA. They are divided 
into direct forward, backward, and bidirectional frame 
interpolations according to the direction of motion estimation. 
Since estimated motion vectors may be erroneous, MCFI 
algorithms (which are robust to motion vector errors) have 
been proposed. Huang et al. proposed a method that uses 
reliable motion vectors for frame interpolation [20]. The 
overlapped block motion compensation algorithm by Orchard 
et al. [21] and the adaptive method by Choi et al. [22] were 
proposed. It is important to calculate the reliability of the 
motion vector in frame interpolation. In our method, depth 
frames can also be interpolated by reliable motion vectors in 
order to improve the quality of the interpolated depth video. 
The proposed method differs from the general frame 
interpolation in that two motion vectors are used. 

III. PROPOSED METHOD

Our aim is to up-convert the resolution of depth video in both 
the spatial and temporal domains. Fig. 3 shows an overall 
framework of the proposed method. We also propose the up-
conversion method based on 3D JBU which can reduce the 
temporal fluctuation problem of depth video. 

 As shown in Fig. 3, we first apply a median filter to the 
original depth map in order to suppress the salt and pepper 
noise. The CCD image (1024 768) is down-sampled to a 
quarter size (256 192) which is almost the same size as the 
original depth map (176 144). It is computationally efficient to 
perform MCFI, and is possible to obtain satisfactory up-sampled 
results using coarse motions due to the characteristic of depth 
maps that most regions are homogeneous. Down-sampling of 
CCD images also minimizes empty pixels, except for warped 
pixels. Empty pixels are then interpolated only with valid 
neighborhood pixels by JBU which are pixels warped from the 
original depth map. That is, the original depth map (176 144)
is up-sampled by the down-sampled CCD image (256 192), as 
referred to in Sec 3.1. Using up-sampled depth results and 
estimated motions from CCD images through FBMA, an 
intermediate depth map can then be interpolated, as referred in 
Sec 3.2, and frame interpolated depth video can finally be up-
sampled by the original CCD image (1024 768) using 3D JBU 
as referred in Sec 3.3. 

A. Up-conversion of Depth Map in the Spatial Domain 
In order to combine the information of the depth map with that 
of the CCD image, we should warp the depth value into the 
corresponding pixel in the CCD image. Depth values can be 
warped into the CCD image by using the homography matrix 
obtained by Direct Linear Transform (DLT). We can calculate 
the homography matrix between the CCD camera and depth 

sensor based on the assumption that the depth sensor and CCD 
camera are near each other. We can also ignore a small 
translation component and consider only the rotation component, 
because sensors are located very near each other. The alternative 
warping method uses the relationship between the coordinate of 
each sensor [11]. Camera calibration has to be performed by 
using the calibration board. The relationship between the depth 
sensor and CCD camera can be calculated by using the 
estimated camera parameter, and then depth data can be warped 
into the CCD image using this relationship. However, it has 
higher complexity than warping using the homography matrix, 
and the camera calibration process is also needed. In this paper, 
we use the information fusion using the homography matrix and 
the bilateral filter concept in order to up-convert the depth map 
in the spatial domain. The bilateral filter is an edge-preserving 
filter [10]. Where only one image or two images of the same 
size are used in the bilateral filter, Joint Bilateral Up-sampling 
(JBU) [5] uses two images with different sizes. JBU has an 
advantage, changing a low resolution image to a high resolution 
image while preserving the edge and smoothing the 
homogeneous region. The depth map has the characteristic that 
most regions are homogeneous because the depth is similar 
throughout the same object. Thus, if edges in the up-sampled 
depth map are preserved well, we can conclude that the up-
sampled result is satisfactory because the edge of the depth map 
is the most important factor in the evaluation of its quality. It 
makes JBU of the depth map possible. The equation for JBU is 
as follows: 

||)~~(||||)(||1~
qp

q
p

p
p IIgqpfR

k
R    (1) 

Given a high resolution image, I~ , and a low resolution, R ,
we can obtain an up-sampled solution R  by using two kinds 
of filters. The first one is f representing the spatial filter kernel 
such as a Gaussian centered over p  in a low-resolution 
image. The other one is g representing the range filter kernel, 
centered at the pixel value at p  in a high-resolution image. p ,
q  in (1) represent the locations of pixels in I~ , and p , q

