
IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Joint Histogram Based Cost Aggregation
for Stereo Matching
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Abstract—This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation
problem is re-formulated from a perspective of a histogram, giving us a potential to reduce the complexity of the cost aggregation
in stereo matching significantly. Different from previous methods which have tried to reduce the complexity in terms of the size of an
image and a matching window, our approach focuses on reducing the computational redundancy which exists among the search range,
caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through
an efficient sampling scheme inside the matching window. The trade-off between accuracy and complexity is extensively investigated
by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality
disparity maps with a low complexity and outperforms existing local methods. This work also provides new insights into complexity-
constrained stereo matching algorithm design.

Index Terms—Cost aggregation, stereo matching, disparity hypotheses, joint histogram.
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1 INTRODUCTION

Depth estimation from a stereo image pair [1] has been
one of the most fundamental tasks in the field of com-
puter vision. It aims at estimating a pair of correspond-
ing points between two (or more) consecutive images
taken from different viewpoints. Stereo matching can be
classified into two categories (global and local) according
to the strategies used for estimation. Global approaches
generally define an energy model with various con-
straints (using smoothness or uniqueness assumptions)
and solve it using global optimization techniques such as
belief propagation or graph cut. Local approaches obtain
a disparity map by measuring correlation of color pat-
terns in local neighboring windows. It has been generally
known that the local approaches are much faster and
more suitable for a practical implementation than global
approaches. However, the complexity of the leading
local approaches which provide high-quality disparity
maps is still huge. This paper explores the computational
redundancy of cost aggregation in the local approaches
and proposes a novel method for performing an efficient
cost aggregation.

Local approaches measure a correlation between in-
tensity values inside a matching window N (p) of a
reference pixel p, based on the assumption that all the
pixels in the matching window have similar disparities.
The performance depends heavily on how to find an
optimal window for each pixel. The general procedure of
local approaches is as follows. For instance, suppose that
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a truncated absolute difference (TAD) is used to estimate
a left disparity map Dl. A per-pixel raw matching cost
e(p, d) for disparity hypothesis d is first calculated by
using the left and ‘d’-shifted right images as follows:

e(p, d) = min(||Il(x, y)− Ir(x− d, y)||, σ), (1)

where Il and Ir are left and right color images, respec-
tively. The per-pixel cost is truncated with a threshold
σ to limit the influence of outliers to the dissimilarity
measure. Note that other dissimilarity measures such
as Birchfield-Tomasi dissimilarity [2], rank/census trans-
form [3] or normalized cross correlation (NCC) can also
be used. An aggregated cost E(p, d) is then computed
via an adaptive summation of the per-pixel cost. This
process, which causes a huge complexity, is repeated for
all the disparity hypotheses, stepping from 0 to D − 1:

E(p, d) =

∑
q∈N (p)

w(p, q)e(q, d)∑
q∈N (p)

w(p, q)
. (2)

The Winner-Takes-All (WTA) technique is finally per-
formed for seeking the best one among all the disparity
hypotheses as:

Dl(p) = argmin
d∈[0,··· ,D−1]

E(p, d). (3)

2 RELATED WORK AND MOTIVATION

For obtaining high-quality disparity maps, a number
of local stereo matching methods have been proposed
by defining the weighting function w(p, q) which can
implicitly measure the similarity of disparity values
between pixel p and q. Yoon and Kweon [4] proposed
an adaptive (soft) weight approach which leverages the
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color and spatial similarity measures with the corre-
sponding color images, and it can be interpreted as
a variant of joint bilateral filtering [5]. It is easy to
implement and provides high accuracy, but has huge
complexity due to its nonlinearity from the computa-
tion of the weighting function. The color segmentation
based cost aggregation [6] was also presented with
the assumption that pixels inside the same segment
are likely to have similar disparity values. Cross-based
approaches [7] used a shape-adaptive window which
consists of multiple horizontal line segments spanning
several neighboring rows. The shape of the matching
window N (p) is estimated based on the color similar-
ity and an implicit connectivity constraint, and a hard
weighting value (1 or 0) is finally used.

