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Abstract—This paper describes a robust scale-space filter that
adaptively changes the amount of flux according to the local
topology of the neighborhood. In a manner similar to modeling
heat or temperature flow in physics, the robust scale-space filter
is derived by coupling Fick’s law with a generalized continuity
equation in which the source or sink is modeled via a specific
heat capacity. The filter plays an essential part in two aspects:
First, an evolution step size is adaptively scaled according to the
local structure, enabling the proposed filter to be numerically
stable. Second, the influence of outliers is reduced by adaptively
compensating for the incoming flux. We show that classical
diffusion methods represent special cases of the proposed filter.
By analyzing the stability condition of the proposed filter, we
also verify that its evolution step size in an explicit scheme is
larger than that of the diffusion methods. The proposed filter
also satisfies the maximum principle in the same manner as the
diffusion. Our experimental results show that the proposed filter
is less sensitive to the evolution step size, as well as more robust
to various outliers such as Gaussian noise, impulsive noise, or a
combination of the two.

Index Terms—Scale-space, heat equation, anisotropic diffusion,
thermal diffusivity, edge preserving filter.

I. INTRODUCTION

REAL world objects can be decomposed into different
structures and scales according to underlying tenets

of scale-space theory introduced by Witkin [1]. Scale-space
consists of a 3-D volume, made up of a set of 2-D planes,
where signals are represented by different scale parameters.
Many researchers in the signal processing community have
gone to great lengths to obtain semantically meaningful 3-D
volumes and to understand the structures that are inherently
embedded in the signals. Scale-space representations can be
classified into two categories according to the strategies used to
construct a scale-space: isotropic and anisotropic scale-space.

Witkin constructed an isotropic scale-space by convolving
an original signal with a Gaussian kernel [1]. Koenderink
proved that a structure of an isotropic scale-space is governed
by the heat equation (or diffusion equation), describing a
distribution of heat or temperature on a given domain over
time [2]. The resolution of the signal becomes coarse as time
goes on, or as the variance of the Gaussian kernel increases,
and vice versa. He presented two criteria for the scale-space:
‘causality’ and ‘homogeneity and isotropy’. ‘Causality’ means
that any feature at a coarse resolution is required to possess a
cause at a finer resolution, which is equivalent to the maximum
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principle from a parabolic partial differential equation (PDE)
[3]. ‘Homogeneity and isotropy’ means that the kernel is
space-invariant, which leads to a poor localization at the
coarse resolution, where features such as edges and boundaries
are not available directly. In order to localize these features
accurately, tracking across the scale space is inevitably needed,
which was proved to be a complex task [4].

Perona and Malik changed the scale space paradigm from
isotropic to anisotropic by altering a thermal diffusivity in the
heat equation from a constant to a space-variant function called
the “edge-stopping” function. Therefore, the ‘homogeneity and
isotropy’ criterion was replaced with ‘immediate localization’
and ‘piecewise smoothing’ criteria [5]. ‘Piecewise smoothing’
means that intra-region smoothing is preferred to inter-region
smoothing at all scales. ‘Immediate localization’, which is a re-
sult of ‘piecewise smoothing’, signifies that object boundaries
should be sharp, coinciding with the meaningful boundaries at
each resolution. You et al. analyzed the behavior of the Perona
and Malik model with the shape of an energy surface [6]. They
formulated anisotropic diffusion as an optimization problem,
and solved it by finding a minimum of a given energy function
via the steepest descent method. Anisotropic diffusion meets
the three criteria well and constructs the scale-space exactly,
but it is sensitive to outliers. A comprehensive review can be
found in [7].

A number of methods have been proposed to alleviate
the influence of outliers. Catte et al. resolved the problem
by introducing a regularized space-variant function [8]. The
smoothed gradient used for calculating the thermal diffusivity
makes the anisotropic diffusion more stable in the presence
of noise, while guaranteeing its existence and uniqueness
[8]. Black et al. posed anisotropic diffusion as an energy
minimization problem with robust statistics [9]. They showed
that the “edge-stopping” function in the anisotropic diffusion
is closely linked to an error norm and an influence function
in the robust estimation framework, and then presented a new
“edge-stopping” function based on Tukey’s biweight robust
estimator [10], [11]. Carmona and Zhong proposed an adaptive
anisotropic diffusion that controls the amount of diffusion, as
well as the direction of diffusion by decomposing the gradient
into the normal and tangential components [12]. This enables
the noise in the features to be eliminated without damaging
them. It is similar to a tensor based diffusion framework [13],
such as edge enhancing diffusion [14], coherence enhancing
diffusion [15], and autocorrelation-driven diffusion [16]. Re-
cently, Tschumperle and Deriche [17] proposed a unified dif-
fusion PDE scheme by demonstrating the relationships among
functional minimization [6], [9], divergence expressions [2],
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[5], [8], and a framework of oriented Laplacians [12].
These methods, however, have only tried to mitigate the

effect of an additive white Gaussian noise (AWGN), so they
cannot handle other outliers such as impulsive or speckle
noise. You and Scott proposed a speckle reducing anisotropic
diffusion tailored to ultrasonic and radar imaging applications
[18] that proved to be an anisotropic counterpart to the con-
ventional adaptive speckle filter. Ling and Bovik proposed a
hybrid filter for de-noising molecular images by incorporating
a median filter into the anisotropic diffusion [19]. Each filter is
operated alternatively so that the impulsive noise is eliminated,
but it lacks a theoretical background.

In this paper, we add a ‘robustness’ criterion to the scale-
space, and propose a robust scale-space filter, which adaptively
changes the amount of flux according to the local topology
of the neighborhood. In a similar manner to modeling heat or
temperature flow in physics, the proposed filter is derived from
coupling Fick’s law with a generalized continuity equation,
in which the source or sink is modeled via a specific heat
capacity. It is shown that classical diffusion methods, such as
isotropic diffusion and anisotropic diffusion, are special cases
of the proposed filter. By analyzing the stability condition of
the proposed filter, we also verify that its evolution step size in
an explicit scheme is larger than that of the diffusion methods.

This paper is organized as follows: Section II reviews
the isotropic and anisotropic diffusions. Section III describes
the robust scale-space filter with a numerical analysis. We
then describe properties of the proposed filter, including the
stability and maximum principle, in section IV. Analysis of the
experimental results is presented in section V. Finally, section
VI concludes the paper with some suggestions for future work.

II. SCALE SPACE PARADIGM

In this section, we first present the generalized second
order PDE model used to construct the scale-space filter, and
briefly review conventional scale-space filterings: isotropic and
anisotropic diffusions.

A. Generalized Second Order PDE

Let I(x, y, t), n(x, y, t), c(x, y, t): ΩC × TC → R+

be a function with a continuous image domain ΩC =
{ (x, y)| 0 ≤ x ≤ X, 0 ≤ y ≤ Y } ⊂ R2 and a continuous time
domain TC = { t| 0 ≤ t <∞} ⊂ R. The generalized second
order PDE used to construct the scale space filter is as follows
[5].

n(x, y, t)∂tI(x, y, t)− c(x, y, t)∆I(x, y, t)

−∇c(x, y, t) · ∇I(x, y, t) = 0 (1)
I(x, y, 0) = U(x, y) (2)

∂nI(x, y, t) = 0 (3)

where ∂t and ∂n represent a partial derivative with respect
to t, and a directional derivative in a normal direction. ∆
and ∇ denote the Laplace and gradient operator, respectively.
I(x, y, t) denotes a 3-D volume composed of 2-D continu-
ous images I(x, y), according to the scale or time t with
an initial condition U(x, y). c(x, y, t) represents the thermal

diffusivity at time t (specifically, the thermal conductivity),
which controls the quantity of heat or temperature. n(x, y, t)
is an arbitrary function which can vary with respect to time t
and spatial coordinate (x, y). It corresponds to a specific heat
capacity in the proposed method, as will be seen in section
IV-A.

B. Isotropic Diffusion

The isotropic scale-space is constructed from a well-known
second order parabolic PDE, called the heat (or diffusion)
equation as follows.

∂tI(x, y, t) = c(x, y, t)∆I(x, y, t) = c∆I(x, y, t) (4)

The constant c represents the thermal diffusivity. Note that
the isotropic diffusion is equivalent to the generalized second
order PDE as in (1) in which n(x, y, t) = 1 and c(x, y, t) = c.
It was proved that the solution of the heat equation is the-
oretically equivalent to the result of the convolution integral
between an initial image and a time-varying Gaussian kernel
as follows [2].