represents the corresponding locations of pixels in a low 
resolution image, R .  is the spatial support of the kernel f,
and kp represents a normalization factor, the sum of the f g
filter weights. The up-sampled result by JBU is more accurate 
than those obtained by other up-sampling methods such as 
nearest neighborhood (NN) the result of which is very blocky, 
and Gaussian interpolation, the result of which is too smooth 
at boundaries, as shown in Fig. 4. Compared to these methods, 
the result by JBU is less blocky and sharper at boundaries. 
Thus, JBU can improve the resolution of the depth map 
correctly. However, (1) may cause a texture-copying problem 
from the CCD image, as shown in Fig. 5, since only the range 
filter kernel of the CCD image is considered [23]. The texture 
of the CCD image is copied into the up-sampled depth map in 
regions that have similar depth values, but different color 
values. As shown in Fig. 5, the texture copying problem may 
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be critical in the depth map. In the case of depth values that 
are similar in real-world coordinates but different in the depth 
map, the problem may be a practical one involving the display. 
In order to avoid this problem, the noise-aware filter was 
proposed [23]. We improved it by reducing the complexity, as 
follows: 

(2)

1024 768 

1024 768 

176 144 

256 192 

256 192 

256 192

Fig. 3. Overall framework of the proposed method 

(a) (b) c)

Fig. 4. Comparison of up-sampled depth maps according to interpolation 
methods: (a) NN interpolation, (b) Gaussian interpolation, (c) JBU 
method. 

The range filter kernel is applied not only to the CCD 
image but also to the depth map. h represents the range filter 
kernel corresponding to depth map, centered at the pixel value 
at p  in the depth map. When the difference of minimum and 
maximum values in the window of the depth map is lower 
than a threshold value,  is set to 0, and this region can be 
considered as a homogeneous region. Thus, JBU is performed 
by using a range filter kernel of the depth map, h.  is the 
weighting factor and the threshold value is empirically 
determined. If the range filter kernel of the CCD image is also 
considered in this case, then the texture of the CCD image is 
propagated into the up-sampled version of the depth map. 
Otherwise,  is set to 1, and this region can be considered as 
an edge region. Thus, only the range filter kernel of the CCD 

image, g, is used. If the range filter kernel of the depth map is 
also considered in this case, then the quality is decreased in 
the up-sampled version of the depth map. In [23],  is defined 
as a blending function. However, we simply modified the 
equation because the results are almost the same as those in 
[23] although  is a binary value, and the complexity can be 
reduced.

Fig. 5. Texture copying problem in the depth map 

New   Frame

(a)

New   Frame

(b)

mv1
mv2

(p)

Fig. 6. Comparison of MCFI methods: (a) conventional MCFI in CCD 
images, (b) proposed MCFI in depth maps. 

B. Up-conversion of Depth Map in the Temporal Domain 
In general, the quality of the interpolated image depends on 

the reliability of the estimated motion. However, the depth 
map is slightly different from the CCD image because the 
depth map is less sensitive to the error of the motion vector. 
Although BP (which is the more complex method) provides 
accurate motion maps, the results of BP and FBMA are 
similar. Thus, accurate motion estimation is not needed, so 
FBMA is appropriate in the proposed method. 

As shown in Fig 6, the proposed method uses more motion 
vectors than the conventional MCFI. While the conventional 
MCFI uses only one motion vector in order to interpolate a 
new frame, the proposed MCFI uses two motion vectors 
because we already have a CCD image corresponding to the 
interpolated depth map. The frame-rate of the depth video 
provided by the depth sensor is generally low due to the 
physical limits of the depth sensor. Intermediate depth map 
interpolation using only depth maps is impossible because it is 
difficult to estimate the motion vector directly in depth video. 
Thus, we propose a new method that interpolates the depth 
maps by using motion information of CCD images in the 
temporal domain. 

1 (|| ||) { (|| ||) (1 ) (|| ||)}

1,      (max min )

0,     (max min )

p p p q p q
qp

q q
q q

q q
q q

R R f p q g I I h R R
k

R R threshold

R R threshold
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We set the CCD image corresponding to the interpolated 
depth map to the basis frame of motion estimation, which is 

possible because the frame-rate of the CCD camera is usually 
higher than that of the depth sensor. Using estimated motions 

(a)

Time

(b)

t+1 frame

t frame

t-1 frame

(p)

mv1

mv2

Fig. 7. Matching problem according to the motion estimation direction: 
(a) multiple matching, (b) single matching. 