In general, the complexity of the cost aggregation can
be characterized as O(NBL), where N and B are the size
of the input image and the matching window N (p), and
L represents the search range, i.e., the number of discrete
labels (e.g. disparity hypotheses). To reduce the complex-
ity of the cost aggregation, a number of algorithms have
been proposed in terms of the size of the image N and
the matching window B. Min and Sohn [8] proposed
a new multiscale approach for ensuring reliable cost
aggregation in the stereo matching. They tried to reduce
the complexity by using smaller matching windows on
the coarse image and cost domain. Richardt et al. [9]
reduced the complexity of the adaptive support weight
approach [4] by using an approximation of the bilateral
filter [10]. The complexity is independent of the size of
the matching window, but a grey image used in the
bilateral grid causes some loss of quality.

An iterative solution [11], inspired by the anisotropic
diffusion, was proposed to achieve similar results to
the adaptive weight approach [4] with a lower com-
putational load. It was shown that the geodesic diffu-
sion is efficiently performed after a few iterations and
produces state-of-the-arts results among the local stereo
methods [11]. Rhemann et al. [12] formulated several
computer vision tasks with a discrete labeling problem,
and then performed the cost aggregation with the guided
image filtering [13], which allows the constant time
implementation regardless of the window size. They
demonstrated that this simple and generic framework
achieved very competitive results in the stereo matching,
optical flow estimation, and interactive segmentation.
The complexity increases linearly with an image size (N )
and the number of labels (L) only.

In this paper, we extensively explore the principles be-
hind the cost aggregation and propose a novel approach
for performing the cost aggregation in an efficient man-
ner. Different from the conventional approaches which
have tried to reduce the complexity in terms of the
size of the image and the matching window by using
the multiscale scheme [8] or the constant time filtering
techniques [9] [12], our approach focuses on reducing
the redundancy which exists among the search range L,
caused by the repeated calculation of E(p, d) for all the

disparity hypotheses in (2). Moreover, the redundancy
which exists in the window-based filtering is exploited
as well. We will show that the proposed spatial sampling
scheme inside the matching window N (p) can lead to
a significant reduction of the complexity. Finally, the
trade-off between accuracy and complexity is extensively
investigated over the parameters used in the proposed
method.

This paper extends our preliminary work [14] by
performing new experiments with a well-established
raw matching cost through careful parameter tuning.
We also provide an in-depth analysis of some critical
parameters of our algorithm and include an accuracy-
complexity trade-off study. The reminder of this paper
is organized as follows. In Section III, we describe a
new formulation for the efficient cost aggregation and
its approximation techniques. We then present experi-
mental results in Section IV and summarize conclusion
in Section V, respectively.

3 EFFICIENT COST AGGREGATION IN STEREO

3.1 New Formulation for Likelihood Aggregation

For local approaches, the cost aggregation is the most
important yet time-consuming part. Given two images
Il and Ir, we define a function eh(p, d) which represents
how likely a pixel p is to have a specific disparity
hypothesis d. For instance, it could be defined using the
TAD as eh(p, d) = max(σ−|Il(x, y)−Ir(x−d, y)|, 0). Note
that other metrics such as the rank/census transform or
NCC can also be utilized in a way that it is likely to have
a large value as the disparity hypothesis d approaches a
true disparity value.

To yield a reliable likelihood function, we implicitly
consider a smoothness constraint by utilizing a color-
weighted adaptive likelihood aggregation. The aggre-
gated likelihood Eh(p, d) can be then formulated using
the matching window N (p) in a similar manner to (2)
as

Eh(p, d) =
∑

q∈N (p)

w(p, q)eh(q, d). (4)

After applying the same aggregation procedure, the
output disparity value Dl(p) is estimated by seeking the
maximum value of the aggregated likelihood Eh(p, d),
which is the same as the solution of (3). Note that
in the likelihood aggregation, the normalization term∑

w(p, q) is omitted, unlike (2). This modification does
not affect the accuracy of the likelihood aggregation,
since the disparity value Dl(p) is estimated for each pixel
independently where this normalization term is fixed for
all ds [15].