I(x, y, t) =

{
U(x, y) t = 0

G√2t(x, y) ∗ U(x, y) t > 0
(5)

where Gσ(x, y) denotes the Gaussian kernel with standard
deviation σ. Note that (3) becomes a solution when a constant
c is set to 1.

It also meets the ‘causality’ criterion in a given domain
ΩC × TC , as shown in [7]:

inf
ΩC

U(x, y) ≤ I(x, y, t) ≤ sup
ΩC

U(x, y). (6)

The isotropic diffusion is efficiently implemented by sepa-
rating the 2-D Gaussian kernel into two 1-D Gaussian kernels.
However, it has ambilaterality. Since a space-invariant kernel
is used, it smooths both noise and features evenly regardless of
a local structure; therefore, it dislocates features at the coarse
resolution.

C. Anisotropic Diffusion

Perona and Malik resolved the feature dislocation problem
by incorporating prior knowledge into the isotropic diffusion,
leading to anisotropic diffusion [5]. They introduced a time
and spatially varying diffusivity function into the diffusion
model. It is posed as an initial value problem with an adiabatic
boundary condition such that

∂tI(x, y, t) = ∇ · [c(x, y, t)∇I(x, y, t)] , (7)

where ∇· represents the divergence operator. The thermal
diffusivity function is as follows.

c(x, y, t) = g (‖∇I(x, y, t)‖) (8)

The gradient magnitude is denoted by ‖∇I(x, y, t)‖. g(X)
is an “edge-stopping” function that satisfies g(X) → 0 as
X →∞, stopping diffusion across different features. Note that
any function satisfying this criterion can be used as an “edge-
stopping” function. Note also that the generalized second order
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Fig. 1. Diffusivity functions g(X) of the anisotropic diffusion: (a) and
(b) represent the diffusivity functions in (11) and (12) when λ is set to
1, whose potential functions are non-convex and convex, respectively. The
corresponding flux functions Φ(X) are plotted in (c) and (d), respectively.

PDE in (1) becomes anisotropic diffusion as in (7) when
n(x, y, t) = 1 and c(x, y, t) = g (‖∇I(x, y, t)‖).

It is well-known that (7) is derived by minimizing the
following energy functional via the gradient descent method
[6], [7], [9].

E(I) =

∫
ΩC

Ψ (‖∇I(x, y, t)‖)dΩC , (9)

where Ψ(X) denotes a potential function whose gradient is
represented by a flux function Φ (X).

∇Ψ (‖∇I(x, y, t)‖) = Φ (∇I(x, y, t)) (10)
= g (‖∇I(x, y, t)‖)∇I(x, y, t)

Perona and Malik used the following “edge-stopping” func-
tion:

g (X) =
1

1 +X2/λ2
, (11)

where λ is a bandwidth parameter used in the noise estimator.
Fig. 1(a) shows this function when λ is set to 1. When |X| ≥
λ, the potential function become non-convex, so an inverse
diffusion occurs. As shown in Fig. 1(c), when Φ′ (X) < 0,
the slope of the edge increases as the evolution (time) goes
on, which results in an enhancement of features. Please see
[5] and [8] for more information. Charbonnier et al. [10] used
the “edge-stopping” function as follows:

g (X) =
1√

1 +X2/λ2
. (12)

Fig. 1(b) shows this function when λ is set to 1. This
function always makes the potential function convex, so the
flux function monotonically increases regardless of λ, and a
forward diffusion always occurs. When Φ′ (X) > 0 as shown
in Fig. 1(d), the slope of the edge decreases as the evolution
(time) goes on [5].

III. ROBUST SCALE-SPACE FILTER

Although the anisotropic diffusion gives us the denoised
solution for AWGN to some extent, it is not robust to an
impulsive noise or a mixture noise. In this section, we derive
the robust scale-space filter with a numerical discretization
scheme where a new ‘robustness’ criterion is enforced.

A. Problem Statements
We first examine why anisotropic diffusion is not robust

to the outliers. First, it only considers relations between
neighborhoods, not among neighborhoods; therefore, the ther-
mal diffusivity is independently calculated between a center
node and each neighborhood, which causes the flux Φ(X) to
flow symmetrically. It means that anisotropic diffusion is an
adiabatic process which is not suitable to handle the outliers,
e.g., impulsive noise. Second, it cannot distinguish inliers with
outliers unless the bandwidth parameter λ adaptively changes
according to the local statistics, e.g., λ should be set large if
the outliers such as impulsive noises exist, which results in
a poor localization. In order to address these problems, we
judge outliers and then compensate for the incoming flux by
considering a local characteristics of the neighborhood.

Let us consider an example shown in Fig. 2. The solid arrow
indicates the flux of the anisotropic diffusion FD, and the
dotted arrow indicates the additional flux FC by the proposed
filter. An incoming flux of the proposed filter FR, denoted by
the blocked arrow, is defined as FD±FC in the log domain. In
case A, the intensity value of the center node is similar to that
of the neighborhood nodes, so the incoming flux FR should
be smaller than the flux FD of the anisotropic diffusion for a
good localization. In case B, the incoming flux FR should be
larger than FD, since the intensity value of the center node
is extremely different from that of the neighborhood nodes,
such that the center node is likely to be an outlier (caused
by an impulsive noise). Note that the flux of the anisotropic
diffusion almost does not flow in case B, since the thermal
diffusivity is very low.

In conclusion, the divergence of the flux of the filter should
decrease in case of A, and increase in case of B, in order to
make the scale-space filter robust to the outliers.

B. Derivation of a Robust Scale-Space Filter
We assume that the compensated flux adjusts the magnitude

of the flux only, and does not change the direction. In other
words, two fluxes FD and FR in Fig. 2 should have the
same direction. Also, the compensated flux is determined by
the neighboring information. We model the compensated flux
with the sum of the diffusivity, since it can be utilized as an
indicator of the outliers, e.g., when the sum of the diffusivity
is small as in case B of Fig. 2, it implies that the center node
is likely to be an outlier.

Based on this assumption, a robust scale-space filter is
derived via the coupling of Fick’s law with a generalized
continuity equation. Fick’s law states that the concentration
gradient ∇I(x, y, t) generates a diffusion flux J , which aims
to compensate for a concentration field such that

J = −c(x, y, t)∇I(x, y, t). (13)
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Fig. 2. An example of flux compensation. In order to handle an outlier such as (a), the flux is adaptively compensated according to the characteristics of
the neighborhood. The solid arrow indicates the flux by the anisotropic diffusion FD , and the dotted arrow indicates the additional flux FC . An incoming
flux of the proposed filter FR denoted by the blocked-arrow is defined as FD ± FC in the log domain. (b) In case A, the intensity value of the center node
is similar to that of neighborhood nodes, so for a good localization, the incoming flux FR should be smaller than flux FD of the anisotropic diffusion. (c)
In case B, the incoming flux FR should be larger than FD , since the center node is likely to be an outlier.

The thermal diffusivity (thermal conductivity) is represented
as the function g(X) as follows.

c(x, y, t) = g (‖∇I(x, y, t)‖) (14)

Similar to the anisotropic diffusion, in the robust scale-space
filter, any function satisfying the “edge-stopping” criterion,
e.g., (11) or (12), can be used as the function g(X).

The general form of the continuity equation is as follows:

∂tI(x, y, t) = −∇ · J + s(x, y, t), (15)

where s(x, y, t) is a function that describes the generation
or removal of I , called a source or sink. It generalizes
an advection equation that is related to the Navier-Strokes
equation in fluid dynamics [20]. Note that the coupling of
Fick’s law with the continuity equation where s(x, y, t) is set
to 0 becomes the isotropic diffusion as in (4), or the anisotropic
diffusion as in (7), according to the “edge-stopping” function
c(x, y, t). Subsequently, this makes the diffusion transport a
fixed quantity of the flux without destroying or creating it.
However, they cannot handle outliers such as a mixture of
Gaussian noise and an impulsive noise.

Alternatively, the source or sink exists in the robust scale-
space filter, allowing it to model the compensated flux ac-
cording to the local structure. Even though the proposed filter
does not conserve the total energy, the existence of the source
or sink makes it more robust to various outliers, as will be
described in the next section.