CCD Image

Depth Map

Time Axis

New t  Frame New t+2 Frame

FBMA FBMA FBMA FBMA

t+1 framet-1 frame t+3 frameMotion reliability Motion reliability

Fig. 8. The process of frame interpolation. 

from the basis frame can prevent one pixel from being matched 
to multiple pixels. In other words, using estimated motions from 
the basis frame (t frame) to neighboring images ((t-1), (t+1)
frame) prevents multiple matching to one pixel, as shown in Fig. 
7 (b). Fig. 8 shows the overall process of frame interpolation 
using (3) in the temporal domain. We assume that the depth 
video has linear motion. Thus, if the difference between forward 
and backward motion is above the predefined threshold value, 
the pixel is considered as unreliable. We also consider the 
difference between the values of pixels warped by motions in 
the CCD image as shown in (3). Therefore, when we synthesize 
an intermediate frame of depth video by using forward and 
backward motions, we should determine the reliability of the 
two motions for each pixel. 

The proposed method makes unreliable pixels that are 
decided by reliability into empty space. The depth value at an 
empty pixel can be interpolated by the neighboring reliable 
interpolated depth value, since most regions in the depth map 
are homogeneous. In the proposed method, an intermediate 
depth map can be accurately interpolated by the proposed 
MCFI, since two motion vectors can be used, compared to one 
in the conventional MCFI. This concept is used for up-
conversion of depth video in the temporal domain. 

Let ft-1, ft and ft+1 denote the previous, intermediate, and next 
frames, respectively. Let p be a 2D vector that represents the 
position of a pixel. The interpolated depth map can be 
obtained by using forward and backward motion. The 

interpolated depth of the p pixel in ft is given by 

(3)

where mv1 between frames t and (t-1) represents backward 
motion, and mv2 between frames t and (t+1) represents forward 
motion. ft(p) represents the intensity of the p pixel in the t frame
ft. We used two threshold values in order to determine the 
reliability of motions. If the difference between mv1 and mv2

exceeds a threshold 1, or if the difference between intensity 
values at pixels moved by motions mv1 and mv2 exceeds a 
threshold 2, then the pixels remain empty. Empty pixels of 
gt(p) are filled with JBU in Sec. 3.1. 1 and 2 are empirically 
determined. Finally, we obtain (4) as follows: 

(4)

D(q) is a decision factor that represents whether a pixel q is 
reliable or not. R  is the value of an unreliable pixel that will 
be filled with reliable pixels. In other words, (4) is applied 
only for empty pixels in order to fill the null space with 
reliable neighboring values. As shown in Fig 9, the reliability 
function, D(q), can help improve the quality of the 
intermediate depth map. Although the motions estimated by 
FBMA are less accurate than those of other methods, (such as 
BP or DP), we can reduce the effect of the error in motion 
estimation by using the reliability function, D(q).

(a) (b)

 Fig. 9. Comparison of interpolated depth maps: (a) method using all 
pixels, (b) the proposed method. 

C. Depth Video Filtering Based on 3D JBU with Temporal 
Coherence 

We synthesize intermediate depth maps corresponding to 
color video in order to make 2D-plus-depth contents. In 
Sections III-A and III-B, we improve the resolution of depth 
video in the spatial and temporal domains [24]. However, 
temporal fluctuation problems may occur because our method 
does not consider any other information of neighboring frames. 
There is also a very important problem in viewing 2D-plus-
depth contents on the 3D display. In contents which may have 
serious temporal fluctuation problems, humans may easily feel 
fatigue [25]. Therefore, we address the temporal fluctuation 
problem using 3D JBU, which is extended into a 3D volume, 
considering the temporal domain. JBU is generally a 2D 
process because both range and spatial filter kernels are 2D 

1 ( ) (|| ||) { (|| ||) (1 ) (|| ||)}

( ) 0,    ( )
( ) 1,     ( ) ( )

p p p q p q
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structures. JBU is extended into a 3D volume by accumulating 
neighboring frames. As shown in Fig. 10, we use not only the 
CCD image and depth map for the interpolated frame, but also 
neighborhood frames  to maintain temporal constancy in the 
final up-converted depth video. 3D memories, corresponding 
to the spatial filter kernel of depth images and the range filter 
kernel of CCD images, can be made by integrating 
neighborhood frames in the temporal domain as shown in Fig. 
10. If the number of frames used in 3D JBU is 3, we use (t-1)
and (t+1) frames in order to up-sample the resolution of the 
interpolated frame (t frame). The final up-sampled results are 
improved significantly from those of the conventional JBU, 
because both temporal and spatial information are considered. 
By using a 3-dimensional Gaussian filter as the spatial filter 
kernel and a 3D window as the range filter kernel, temporal 
fluctuation can be reduced, while the edge is preserved in the 
video. The 3D JBU equation is as follows: 

(5)

In (5), t and tN represent the reference and neighborhood 
frames. The basic structure of 3D JBU is similar to that of the 
conventional JBU, except that filter kernels contain temporal 
neighborhood information. f indicates the 3-dimensional filter 
such as a Gaussian centered over ,tp   in the frame t of a low-
resolution image. g indicates the range filter kernel, centered 
at the pixel value at p in the frame t of a high-resolution image.  