The aggregated likelihood function Eh(p, d) has a
similar formulation to a histogram which represents
a probability distribution of continuous (or discrete)
values in a given data. In general, each bin of the
histogram can be calculated by counting the number of
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Fig. 1. Disparity candidate selection with local/global
maxima.

corresponding observations in the set of data. Similarly,
given the data set of the neighboring pixels q, the dth bin
of the reference pixel p is computed by counting the bin
with the corresponding eh(q, d). Since a single pixel q is
associated with a set of multiple data (i.e. eh(q, d) for all
bin ds), the aggregated likelihood function Eh(p, d) can
be referred to as a relaxed histogram.

Another characteristic of the proposed histogram-
based aggregation is the use of the weighting function
w(p, q). As previously mentioned, the weighting function
can play an important role for gathering the information
of neighboring pixels where disparity values are likely
to be similar. In this paper, we use a similarity measure
based on the color and spatial distances as follows [4]
[8]:

w(p, q) = exp (−||Ip − Iq||/σI − ||p− q||/σS) .

Since the color similarity is measured by using a
corresponding color image, it shares the similar principle
to the joint bilateral filtering [5], where the weight is
computed with a signal different from the signal to be
filtered. This characteristic enables the joint histogram to
be extended into a weighted filtering with the support of
color discriminative power. In the following section, we
will describe two methods for reducing the complexity
of building the joint histogram Eh(p, d).

3.2 First Approximation: Compact Representation
of Likelihood for Search Range

Recently, several methods have been proposed using a
compact representation of the data that consists of a
complex form in stereo matching. Yu et al. [16] proposed
a novel envelope point transform (EPT) method by
applying a principal components analysis (PCA) to com-
press messages used in belief propagation [17]. Wang et
al. [18] estimated the subset of disparity hypotheses for
reliably matched pixels and then propagated them on
an MRF formulation for estimating the subset of unre-
liable pixels. Yang et al. [19] proposed the method for
reducing the search range and applied it into hierarchical
belief propagation [20]. PCA or Gaussian Mixture Model

Fig. 2. Cost aggregation: (a) conventional approaches
perform nonlinear filtering with (or without) a color im-
age for all disparity hypotheses: O(NBD). (b) The pro-
posed method estimates the subset of disparity hypothe-
ses, whose size is Dc(≪ D), and then performs joint
histogram-based aggregation: O(NBDc).

(GMM) can be used for the compact representation, but
the compression for all pixels is time-consuming.

The weighting function w(p, q) based on the color
and spatial distances have been used to obtain accurate
disparity maps as in (4). The likelihood aggregation
hence becomes a non-linear filtering, whose complexity
is very high. In this paper, we propose a new approach
for reducing the complexity from a perspective of the
relaxed joint histogram. Our key idea is to find a compact
representation of the per-pixel likelihood eh(p, d), based on
the assumption that eh(p, d) with low values do not
provide really informative support on the histogram-
based aggregation.

In this paper, we extract the subset of local maxima
at the per-pixel likelihood eh(p, d) for the compact rep-
resentation [21]. The per-pixel likelihood for each pixel
is pre-filtered with a 5× 5 box window for suppressing
noise. The pre-filtering is done for all disparity hypothe-
ses, but its complexity is trivial in case of using a spatial
sampling method, which will be described in the next
section. The local maximum points are calculated by
using the profile of the pre-filtered likelihood function.
They are then sorted in a descending order and a pre-
defined number of disparity candidates Dc(≪ D) are
finally selected. If the number of the local maxima is less
than Dc, the values corresponding to the 2nd, 3rd (and
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so on) highest likelihood are selected. Fig. 1 shows an
example of the disparity candidate selection for ‘Teddy’
stereo images, where the number of the disparity hy-
potheses is 60. The new aggregated likelihood Eh(p, d)
is defined with the subset of disparity hypotheses only:

Eh(p, d) =
∑

q∈N (p)

w(p, q)eh1 (q, d)o(q, d)

o(q, d) =

{
1 d ∈ MC(q)
0 otherwise

, (5)

where MC(q) is a subset of disparity hypotheses whose
size is Dc. Note that MC(q) varies from pixel to pixel.
eh1 represents the prefiltered likelihood with a 5 × 5
box window. Fig. 2 explains the difference between the
conventional cost aggregation and the proposed method.
When the size of the matching window is set to B,
the conventional method performs the non-linear filter-
ing for all pixels (N ) and disparity hypotheses (D), so
the complexity is O(NBD). In contrast, the proposed
method votes the subset of informative per-pixel likeli-
hoods (whose size is Dc) into Eh(p, d) with the complex-
ity of O(NBDc). Moreover, since the normalization term∑

w(p, q) is not used in the joint histogram Eh(p, d), the
complexity has been further reduced. We will show in
the experimental results that the compact representation
by the subset of local maxima is helpful for reducing the
complexity while maintaining the accuracy.

Fig. 3 shows the accuracy of the disparity candidate
selection in the non-occluded region of ‘Teddy’ image
according to the number of disparity hypotheses Dc.
It was calculated by counting the number of pixels
whose subsets actually include a ground truth disparity
value. When Dc = 60, namely the same as the original
size, the subsets of all pixels include the ground truth
disparity value. Interestingly, when Dc = 6, only 91.8%
pixels contain the ground truth disparity values in their
subsets, but the accuracy of the estimated disparity map
(94.1%) is almost similar to these of the best one (94.2%,
when Dc = 5) or slightly better than the disparity
map estimated with all the disparity hypotheses (93.7%,
when Dc = 60). This shows that the joint histogram
based aggregation can reliably handle errors of the initial
candidate selection by gathering the information appro-
priately from the subsets of the neighboring pixels.

3.3 Second Approximation: Spatial Sampling of
Matching Window
Another source for reducing the complexity is on the
spatial sampling inside the matching window. There is
a trade-off between the accuracy and the complexity
according to the size of the matching window. In general,
using a large matching window and a well-defined
weighting function w(p, q) for obtaining a high quality
disparity map leads to high computational complex-
ity [4] [8]. In this paper, we handle this problem with
a spatial sampling scheme inside the matching window,
different from the previous work that used the signal
processing technique [9].
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Fig. 3. Accuracy of the disparity candidate selection and
the finally estimated disparity map in the non-occluded
regions of ‘Teddy’ according to Dc. The accuracy of the
selection process was measured by counting the number
of pixels whose subsets actually include a ground truth
disparity value.
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Fig. 4. Spatial sampling of matching window: (a) ref-
erence pixel-dependent, (b) reference pixel-independent
sampling. A neighboring pixel q=(m,n) is sampled inside
an image independently regardless of a reference pixel
p=(x, y).

Many approaches have used a smoothness assumption
that disparities inside an object vary smoothly, except
near the boundaries. A large window is generally needed
for reliable matching, but it does not mean that all the pixels
inside the matching window, whose disparity values are likely
to be similar in case of being located in the same object, should
be used altogether.

This observation suggests that the spatial sampling
inside the matching window can reduce the complexity
of the window-based filtering. More specifically, the
sparse samples inside the matching window could be
enough to gather reliable information. Ideally, the pixels
can be classified according to their likelihoods. It is,
however, impossible to classify the pixels inside the
matching window according to their disparity values,
which should be finally estimated. Color segmentation
may be a good choice for grouping the pixels, but the
segmentation is time-consuming and not feasible for a
practical implementation.