Plugging Fick’s law into the general continuity equation, it
is induced as follows:

∂tI(x, y, t) = −∇ · J + s(x, y, t)

= ∇ · [c(x, y, t)∇I(x, y, t)] + s(x, y, t). (16)

We re-formulate the above equation using a new function
κ.

∂tI(x, y, t) = κ∇ · [c(x, y, t)∇I(x, y, t)] , (17)

where

κ =
∇ · [c(x, y, t)∇I(x, y, t)] + s(x, y, t)

∇ · [c(x, y, t)∇I(x, y, t)]
. (18)

As mentioned previously, an additional flux function κ
adjusts the magnitude of the flux only while preserving its
direction, which always makes κ positive. Thus, without loss
of generality, we analyze this equation in the log domain

by assuming that an equilibrium state is reached as time
approaches infinity.

ln [∂tI(x, y, t)] = ln [∇ · (c(x, y, t)∇I(x, y, t))] + ln (κ)
(19)

ln(κ) can be interpreted in two aspects: first, it represents
the quantity of the divergence of the compensated flux FC in
Fig. 2. Second, it acts as a source or sink according to its sign.
Recall that, in the robust scale-space filter, the compensated
flux κ is modeled with the sum of the diffusivity, which
makes the divergence of the flux decrease when the sum of the
diffusivity is high and vice versa. We can model this quantity
with an additional flux function as follows.

ln (κ) = −ln [|∇ · (c(x, y, t)∇A(x, y, t))|] , (20)

where A(x, y, t) is an auxiliary function which guides the
sum of the thermal diffusivity. The divergence quantity of the
compensated flux |∇ · (c(x, y, t)∇A(x, y, t))| can be utilized
as an indicator of the outlier, so finally determines the velocity
of the diffusion, taking into account the presence of outliers.
Note that the divergence of additional flux takes the absolute
value in order to meet the constraint of κ, i.e., it adjusts the
magnitude of the flux only while preserving its direction.

In this work, we assume that the function A(x, y, t) meets
the following conditions: First, it has a unit gradient, so that
the diffusivity values of neighbors are just summed without
scaling; Second, it is periodic in order to make an absolute
value of the gradient of A(x, y, t) equal to 1 regardless of
position (x, y) and time t. Truly, ∇ · (c(x, y, t)∇A(x, y, t))
is anisotropic, since the diffusivity function c(x, y, t) man-
ages the diffusion process using the gradient magnitude
‖∇I(x, y, t)‖. Actually, it can be seen that the function
A(x, y, t) in the compensated flux c(x, y, t)∇A(x, y, t) cor-
responds to the image I(x, y, t) in anisotropic diffusion’s flux
c(x, y, t)∇I(x, y, t). A(x, y, t) plays a role in only guiding the
sum of the diffusivity, so is called an auxiliary function. Any
function satisfying these criteria can be used, which will be
presented in the next section.

Plugging (20) into (19) leads to:

ln [∂tI(x, y, t)] = ln [∇ · (c(x, y, t)∇I(x, y, t))]

− ln [|∇ · (c(x, y, t)∇A(x, y, t))|] . (21)

Equation (21) can be classified into three cases according
to a sign of ln (κ) as follows:
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Fig. 3. Divergence quantity of flux. The neighborhood node becomes a ‘sink’
when lnκ < 0, and a ‘source’ otherwise. When lnκ = 0, the neighborhood
node becomes neither a ‘sink’ nor a ‘source’, so the divergence quantity of
flux is maintained.

• ln (κ) < 0 (|∇ · [c(x, y, t)∇A(x, y, t)]| > 1, s(x, y, t) <
0): it occurs when the center node is similar to the
neighborhood node. The neighborhood node becomes a
‘sink’, as shown in Fig. 2(b), which results in a decrease
in the divergence quantity of the flux in the robust scale-
space filter.

• ln (κ) > 0 (|∇ · [c(x, y, t)∇A(x, y, t)]| < 1, s(x, y, t) >
0): this occurs when the center node is extremely different
from the neighborhood node. The neighborhood node
becomes the ‘source’, as shown in Fig. 2(c), which results
in increasing the divergence quantity of the flux in the
robust scale-space filter.

• ln (κ) = 0 (|∇ · [c(x, y, t)∇A(x, y, t)]| = 1, s(x, y, t) =
0): the robust scale-space filter becomes the anisotropic
diffusion since s(x, y, t) is 0; therefore, the neighborhood
node becomes neither a ‘sink’ nor a ‘source’, so the
divergence quantity of the flux is maintained. Note that
this case occurs only when κ is equal to 1.

Fig. 3 shows that the divergence quantity of the flux depends
on the value of κ. After eliminating a log function in (21), it
becomes as follows.

∂tI(x, y, t) =
∇ · [c(x, y, t)∇I(x, y, t)]

|∇ · [c(x, y, t)∇A(x, y, t)]|
. (22)

Note that (22) can also be induced by setting n(x, y, t)
and c(x, y, t) in (1) to |∇ · [c(x, y, t)∇A(x, y, t)]| and
g (‖∇I(x, y, t)‖), respectively.

|∇ · [c(x, y, t)∇A(x, y, t)]| ∂tI(x, y, t)

−∇ · [c(x, y, t)∇I(x, y, t)] = 0. (23)

The robust scale-space filter is therefore obtained by finding
a solution of a generalized second order PDE where a source
or sink exists, as in (15).

C. Implementation

We discretize (22) with an explicit finite difference scheme.
This scheme guarantees numerical stability for only a small
range of evolution step size, but we will show that the robust
scale-space filter with the explicit scheme has a relatively
larger range of an evolution step size than that of the con-
ventional diffusion.

Let I(i, j, t), n(i, j, t), c(i, j, t): ΩD × TD → R+

be functions with a 2-D discrete domain ΩD =
{ (i, j)| 0 ≤ i ≤M, 0 ≤ j ≤ N} ⊂ N2 and a discrete time
domain TD = { t| 0 ≤ t <∞} ⊂ N. Iti,j denotes the intensity
of (i, j) when time is equal to t.

Equation (22) is equivalent to:

∂tI(x, y, t)

=
∂x [c(x, y, t)∂xI(x, y, t)] + ∂y [c(x, y, t)∂yI(x, y, t)]

|∂x [c(x, y, t)∂xA(x, y, t)] + ∂y [c(x, y, t)∂yA(x, y, t)]|
.

(24)

First, we consider a discretized approximation of
∂x [c(x, y, t)∂xA(x, y, t)] via forward and backward
differences as follows.

∂x [c(x, y, t)∂xA(x, y, t)]

≈ 1

2
∂x

[
c(x, y, t)

1

∆i
(Ati,j −Ati−∆i,j)

]
+

1

2
∂x

[
c(x, y, t)

1

∆i
(Ati+∆i,j −Ati,j)

]
≈ 1

2

1

(∆i)
2

[
cti+∆i,j(A

t
i+∆i,j −Ati,j)

]
−1

2

1

(∆i)
2

[
cti,j(A

t
i,j −Ati−∆i,j)

]
+

1

2

1

(∆i)
2

[
cti,j(A

t
i+∆i,j −Ati,j)

]
−1

2

1

(∆i)
2

[
cti−∆i,j(A

t
i,j −Ati−∆i,j)

]
=

1

2

1

(∆i)
2

[
(cti+∆i,j + cti,j)(A

t
i+∆i,j −Ati,j)

+(cti−∆i,j + cti,j)(A
t
i−∆i,j −Ati,j)

]
.(25)

Similarly we have,

∂y(c(x, y, t)∂yA(x, y, t))

≈ 1

2

1

(∆j)
2

[
(cti,j+∆j + cti,j)(A

t
i,j+∆j −Ati,j)

+(cti,j−∆j + cti,j)(A
t
i,j−∆j −Ati,j)

]
, (26)

∂x(c(x, y, t)∂xI(x, y, t))

≈ 1

2

1

(∆i)
2

[
(cti+∆i,j + cti,j)(I

t
i+∆i,j − Iti,j)

+(cti−∆i,j + cti,j)(I
t
i−∆i,j − Iti,j)

]
, (27)

∂y(c(x, y, t)∂yI(x, y, t))

≈ 1

2

1

(∆j)
2

[
(cti,j+∆j + cti,j)(I

t
i,j+∆j − Iti,j)

+(cti,j−∆j + cti,j)(I
t
i,j−∆j − Iti,j)

]
. (28)

Now, we consider a discretized approximation of (cti+∆i,j+
cti,j), which can be referred to as a projection of the gradient
along one direction [5], such that:

1

2
(cti+∆i,j + cti,j)

≈ 1

2

[
g
(∣∣Iti+∆i,j − Iti,j

∣∣)+ g
(∣∣Iti+∆i,j − Iti,j

∣∣)]
= g

(∣∣Iti+∆i,j − Iti,j
∣∣) . (29)

Note that the first and second terms are approximated by
the backward and forward differences, respectively.
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Fig. 4. An example of an auxiliary function A(x, y, t) as in (35) (a), and its
discretization (b). Since A(x, y, t) is an auxiliary function which guides the
sum of the diffusivities, it is periodic, and has unit gradient. The origin is the
most upper left pixel. There are two cases according to the mod of (i+j). Let
(i+m, j + n) be a 4-neighboring pixel of (i, j). Then, At

i+m,j+n −At
i,j

is 1 when (i+ j) is even, -1 otherwise.