Fig. 10. Structure of 3D JBU (N=3). 

In other words, it means the range filter kernel based on the 
difference in intensity values between corresponding pixels 
and neighborhood pixels in the 3D window of neighborhood 
frame, N. N represents the number of neighborhood frames 
used in 3D JBU. In this paper, we used 3-neighborhood 
frames (N=3) because of computational complexity. When 
depth video is finally up-sampled, the previous neighborhood 
images are needed, so that N-neighborhood frames per up-
sampling process are needed in a memory. However, a system, 
such as that shown in Fig. 10, can be non-causal, since frame 
(t+1) is used in the final up-conversion process. It may cause 
delay at the up-conversion process. Therefore, we can solve 
this problem by using only previous frames. When the number 
of neighborhood frame N is 3, the first frame in the depth 
video can be up-sampled by using only corresponding frames, 

since there is no previous frame. The subsequent frames can 
then be up-sampled by using a number of frames added by 1 
until the Nth frame is input. 

By extending 2D spatial information into 3D temporal 
information, we can obtain temporally consistent quality depth 
video. From the view-point of video coding, the reduction of 
temporal fluctuation can help save the bit rate. In the case of a 
2D still image, the compression rate of an image in which 
most regions are homogeneous may be better than that of an 
image in which noise is randomly distributed. Similarly, 
temporal fluctuation problems may degrade the performance 
of video coding. Therefore, temporal fluctuation problems in 
the depth video should be removed in order to reduce both the 
bit rate in the coding and eye fatigue on the 3D display. 

IV. EXPERIMENTAL RESULT

The proposed method was implemented with the Visual C++ 
6.0 program except for the depth image acquisition which used 
MATLAB and tested on an Intel Core2 Quad 2.5 GHz 
processor and 2 GHz RAM. In the experiment, the Flea  CCD 
camera developed by Point Grey Research, Inc. and the 
SwissRanger SR3000 depth sensor developed by MESA 
Imaging AG are used to acquire CCD images and depth images, 
as shown in Figs. 11 (a) and (b). The resolution of the Flea 
camera is 1024 768, and the frame-rate is 30 fps (frames per 
second). The resolution of the depth sensor is 176 144, and the 
frame-rate is about 15 fps. The two sensors are synchronized 
with each other in spite of the difference of frame-rate. As 
shown in Fig. 11 (c), in this experiment, two sensors have been 
placed near each other in parallel. The videos used in the 
experiment are “Two Men” (obtained by our fusion system, 
which consists of the SwissRanger SR3000 and Flea  camera) 
and “Breakdancer” (provided by Microsoft Research).  

(a) (b) (c)

Fig. 11. Experimental device and setup: (a) depth sensor, SwissRanger 
SR3000, (b) CCD camera, Flea , (c) experimental setup. 

The 87th frame of “Breakdancer” is up-sampled according to the 
interpolation methods and up-conversion rates shown in Fig. 12. 
The up-conversion rate indicates how many times the up-
converted image is an original. We can see that the PSNR of the 
proposed method is higher than the other algorithms, such as 
NN and Gaussian interpolation in all up-conversion rates, as 
shown in Fig. 12. However, it is difficult to apply the proposed 
method when the up-conversion rate is too high, such as 32, 
since the PSNR is too low to produce a satisfactory result. Fig. 
13 shows the Intermediate View Rendering (IVR) results 
according to up-sampling methods using 1-view images,  
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differing from conventional IVR that uses 2-view images. 
Therefore, empty pixels are generated in occluded regions. The 
proposed method improves the quality of intermediate views at 
boundaries as shown in Fig. 13, and can be effectively applied 
to 3DTV systems based on 2D-plus-depth contents. 

Fig. 12. Comparison of “Breakdancer” PSNR according to interpolation 
methods used in the resolution up-conversion. 