In this paper, a simple but powerful way for the
spatial sampling is proposed. The pixels inside the
matching window are regularly sampled, and then only
the sampled ones are used for the joint histogram-based
aggregation in (5). The neighboring pixels which are
close to each other are likely to have similar disparity
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values, so that the regularly-sampled data is sufficient
for ensuring reliable matching so long as the pixels at
a distance are used. As shown in Fig. 4, there are two
ways for spatial sampling: reference pixel-dependent and
independent sampling. The dependent sampling can be
defined as follows:

Eh(p, d) =
∑

q∈N (p)

w(p, q)eh1 (q, d)o(q, d)s1(p, q)

s1(p, q) =

{
1 ||p− q||%S = 0
0 otherwise

, (6)

where s1(p, q) is a binary function capturing the
regularly-sampled pixels inside the matching window
for a sampling ratio S. p%S = 0 denotes a pixel whose x
and y coordinates are both multiples of S. As previously
mentioned, the prefiltering with 5×5 window is applied
into the per-pixel likelihood function for suppressing
noise in the disparity candidate selection. Note that in
this sampling strategy, regardless of the spatial sampling
ratio S, the likelihood function eh1 (p, d) for all the pixels
should be estimated by using the disparity candidate
selection, which consists of dissimilarity measure, box
filtering, and local maxima estimation/sorting. It leads
to relatively high complexity compared to the joint
histogram-based aggregation.

The reference pixel-independent sampling can solve
this problem. As shown in Fig. 4 (b), our new sampling
scheme can be defined as follows:

Eh(p, d) =
∑

q∈N (p)

w(p, q)eh1 (q, d)o(q, d)s2(q)

s2(q) =

{
1 q%S = 0
0 otherwise

, (7)

where s2(q) is also a binary function which is similar to
s1(p, q), but does not depend on the reference pixel p. All
the reference pixels are supported by the same regularly-
sampled neighboring pixels, so that we can reduce the
complexity of the disparity candidate selection with a
factor of the sampling ratio S×S. The dissimilarity is first
measured and the subset of the disparity hypotheses are
then estimated for every S pixel. Note that the sampling
ratio S is related to the sampling of the neighboring pix-
els only. Table 1 shows a pseudo code for the proposed
method.

4 EXPERIMENTAL RESULTS

We compared the performance of the proposed method
with state-of-the-arts methods in the Middlebury test
bed [22]. All the experiments were performed on a
computer containing an Intel Xeon 2.8-GHz CPU (using
a single core only) and a 6-GB RAM. The proposed stereo
matching method is evaluated by measuring the percent
of bad matching pixels (where the absolute disparity
error is larger than 1 pixel) for three subsets of an image:
nonocc (the pixels in the nonoccluded region), all (all the
pixels), and disc (the visible pixels near the occluded
regions).

TABLE 1
Pseudo code for efficient likelihood aggregation.
Parameter definition
N : The size of an image I
B: The size of matching window N (p) (=W ×W )
MD : The set of disparity hypotheses whose size is D
MC : The subset of disparity hypotheses whose size is Dc

S: Sampling ratio inside a matching window
Algorithm: Efficient likelihood aggregation
DISPARITY CANDIDATE SELECTION
Complexity: O(25ND/S2)
For all pixels p which satisfy p%S = 0 and p ∈ I

1: Initialize prefiltered likelihood function eh1 (p, d)
to 0 for all ds.

For all disparity candidates d ∈ MD(p)
For all neighboring pixels which satisfy ||p− q||∞ ≤ 2

2: Compute per-pixel likelihood eh(q, d) and
eh1 (p, d)+ = eh(q, d) (5× 5 box filtering)

End
End
3: Estimate MC(p) with the local maxima on eh1 (p, d)

End

JOINT HISTOGRAM-BASED AGGREGATION

Complexity: O(NBDc/S2)
For all reference pixels p ∈ I

4: Initialize likelihood function Eh(p, d) to 0 for all ds.
For neighboring pixels which satisfy |q1|∞ ≤ W/2S

5: Compute weight w(p, q) with color and spatial
distances between two neighboring pixels
p and q = ((int)(p/S) + q1)× S.
(Reference pixel-independent sampling)

For all disparity candidates dq ∈ MC(q)
6: Eh(p, dq)+ = w(p, q)× eh1 (q, dq)

End
End
7: Dl(p) = argmax

d∈[0,··· ,D−1]
Eh(p, d)