Similarly, we have

1

2
(cti−∆i,j + cti,j) ≈ g

(∣∣Iti−∆i,j − Iti,j
∣∣) , (30)

1

2
(cti,j+∆j + cti,j) ≈ g

(∣∣Iti,j+∆j − Iti,j
∣∣) , (31)

1

2
(cti,j−∆j + cti,j) ≈ g

(∣∣Iti,j−∆j − Iti,j
∣∣) . (32)

Plugging all equations (from (25) to (32)) into (24) and
letting ∆i = ∆j = 1 leads to:

∂tI(x, y, t) ≈


g
(∣∣Iti+1,j − Iti,j

∣∣) (Iti+1,j − Iti,j
)

+g
(∣∣Iti−1,j − Iti,j

∣∣) (Iti−1,j − Iti,j
)

+g
(∣∣Iti,j+1 − Iti,j

∣∣) (Iti,j+1 − Iti,j
)

+g
(∣∣Iti,j−1 − Iti,j

∣∣) (Iti,j−1 − Iti,j
)
 ·


∣∣∣∣∣∣∣∣
g
(∣∣Iti+1,j − Iti,j

∣∣) (Ati+1,j −Ati,j
)

+g
(∣∣Iti−1,j − Iti,j

∣∣) (Ati−1,j −Ati,j
)

+g
(∣∣Iti,j+1 − Iti,j

∣∣) (Ati,j+1 −Ati,j
)

+g
(∣∣Iti,j−1 − Iti,j

∣∣) (Ati,j−1 −Ati,j
)
∣∣∣∣∣∣∣∣

−1

. (33)

As mentioned earlier, A(x, y, t) is an auxiliary function that
guides the sums of the diffusivity. Since this function has a unit
gradient, |Ati+1,j −Ati,j |, |Ati−1,j −Ati,j |, |Ati,j+1 −Ati,j |, and
|Ati,j−1 −Ati,j | equal to 1, which aggregates the diffusivity
without scaling them. Furthermore, an absolute value of the
gradient of A(x, y, t) equal to 1 regardless of position (x, y)
and time t, since the function A(x, y, t) is periodic. One
example follows such that:

A(x, y, t) ≡ A(x, y) = 1−
∣∣∣cos

(π
2

(x+ y)
)∣∣∣ . (34)

Fig. 4(a) shows another example satisfying these criteria,
which is written as follows:

A(x, y, t) ≡ A(x, y) =
∣∣∣sin(π

2
(x+ y)

)∣∣∣ . (35)

Fig. 4(b) shows a discrete version of A(x, y, t). The origin
is the most upper left pixel. There are two cases according to
the mod of (i+j). Let (i+m, j+n) be a 4-neighboring pixel
of (i, j). Then, Ati+m,j+n−Ati,j is 1 when (i+ j) is even, -1
otherwise. Therefore, the denominator in (33) can be induced

as follows.∣∣∣∣∣∣∣∣
g
(∣∣Iti+1,j − Iti,j

∣∣) (Ati+1,j −Ati,j
)

+g
(∣∣Iti−1,j − Iti,j

∣∣) (Ati−1,j −Ati,j
)

+g
(∣∣Iti,j+1 − Iti,j

∣∣) (Ati,j+1 −Ati,j
)

+g
(∣∣Iti,j−1 − Iti,j

∣∣) (Ati,j−1 −Ati,j
)
∣∣∣∣∣∣∣∣

= g
(∣∣Iti+1,j − Iti,j

∣∣)+ g
(∣∣Iti−1,j − Iti,j

∣∣)
+ g

(∣∣Iti,j+1 − Iti,j
∣∣)+ g

(∣∣Iti,j−1 − Iti,j
∣∣) . (36)

Plugging (36) into (33) and approximating the partial deriva-
tive with respect to the time, we obtain the final equation

It+1
i,j = Iti,j + τ


g
(∣∣Iti+1,j − Iti,j

∣∣) (Iti+1,j − Iti,j
)

+g
(∣∣Iti−1,j − Iti,j

∣∣) (Iti−1,j − Iti,j
)

+g
(∣∣Iti,j+1 − Iti,j

∣∣) (Iti,j+1 − Iti,j
)

+g
(∣∣Iti,j−1 − Iti,j

∣∣) (Iti,j−1 − Iti,j
)
 ·

[
g
(∣∣Iti+1,j − Iti,j

∣∣)+ g
(∣∣Iti−1,j − Iti,j

∣∣)
+g
(∣∣Iti,j+1 − Iti,j

∣∣)+ g
(∣∣Iti,j−1 − Iti,j

∣∣) ]−1

. (37)

where τ is an evolution step size. For simplifying the notation,
it can be represented as follows:

It+1
i,j = Iti,j + τ

∑
(k,l)∈N(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣) (Itk,l − Iti,j)∑
(k,l)∈N(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣) ,

(38)
where N(i, j) = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}
represents the 4-neighborhood of the center node, Iti,j .

Note that (38) is similar to an implementation of the
anisotropic diffusion [9], except for the normalization term
which makes the proposed filter more robust to the outliers.
Although the right term in (38) looks similar to a bilateral
filter [21], the proposed method shows a different behavior,
which will be discussed in section IV-D.

IV. PROPERTIES OF A ROBUST SCALE-SPACE FILTER

A. Specific Heat Capacity

The normalization term |∇ · [c(x, y, t)∇A(x, y, t)]| is
closely related to the specific heat capacity. The thermal
diffusivity in the heat equation is defined as the thermal
conductivity divided by the volumetric heat capacity as follows
[22]:

υ = k/(ρ · cp). (39)

where k and ρ represent the thermal conductivity and den-
sity, respectively. The specific heat capacity is represented as
cp. This means that materials with high thermal diffusivity
adapt their temperature to that of their neighborhood rapidly,
and vice versa. This behavior partially coincides with the
anisotropic diffusion. That is, diffusion rarely occurs by the
“edge-stopping” function when the center node has a differ-
ent distribution of its neighborhood. However, the thermal
diffusivity in the anisotropic diffusion does not include the
specific heat capacity, so rapidity is not taken into account.
The thermal diffusivity in the anisotropic diffusion is modeled
as the thermal conductivity when both the density and specific
heat capacity are set to 1. In this case, the thermal conductivity
k in the thermal diffusivity implicitly coincides with g(∇I) in
the anisotropic diffusion.



7

0 2 4 6 8 10
0

0.5

1

1.5

2

X

 R
(X
)

 

 

r=0.25

r=0.50

r=1.00

r=2.00

r=4.00

(a)

0 2 4 6 8 10
0

1

2

3

4

X

 R
(X
)

 

 

r=0.25

r=0.50

r=1.00

r=2.00

r=4.00

(b)
Fig. 5. The flux function of a robust scale-space filter when (a) the diffusivity
function of (11) and (b) that of (12) are used. The flux function ΦR(X)
of the robust scale-space filter is defined as Φ(X)/r = g(X)X/r, where
r = |∇ · [g (‖∇I‖)∇A]| is the sum of the divergence of the additional flux
FC in Fig. 2, when r is varying from 0.25 to 4.0. Since 0 < g(X) ≤ 1, r
has a value between 0 and 4 when a 4-neighborhood is used.