The up-conversion result in the temporal domain is shown in 
Fig. 14. Motion vectors estimated from the CCD video using 
FBMA are used to interpolate an intermediate depth map (the 
278th frame). The frame-rate of the depth sensor increases up to 
30 fps. The “Breakdancer” sequences provided by Microsoft 
Research were also used in this experiment in order to measure 
PSNR, since it contains depth video. As the original image size 
gets smaller, that is, as the up-conversion rate is higher, the 
quality of the up-sampled image decreases, as shown in Fig. 15. 
When the up-conversion rate is 32, as in Fig. 15, the proposed 
method produces poor results because motion is estimated 
inaccurately in the very small down-sampled image. As the 
image size gets smaller, it is expected that the performance 
becomes poor because the motion vector is less accurate than 
the other algorithms. However, as shown in Fig. 15, we confirm 
that until the up-conversion rate is 8, the interpolated results 
maintain a level of quality similar to the other highly complex 
methods. Thus, we set the limit of the up-conversion rate to 8. 
In the experiment using the “Two men” video, we set the up-
conversion rate to 4 in order to maintain satisfactory quality. An 
up-conversion rate of 4 is proper for “Two men,” since the 
original CCD image is quadruple the size of the depth map up-
converted by the 1st JBU. 

(a)

(b)

(c)

Fig. 13. Intermediate view results according to up-sampling methods 
(from left to right: view no. 0, 1, 2, 3): (a) proposed method, (b) NN 
interpolation, (c) Gaussian interpolation in “Breakdancer,” sequence. 

(a)

(c)

277th frame 279th frame278th new frame

(b)

Fig. 14. Up-converted result in the temporal domain: (a) CCD images 
corresponding to the 277th, 278th, and 279th frames of “Two men,” (b) 
results of FBMA using the 277th, 278th, and, 279th CCD images, (c) 
interpolated depth map (278th) using FBMA results of (b) and 277th, 279th

depth maps. 

Fig. 15. Comparison of “Breakdancer” PSNR according to motion 
estimation methods used in MCFI of the frame-rate up-conversion. 

Temporal fluctuation problems may occur in the frame 
interpolated depth video using 2D JBU, since only one pair of 
images that consist of a CCD image and corresponding depth 
map are used without considering temporal coherence. Fig. 16 
shows the results up-converted by 2D JBU and difference images 
between the frames. The background regions, which contain 
severe time fluctuation in the red box of Fig. 16, may cause eye 
fatigue in viewing 2D-plus-depth based 3D contents. Different 
depth values can be assigned in the regions having the same 
depth in the depth video because 2D JBU does not consider 
temporal coherence. In Fig. 17, 3D JBU (N=3) was used in the 
final up-sampling process in order to remove temporal 
fluctuation. We find that temporally consistent depth values were 
obtained in most parts, except for moving objects using 3D JBU, 
compared to Fig. 16. In addition, it improves the compression 
rate of depth video. By reducing the temporal fluctuation, we can 
obtain gain in video coding. As shown in Fig. 18, the 
compression rate of depth video using 3D JBU is higher than that 
using 2D JBU while PSNR is preserved to a degree of quality 
that people cannot distinguish between the original and 
compressed videos. The bit rate decreases in overall QP values, 
as shown in Fig. 18. Experimental results according to various 
QP values were obtained by using H.264 AVC JM 12.4. 
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(a)

(b)

Fig. 16. (a) Final depth video of “Two men” obtained by 2D JBU (from 
left to right: 277th, 278th, 279th) and (b) difference images (277th-278th,
278th-279th)

V. CONCLUSION

In this paper, we propose a novel method that overcomes the 
physical limitations of TOF sensors. First, by using the proposed 
method, we improved the quality of low-resolution, low-frame-
rate depth video while maintaining the spatial and temporal 
coherences. Second, the proposed method decreased the bit-rate 
and eye-fatigue for the depth video by removing the temporal 
fluctuation problems with 3D JBU. Therefore, we can obtain an 
efficient and comfortable depth video while PSNR is preserved 
to a degree of quality that people cannot distinguish between the 
original and compressed videos. It can be used to 2D-plus-depth 
3DTV or many applications using TOF sensor. 

(a)

(b)

Fig. 17. (a) Final depth video of “Two men” obtained by 3D JBU (from left to 
right: 277th, 278th, 279th) and (b) difference images (277th-278th, 278th-279th)

However, it is difficult to assess the quality of a result obtained 
by the proposed method, since there is no ground truth map. In 
the absence of a ground truth map, objective assessment is very 
difficult. For further research, 2D-plus-depth contents made by 
the proposed method will be used for subjective quality 
assessment on a 3D display. The 3D JBU process can also be a 
problem. A lot of time is consumed by using 3-dimensional 
memory. Therefore, the processing time will be reduced by a fast 
algorithm. In addition, we should address the problem of camera 
movement. Thus, 3D JBU should be extended to an algorithm 
that considers dynamic environments including change of scene 
and zoom parameter. 
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Fig. 18. (a) Bit rate comparison of 3D JBU with 2D JBU, (b) PSNR 
comparison of 3D JBU with 2D JBU in “Two men” video. 
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