The specific heat capacity per mass is defined as cp =
∂C/∂m, where C and m represent the heat capacity and mass,
respectively. In the absence of a phase transition, cp = C/m.
Substances with a high specific heat capacity have a low
thermal diffusivity υ. Therefore, the materials with a high
specific heat capacity cp slowly adapt their temperature to that
of their neighborhood, and vice versa.

The proposed method can also be viewed from a different
perspective.

It+1
i,j = Iti,j + τ

1∑
(k,l)∈N(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣)
·
∑

(k,l)∈N(i,j)
g
(∣∣Itk,l − Iti,j∣∣) (Itk,l − Iti,j). (40)

This exactly includes the specific heat capacity in the
thermal diffusivity cp, that is, the normalization term exactly
coincides with cp. Generally, the pure material has a higher
specific heat capacity than the mixture. In the case of an
image, the normalization term becomes large in homogeneous
regions (pure materials), leading to “slow diffusion”, whereas
it becomes low in noisy regions (blended materials), leading to
“fast diffusion”. Therefore, the thermal conductivity k, which
is equivalent to g(∇I), implicitly represents the diffusion
direction and strength, while the specific heat capacity cp,
which is equivalent to

∑
g(∇I), represents the diffusion

velocity.
In conclusion, the robust scale-space filter adaptively

changes the thermal conductivity k as well as the specific
heat capacity cp in the thermal diffusivity according to the
“property” between neighborhoods and the “concentration”
among neighborhoods. Therefore, it better reflects the physical
phenomenon of diffusion smoothing.

B. Flux

The thermal diffusivity in the robust scale-space filter is
defined as follows:

D(x, y, t) =
c(x, y, t)

|∇ · [c(x, y, t)∇A(x, y, t)]|
(41)

The normalization term |∇ · [c(x, y, t)∇A(x, y, t)]| changes
the magnitude of D(x, y, t) according to the properties of
neighborhoods. Note that D(x, y, t) becomes the thermal

diffusivity c(x, y, t) of the classic anisotropic diffusion, if
|∇ · [c(x, y, t)∇A(x, y, t)]| is fixed to 1. The flux ΦR of the
robust scale-space filter is then defined as follows:

ΦR (∇I(x, y, t)) = D(x, y, t)∇I(x, y, t)

=
Φ (∇I(x, y, t))

|∇ · [g (‖∇I(x, y, t)‖)∇A(x, y, t)]|

≈
g
(∣∣∣Itk,l − Iti,j∣∣∣) (Itk,l − Iti,j)∑
(k,l)∈N(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣) , (42)

where Φ (∇I(x, y, t)) represents the flux of the anisotropic
diffusion FD in Fig. 2.

In contrast to the anisotropic diffusion, the flux func-
tion of the robust scale-space filter varies according to the
relationships between neighborhoods, c(x, y, t), and among
neighborhoods, |∇ · [c(x, y, t)∇A(x, y, t)]|. Therefore, either
of the two should be fixed for observing the behavior of
the flow of the robust scale-space filter. Let us assume that
the property of the neighborhood is specified, such that
|∇ · [c(x, y, t)∇A(x, y, t)]| is a fixed variable with respect to
a spatial coordinate (x, y), not a function. This enables us to
compare the flux of the robust scale-space filter to that of the
anisotropic diffusion. Since 0 < g(X) ≤ 1 in (11) or (12),
the sum of the diffusivity |∇ · [g (‖∇I(x, y, t)‖)∇A(x, y, t)]|
has a value between 0 and 4, if 4-neighbor is used as in (38).
Figs. 5(a) and (b) show the flux function ΦR(X) = Φ(X)/r =
g(X)X/r corresponding to the diffusivity function as in (11)
and (12), respectively, when r is varying from 0.25 to 4.0.
Note that when r is 1.0, the flux function of the robust scale-
space filter becomes that of the anisotropic diffusion, such that
ΦR(X) = Φ(X).

The quantity of flux varies according to the sum of diffu-
sivity r = |∇ · [g (‖∇I(x, y, t)‖)∇A(x, y, t)]|, which reflects
the characteristics of the neighborhood, as well as the flux
of the anisotropic diffusion g (‖∇I(x, y, t)‖)∇I(x, y, t). In
other words, in contrast to the anisotropic diffusion (when
r is always 1), the flux function of the robust scale-space
filter is adaptively scaled according to the characteristics of
the neighborhood for handling outliers better. As described in
Fig. 2, this results in decreasing the flux when the intensity
values of the neighborhood are similar (e.g., when r is close
to 4) and vice versa.

The forward or inverse diffusions are determined according
to the convexity of the potential function used in the robust
scale-space filter. Fig. 5(a) shows that if the non-convex
potential function of (11) is used, an inverse diffusion occurs
when the flux starts to decrease. In contrast, if the convex
potential function of (12) is used, a forward diffusion always
occurs with varying quantity according to the local structure,
as shown in Fig. 5(b).

C. Stability

The stability of the numerical iteration depends on the
evolution step size. Although there is no lower bound on this
parameter, a small evolution step size usually leads to slow
convergence. We show that the stable range of the evolution
step size of a robust scale-space filter is larger than that of
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the anisotropic diffusion in the same explicit scheme. Let
us suppose that 0 < g(|Itk,l − Iti,j |) ≤ 1, (38) can then be
modified as follows:

It+1
i,j = (1− τ) Iti,j+τ

∑(k,l)∈N(i,j) g
(∣∣∣Itk,l − Iti,j∣∣∣) Itk,l∑

(k,l)∈N(i,j) g
(∣∣∣Itk,l − Iti,j∣∣∣)

 .
(43)

Since the weight of the center node should exist between 0
and 1 in order to ensure stability, the stability condition is as
follows:

0 ≤ τ ≤ 1. (44)

In contrast, since anisotropic diffusion with the explicit
scheme [9] is

It+1
i,j =

[
1− τ

∑
(k,l)∈N(i,j)

g
(∣∣Itk,l − Iti,j∣∣)] Iti,j

+ τ

[∑
(k,l)∈N(i,j)

g
(∣∣Itk,l − Iti,j∣∣) Itk,l] , (45)

the stability condition satisfies

0 ≤ 1− τ max

{∑
(k,l)∈N(i,j)

g
(∣∣Itk,l − Iti,j∣∣)} ≤ 1. (46)

Therefore, its stability condition is

0 ≤ τ ≤ 1/4. (47)

Similarly, if c in (4) is set to 1.0, the stability condition of
the isotropic diffusion is

0 ≤ τ ≤ 1/4. (48)

The stability region of the robust scale-space filter is larger
than that of both isotropic and anisotropic diffusion, since it
includes the “edge-stopping” concept in the image domain
as well as the “adaptive-evolution-step” concept in the time
domain.

D. Robustness

As mentioned earlier, the robust scale-space filter can
handle various outliers such as AWGN, impulsive noise,
or a combination of the two. The right-side term in
(38) is decomposed into two parts again: the nominator∑

(k,l)∈N(i,j) g(|Itk,l − Iti,j |)(Itk,l − Iti,j) and the denomina-
tor
∑

(k,l)∈N(i,j) g(|Itk,l − Iti,j |). The nominator term can be
thought of as a weighted mean which discriminates a true sig-
nal from the AWGN, preserving features in the same manner
as the anisotropic diffusion does. Note that the anisotropic
diffusion cannot handle the impulsive noise. Alternatively,
the denominator term has the properties of a median filter,
therefore having a very low value when impulsive noise exists,
as shown in Fig. 2(c). This characteristic leads the incoming
flux to increase, or the evolution step size to be largely scaled.
Therefore, the robust scale-space filter implicitly embeds an
impulsive noise detector, whereas most existing methods con-
sist of two separate parts, noise detector and noise eliminator,
in order to eliminate an impulsive noise [19], [23], [24].

It is worth noting that the robustness comes from the
characteristics of both the nominator and denominator terms.

Let us consider bilateral filtering [21], which also contains the
normalization term as follows.

It+1
i,j =

∑
(k,l)∈Ñ(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣) Itk,l∑
(k,l)∈Ñ(i,j) g

(∣∣∣Itk,l − Iti,j∣∣∣) . (49)

For fair comparison, it is assumed that the kernel size
is equal to that of the robust scale-space, i.e., Ñ(i, j) =
(k, l)|(i, j), (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1). Note
that Ñ(i, j) includes the center node Iti,j .

Let us consider a simple 1-D example as follows:

Iti−1 ≡ α, Iti ≡ α̂ , Iti+1 ≡ α, (50)

where α and α̂ represent arbitrary intensity values. α̂ is an
outlier corrupted by impulsive noise, therefore α̂ � α or
α̂ � α, and the ground truth intensity of Ii is α. Their
corresponding weights are then defined as follows:

g
(∣∣Iti−1 − Iti

∣∣) ≡ wi−1,

g
(∣∣Iti − Iti ∣∣) ≡ wi,

g
(∣∣Iti+1 − Iti

∣∣) ≡ wi+1. (51)

Note that wi−1 and wi+1 are close to 0, since g (X) is a
monotonically decreasing function. The filtered value is then
represented by

It+1
i =

αwi−1 + α̂wi + αwi+1

wi−1 + wi + wi+1
≈ α̂wi

wi
= Iti . (52)

Therefore, the outlier cannot be handled by the bilateral
filter. The anisotropic diffusion shows a similar behavior as
well.

It+1
i = α̂+ τ [wi−1 (α− α̂) + wi+1 (α− α̂)] ≈ α̂ = Iti .

(53)
Alternatively, the robust scale-space filter shows a different

behavior such that

It+1
i = Iti + τ

[wi−1 (α− α̂) + wi+1 (α− α̂)]

wi−1 + wi+1

= α̂+ τ (α− α̂) = (1− τ) α̂+ τα. (54)

When 0 < τ ≤ 1, It+1
i approaches the ground truth value

α in an iterative manner. One interesting fact is that as τ
approaches 1, the convergence rate increases. Especially, when
τ is set to 1, the ground truth value is obtained after one
iteration only.

Accordingly, the denominator in the robust scale-space filter
has the role of not only preventing the overall energy from
diverging like bilateral filtering, but also handling various
outliers better by adaptively compensating for the incoming
flux.

E. Maximum Principle

Including itself, let us denote the maximum and minimum
of the neighborhood of Iti,j as M t

i,j and mt
i,j , respectively.

M t
i,j = max

{
Iti,j , I

t
i+1,j , I

t
i−1,j , I

t
i,j+1, I

t
i,j−1

}
(55)

mt
i,j = min

{
Iti,j , I

t
i+1,j , I

t
i−1,j , I

t
i,j+1, I

t
i,j−1

}
(56)
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(a) (b) (c)
Fig. 6. Images degraded by both AWGN (noise variance = 400) and impulsive
noise (density = 0.05). (a) lena, (b) house, (c) brain.

Define

(cT )
t
i,j ≡ g

(∣∣Iti−1,j − Iti,j
∣∣)+ g

(∣∣Iti+1,j − Iti,j
∣∣)

+g
(∣∣Iti,j+1 − Iti,j

∣∣)+ g
(∣∣Iti,j−1 − Iti,j

∣∣) . (57)

Assuming 0 < g(X) ≤ 1, equation (38) can be written as
follows.

It+1
i,j ≤M

t
i,j

[
1− τ

(cT )
t
i,j

· (cT )
t
i,j

]
+

τ

(cT )
t
i,j

· (cT )
t
i,j ·M

t
i,j

= M t
i,j . (58)

Similarly,

It+1
i,j ≥ m

t
i,j

[
1− τ

(cT )
t
i,j

· (cT )
t
i,j

]
+

τ

(cT )
t
i,j

· (cT )
t
i,j ·m

t
i,j

= mt
i,j . (59)

Therefore, the discretized scheme of the robust scale space
filter in (38) satisfies the maximum principle as follows.

mt
i,j ≤ It+1

i,j ≤M
t
i,j . (60)

This means that no maxima and minima appear at all scales.
Furthermore, a continuous form of the robust scale-space filter
in (23) also satisfies the maximum (or minimum) principle
(See Appendix in [5]).

V. EXPERIMENTAL RESULTS

A. Experimental Environments

1) Test Sequences: We use the following images: ‘lena’,
‘house’, and ‘brain’. They are corrupted with different types
of noise: AWGN where the noise variance is 400, impulsive
noise where the density is 0.05, and a mixture noise combining
AWGN and the impulsive noise as shown in Fig. 6. In a
subjective evaluation, we only show the results for the ‘lena’
image with the mixture noise due to space limitations.

2) Parameter Setting: In section V-B, the performance of
the proposed method is evaluated in both a qualitative and
quantitative manner. The robust scale-space (RSF) is compared
with anisotropic diffusion (AD) [5], regularized anisotropic
diffusion (RAD) [8], and anisotropic median diffusion (AMD)
[19]. For fair comparison, 4-neighborhood is used in all
methods. The two “edge-stopping functions” in (11) and
(12) are used, whose potential functions are non-convex and
convex, respectively. In the classic diffusion methods, it has
been known that the bandwidth parameter should be set large
enough to discriminate the noise from the true signal, when the

(a) τ = 0.25 (b) τ = 0.50 (c) τ = 1.00

Fig. 7. Results for ‘lena’ image with mixture noise in Fig. 6(a) filtered
by (from top to bottom) anisotropic diffusion (AD), regularized anisotropic
diffusion (RAD), anisotropic median diffusion (AMD), and robust scale space
filtering (RSF). An evolution step size τ is set to (a) 0.25, (b) 0.50, and (c)
1.00, respectively. The number of iterations and the bandwidth parameter λ
are set to 200 and 2.0, respectively. An edge-stopping function in (12) is used
whose potential function is convex. Please see the electrical version for better
visibility.

impulsive noise exists. The large value, however, may cause
the important features to be blurred. In contrast, the RSF has an
excellent discriminative power for both Gaussian and impul-
sive noise even with the relatively small bandwidth parameter
(λ = 2.0 in all experiments). Gaussian regularization is used
in the RAD where the variance and kernel size are 1.0 and 3,
respectively. The kernel size of the median filter is set to 3 in
the AMD.

In section V-C, the results of RSF with 8-neighborhood and
24-neighborhood are shown. In this case, the “edge-stopping”
function in (11) with a bandwidth parameter λ being 2.0 is
used, whose potential function is non-convex.

We observe a behavior of the bilateral filter in mixture noise
environment, and compare it with RSF in section V-D. The
Gaussian kernel with a size 11 × 11 is used. The bandwidth
parameter is set to the standard deviation of the AWGN, 20.

B. Comparison with Related Diffusion Methods

1) Qualitative Comparison: Fig. 7 shows the results for
the ‘lena’ image corrupted by the mixture noise as shown in
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(c) τ = 1.00
Fig. 9. A quantitative comparison for the ‘lena’ image corrupted by mixture noise as shown in Fig. 6(a). The PSNR is measured against a varying number
of iterations and the evolution step size, (a) τ = 0.25, (b) τ = 0.50, and (c) τ = 1.00, respectively.

(a) τ = 0.25 (b) τ = 0.50 (c) τ = 1.00

Fig. 8. Results for ‘lena’ image with mixture noise in Fig. 6(a) filtered
by (from top to bottom) anisotropic diffusion (AD), regularized anisotropic
diffusion (RAD), anisotropic median diffusion (AMD), and robust scale space
filtering (RSF). An evolution step size τ is set to (a) 0.25, (b) 0.50, and (c)
1.00, respectively. The parameters are the same as those of Fig. 7, except that
the number of iterations is 500 and the edge-stopping function in (11) is used,
whose potential function is non-convex. Please see the electronic version for
better visibility.

Fig. 6(a), with an evolution step size varying at (a) 0.25, (b)
0.50, and (c) 1.00, respectively. The results were obtained by
(from top to bottom) AD, RAD, AMD, and RSF with the edge
stopping function in (12) whose potential function is convex.
The number of iterations is fixed at 200 in all experiments.
When the step size becomes large, the evolution process is
accelerated, leading to over-smoothing. The results of AD and
RAD show similar behaviors: They diverge when the evolution
step size is larger than 0.25, as mentioned in (47). The results

of RAD are smoother than that of AD since the gradient is
calculated in an image regularized (smoothed) by a Gaussian
filter. AMD shows better performance than AD and RAD, but
has artifacts when the evolution step size is 0.25. Furthermore,
as the median filter is repeatedly applied, the impulsive noise
is eliminated, but the image tends to be over-smoothed. RSF
shows the best performance in the sense that the results are
well-localized and artifact-free. By considering the fact that
the number of iteration and the evolution step size are same,
RSF can preserves the features at least as well as the image
structure. As time evolves, the image is flattened, so that
other filters act like conventional Gaussian filter, i.e., isotropic
diffusion. Meanwhile, the velocity of diffusion automatically
decreases in RSF when the features begin to be flattened,
which leads to preserve the image structure.

Fig. 8 also shows the results for the ‘lena’ image corrupted
by mixture noise in Fig. 6(a). The parameters are the same
to those of Fig. 7, except that the number of iterations is 500
and an edge stopping function in (11) is used whose potential
function is non-convex. AD and RSF show similar behaviors
in terms of edge-preserving smoothing, except the capability
of handling impulsive noise. As expected, Gaussian noise is
handled accurately by AD, but impulsive noise still exists even
when the number of iteration is large (=500) and an evolution
step size increases (0.25 to 1.0). Since the non-convex potential
function is used, the inverse diffusion occurs in AD when the
intensity difference between neighboring pixels is larger than
threshold λ in (11). Namely, outliers by an impulsive noise
as well as edges are assumed to be preserved. The results of
AMD have no impulsive noise since it has explicitly have a
discriminant power for handling impulsive noise, i.e., median
filter. However, it shows artifact and localization error when
evolution step size is set to 0.25 or 0.5 (See black spots
in lena’s hat). Furthermore, although an impulsive noise is
eliminated at early evolution stage, it over-smooths an image
since median filter is applied in an iterative manner. The
results of RAD have no outliers since Gaussian regularization
suppresses the outlier, but are over-smoothed as well. Also, it
diverges when large evolution step size (τ = 1.0) is used. In
contrast, RSF handles the impulsive noise as well as Gaussian
noise accurately for all evolution step sizes although it does
not perform well when outliers are concentrated densely, since
it uses a small kernel, as in (38).

2) Quantitative Comparison: In order to compare the per-
formance quantitatively, the PSNR is measured against varying
evolution step sizes and the number of iterations, as shown
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TABLE I

OBJECT EVALUATION FOR THE PROPOSED METHOD

‘Lena’
(dB)

‘House’
(dB)

‘Brain’
(dB)

Avg.
PSNR

Avg.
Proc.
Time
(ms)

Nor.
Proc.
Time

Noise type A:
AWGN with standard devi-
ation, 20.

Input noisy image τ 22.32 22.33 23.06 22.57

Method

AD [5]
0.25 29.54 31.33 28.47 29.78

3.40 0.840.50 29.53 31.24 28.46 29.74
1.00 29.22 30.59 28.31 29.37

RAD [8]
0.25 29.51 31.51 29.14 30.05

8.00 1.960.50 25.37 25.22 25.84 25.48
1.00 18.47 18.21 19.93 18.87

AMD [19]
0.25 28.06 29.88 27.72 25.53

16.00 3.930.50 28.17 30.02 27.81 28.67
1.00 28.31 30.24 27.93 28.83

RSF
0.25 28.98 30.97 28.56 29.50

4.07 1.000.50 28.97 30.96 28.57 29.50
1.00 28.72 30.73 28.47 29.31

Noise type B:
Impulsive noise with den-
sity, 0.05.

Input noisy image τ 20.63 20.66 19.84 20.38

Method

AD [5]
0.25 25.44 27.48 23.17 25.36

3.50 0.850.50 25.41 27.32 13.16 25.30
1.00 25.26 26.88 23.17 25.10

RAD [8]
0.25 27.86 29.82 26.79 28.16

8.01 1.950.50 25.45 26.41 25.39 25.75
1.00 21.93 22.79 22.25 22.32

AMD [19]
0.25 31.55 34.14 31.17 32.29

16.03 3.910.50 31.55 34.19 31.07 32.27
1.00 31.39 34.02 30.77 32.06

RSF
0.25 30.27 31.80 28.91 30.33

4.10 1.000.50 30.66 32.11 29.49 30.75
1.00 31.23 32.82 30.60 31.55

Noise type A+B:
AWGN in A and impulsive
noise in B.

Input noisy image τ 18.41 18.43 18.15 18.33

Method

AD [5]
0.25 25.39 27.42 22.93 25.25

3.45 0.860.50 25.35 27.25 22.91 25.17
1.00 25.12 26.70 22.89 24.90

RAD [8]
0.25 27.09 29.04 25.65 27.26

8.21 2.050.50 22.94 22.89 22.04 22.62
1.00 17.73 17.62 18.41 17.92

AMD [19]
0.25 27.85 29.65 27.39 28.30

15.89 3.970.50 27.95 29.81 27.47 28.41
1.00 28.09 30.01 27.57 28.56

RSF
0.25 27.74 29.88 26.85 28.16

3.99 1.000.50 27.81 29.91 27.10 28.27
1.00 27.75 29.80 27.28 28.28

Avg. PSNR: Average PSNR
Avg. Proc. Time: Average processing time per iteration
Nor. Proc. Time: Normalized processing time

in Fig. 9. The results for the ‘lena’ image with the mixture
noise are obtained with (12) only, since the results obtained
with (11) show similar behavior. Fig. 9 demonstrate that the
result of RSF is less sensitive to the number of iterations and
evolution step size. As expected, the performance of RAD and
AMD is rapidly degraded when the evolution step size τ = 1.0
is larger than 0.25. The performance of AD is also inferior to
that of RSF for all the evolution step sizes. For instance, when
τ = 1.0, the PSNR of AD is averagely 2.5 dB smaller than
that of RSF.

Table I shows the PSNR and processing time of AD, RAD,

AMD, and RSF with a varying evolution step size when
the edge stopping function in (12) is used. Experiments are
conducted with various types of noise: AWGN, impulsive
noise, and mixture noise. The ‘Avg. PSNR’ and ‘Avg. Proc.
Time’ denote the average PSNR and the average processing
time per single iteration. The ‘Nor. Complexity’ represents a
relative ratio of average processing time when that of the RSF
is normalized to 1.0.

As expected, since robustness is not inherently imposed
on AD, AD shows poor results for impulsive noise and
mixture noise while obtaining the best results for AWGN.
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Fig. 10. Results for the ‘lena’ image with mixture noise in Fig. 6(a): robust
scale-space filtering (RSF) (from top to bottom) with 8-neighborhood and
with 24-neighborhood. The parameters are the same as those of Fig. 8. Please
see the electronic version for better visibility.

The performance of RAD is the worst since it diverges when
the evolution step size is larger than 0.25. It is worthy to
note that when the evolution step size is 0.25, RAD shows
better performance than AD for all types of noise since
regularization is somewhat effective to outliers. AMD shows
the best performance for impulsive noise and mixture noise
since it inherently contains a detector and remover for the
impulsive noise. However, it is not suitable to scale-space
filtering as shown in Fig. 7 and Fig. 8. Namely, it shows a
poor performance for AWGN since the median filter, which
is not optimal to AWGN, is repeatedly applied. In contrast,
the performance of the RSF is relatively less sensitive to the
evolution step size and noise type. It shows better performance
than AMD in AWGN, and is comparable to AMD in mixture
noise. Moreover, considering the complexity, it shows the best
performance. The complexity of RSF is comparable to that of
AD, because RSF only needs four additions and one division,
while including operations for AD per single iteration. RAD
and AMD require Gaussian regularization and median filtering
per single iteration, making the filtering more complex.

In conclusion, RSF shows consistent performance regardless
of both the evolution step size and the noise type, and its
complexity is relatively low.

C. Enlarging the Kernel Size

When the non-convex function such as (11) is used as an
“edge-stopping” function, some impulsive noises still remain
even in the results even filtered by the RSF as shown in
Fig. 8. This can be further remedied by enlarging the kernel
size as in [26]. Fig. 10 shows the results, obtained using
(from top to bottom) 8- or 24-neighborhood, for the ‘lena’
image with the mixture noise in Fig. 6(a). The parameters
are the same as those of Fig. 8 except the kernel size. It is
worthy of noting that the evolution step size for ensuring the
numerical stability of the RSF does not depend on the kernel
size, i.e., 0 ≤ τ ≤ 1, whereas the evolution step size of
the anisotropic diffusion should be altered according to the
kernel size, i.e., 0 ≤ τ ≤ 1/N when N -neighborhood is

Fig. 11. A behavior of the bilateral filter for the ‘lena’ image with mixture
noise in Fig. 6(a): The number of iteration is set to (from left to right) 1,
5, and 10. The Gaussian kernel with a size 11× 11 is used. The bandwidth
parameter is set to the standard deviation of the AWGN, 20. Please see the
electronic version for better visibility.

used (See section III-C). Comparing with the results of Fig.
8, we could get two observations. First, the RSF with the
large kernel is helpful to dealing with the outliers, since more
information can be aggregated. Second, the RSF with the large
evolution step size is advantageous, since the evolution process
is more accelerated. The processing time, however, increases
linearly with the kernel size. For instance, the processing time
per iteration with 8-neighborhood (24-neighborhood) is nearly
twice (five times) of that with 4-neighborhood.

D. Comparison with Bilateral Filter

The bilateral filter is the typical example of the nonlinear
smoothing that regularizes homogeneous regions and relatively
unimportant features while preserving universal features [21],
[27].

The RSF is similar to the bilateral filter in that both methods
contain the normalization term. However, the bilateral filter
is not robust to various outliers as described in section IV-
D, since it is theoretically equivalent to the single iteration
solution of the weighted least square optimization [27]. Fig. 11
shows the behavior of the bilateral filter applied to the noisy
image of Fig. 6(a). The bilateral filter is repeatedly applied
for speculating the filtering behavior against the outliers. The
number of iteration is set to (from left to right) 1, 5, and
10, respectively. Although the bilateral filter can successfully
handle the AWGN, it cannot remove the impulsive noise even
after multiple iterations.

VI. DISCUSSION AND CONCLUSION

1) Summary: Robust scale-space filter has been proposed
from second order PDEs. It adaptively changes the amount
of flux according to the local topology of the neighborhood.
Similar to modeling the heat or temperature flows in physics,
it was derived by coupling Fick’s law with a generalized
continuity equation in which a source or sink is modeled via
a specific heat capacity.

2) Filter Design: Table II shows the family of the scale-
space filtering with second order PDEs. Note that we can ex-
ploit the relationship between the robust scale-space filter and
existing filters by adaptively changing c(x, y, t) and n(x, y, t).
Therefore, it is feasible to design a new filter by altering the
function c(x, y, t) or n(x, y, t) in second order PDEs. Please
refer to the Appendix, which derives a relationship with the
Lee filter [25].
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TABLE II
SECOND ORDER PARTIAL DIFFERENTIAL EQUATION FOR SCALE SPACE FILTERING

n(x, y, t)∂tI(x, y, t)− c(x, y, t)∆I(x, y, t)−∇c(x, y, t) · ∇I(x, y, t) = 0

n(x, y, t) c(x, y, t) Scale-space filtering

1 c (constant) ∂tI(x, y, t) = c∆I(x, y, t): Isotropic diffusion

1 g (‖∇I(x, y, t)‖) ∂tI(x, y, t) = ∇ · [g (‖∇I(x, y, t)‖)∇I(x, y, t)]: Anisotropic diffusion

|∇ · [c(x, y, t)∇A(x, y, t)]| g (‖∇I(x, y, t)‖) ∂tI(x, y, t) =
∇·[g(‖∇I(x,y,t)‖)∇I(x,y,t)]
|∇·[g(‖∇I(x,y,t)‖)∇A(x,y,t)]| : Robust scale-space filtering

3) Extension: Robust scale-space filter can be combined
with more powerful methods. First, it can be applied to
vector image representation for a color image in a similar
way to [17], or tensor representation [13], [14], [15], [16],
[17]. It leads to edge or coherence enhancing filtering which
is robust to outliers. Second, it can be extended to higher
order filtering such as anisotropic fourth-order diffusion that
preserves ramp and step edges simultaneously [29]. Third, the
robust scale-space filter can be combined with existing filters,
which makes them more powerful. One feasible example is
a regularized robust scale space filter which combines the
proposed method with regularized anisotropic diffusion [8]. It
can also be combined with other anisotropic diffusion methods
for handling speckle noise [18]. Also, the robust scale-space
filter does not have a discriminant power to detect outliers
explicitly. It can be addressed by combining it with other
outlier handling methods [10], [23], [24].

4) Acceleration: The robust scale-space filter can be ac-
celerated by using a semi-implicit or an implicit schemes
without losing the numerical stability. The (semi-) implicit
scheme has been known to be more complex yet stable than the
explicit scheme. This enables the filter to have a larger step
size, making it converge with a smaller number of iteration
[30], [31]. Furthermore, it is similar to the bilateral filter [21]
containing the normalization term, giving us the chance to ac-
celerate the proposed method via signal processing techniques
widely used for the fast bilateral filtering [32]. Namely, we can
utilize the (semi-) implicit scheme for reducing the number of
iteration and the signal processing techniques for reducing the
computational complexity per iteration.

5) Parameter optimization: It was shown that the robust
scale-space filter is superior to the conventional diffusion
in the same environments. However, the parameters used in
the experiment were not optimized. It is expected that the
performance of the robust scale-space filter could be improved
with optimized parameters [33].

APPENDIX

The Lee filter is one of the most representative techniques
for eliminating speckle noise in ultrasonic or radar images,
while preserving features [25]. Although the original Lee filter
is a one-step method, it can be represented in iterative fashion
as follows:

It+1
i,j = Īti,j + kti,j

(
Iti,j − Īti,j

)
, (61)

where Īti,j denotes a mean value within the neighborhood.
The filter coefficient is represented by kti,j , which adapts with

respect to the local statistics.

kti,j = 1− (Cu)
2
/(
Cti,j

)2
, (62)

where(
Cti,j

)2
= (1/ |N |)

∑
(k,l)∈N(i,j)

(
Itk,l − Īti,j

)2/(
Īti,j
)2
.

(63)
|N | denotes the number of the neighborhood. (Cu)

2 is a
constant, which can be defined by using the effective number
of looks (ENL) of the noisy image, or the variance (varh)
and mean (m̄h) value of homogeneous regions as follows:

(Cu)
2

= 1/ENL or varh/m̄h. (64)

Let us assume that the neighborhood of the Lee filter is
equal to that of the robust scale-space filter. Equation (61) can
then be expressed as follows:

It+1
i,j = Iti,j +

(
1− kti,j

) (
Īti,j − Iti,j

)
= Iti,j +

(
1− kti,j

)
|N(i, j)|

∑
(k,l)∈N(i,j)

(
Itk,l − Iti,j

)
. (65)

Yu and Acton showed that there is a discrete implementa-
tion of the isotropic diffusion equation [18] when the filter
coefficient kti,j (or Cti,j) is a constant. In contrast to isotropic
diffusion that smooths an image evenly without considering
the local structure, the Lee filter can change the filter coeffi-
cients adaptively according to the local characteristics.

Plugging (63) to (62) leads to:

1− kti,j = (Cu)
2 |N(i, j)|

 (
Īti,j
)2

∑
(k,l)∈N(i,j)

(
Itk,l − Īti,j

)2

 .
(66)

Equation (65) can then be represented as follows:

It+1
i,j = Iti,j + (Cu)

2(
Īti,j
)2 

∑
(k,l)∈N(i,j)

(
Itk,l − Iti,j

)
∑

(k,l)∈N(i,j)

(
Itk,l − Īti,j

)2

 .
(67)

If we assume that the intensity within the neighborhood
N(i, j) changes smoothly, (67) can be approximated as:

It+1
i,j ≈ I

t
i,j + (Cu)

2(
Īti,j
)2 

∑
(k,l)∈N(i,j)

(
Itk,l − Iti,j

)
∑

(k,l)∈N(i,j)

(
Itk,l − Iti,j

)2

 .
(68)

It is a discrete implementation of (1) with

n(x, y, t) = ∇ · [d(x, y, t)∇A(x, y, t)] , (69)
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c(x, y, t) = 1, (70)

where
d(x, y, t) = z (‖∇I(x, y, t)‖) , (71)

z(x) = x2. (72)

That is, (68) is an approximation of the following equation

∂tI(x, y, t) =
∆I(x, y, t)

∇ · [d(x, y, t)∇A(x, y, t)]
, (73)

with an evolution step size as in (74).

τ = (Cu)
2(
Īti,j
)2

(74)
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