End

The proposed method has been tested using the same
parameters, except for two parameters: the number of
disparity candidates Dc and the spatial sampling ratio S.
We investigated the effects of these two parameters for
the accuracy and the complexity. The CIELab color space
is used for calculating the weighting function w(p, q),
where σI and σS are 1.5 and 17.0, respectively. The size
of the matching window N (p) is set to 31 × 31 for the
stereo matching. Occlusion is also handled to evaluate
the overall accuracy of the estimated disparity maps. The
occluded pixels are detected by a cross-checking tech-
nique and the disparity value of background regions is
then assigned to the occluded pixels. Finally, a weighted
median filter (WMF) is applied to the disparity maps
for better boundary handling. It is applied across the
discontinuities regions only, and thus its computational
load is negligible (e.g. 15ms for ‘Tsukuba’). We found
this post-processing achieves a small improvement on
the discontinuities regions.

The per-pixel likelihood function eh(p, d) was mea-
sured by using both the TAD of the color images and
their gradient as

eh(p, d) = α ·max(λc − ||Il(x, y)− Ir(x− d, y)||, 0)
+(1− α) ·max(λg − |∇xIl(x, y)−∇xIr(x− d, y)|, 0)

(8)
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Fig. 5. Performance evaluation: average percent (%) of bad matching pixels for ‘nonocc’, ‘all’ and ‘disc’ regions
according to Dc and S.

where α is a parameter controlling the influence of two
(color and gradient) terms, which are truncated with
λc and λg , respectively. It has been known that this
model is more robust against illumination variation [23].
We will show that this per-pixel likelihood function
combining the image gradient significantly improves a
depth accuracy over our previous work [14]. For all
experiments, we set α, λc, and λg to 0.11, 13.5, and 2.0,
respectively. Note that (8) is likely to become large as d
approaches a true disparity value.

Fig. 5 shows an performance evaluation according
to the number of depth candidate Dc and the spa-
tial sampling ratio S. The average percent (%) of bad
pixels (APBP) for ‘nonocc’, ‘all’ and ‘disc’ regions is
shown for each sampling ratio S. Note that when S
is set to 1 and all disparity hypotheses are used (e.g.
Dc = 60 for ‘Teddy’), the proposed method is equivalent
to the conventional cost aggregation, except that the
joint histogram-based aggregation is used. We could
find that the bad matching percent does not converge
(or sometimes it increases) as the number of disparity
hypotheses Dc increases. It indicates that using the
information of all the disparity hypotheses does not
necessarily guarantee to obtain accurate disparity maps.
In other words, unnecessary candidates with low likelihood
(evidence) values may contaminate the likelihood aggregation
process. In terms of the spatial sampling ratio S, we
found that the quality of the disparity maps is gradually
degenerated as S increases, but the results of S = 1, 2, 3
are similar. Interestingly, in the ‘Venus’ image, the results
of using S = 2 showed slightly better than those of
S = 1. The ‘Venus’ image consists of a few planar
surfaces only, which are simple and easy to be estimated
compared to the ‘Teddy’ and ‘Cone’ images, and thus
the effect of the spatial sampling in the joint histogram

Fig. 6. Processing times (a) and trade-off (b) of the
proposed method according to Dc and S. The results of
‘Tsukuba’ image only are shown due to the lack of space.
In (b), the ‘Accuracy’ means (100%−APBP). One can find
that the accuracy is not monotonically increasing as the
processing time (Dc) increases.

based aggregation would be relatively marginal.
Next, we investigated the trade-off between the accu-

racy and the complexity by comparing processing times
in Fig. 6. We showed the results of ‘Tsukuba’ (S = 1)
only, and other results also show similar behaviors. Note
that the proposed method was implemented on the CPU
only. The processing time was measured for the calcula-
tion of a single (left or right) disparity map. As expected,
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TABLE 2
Performance evaluation of disparity accuracy for local stereo matching methods

Algorithm Tsukuba Venus Teddy Cone APBP (%)
nocc all disc nocc all disc nocc all disc nocc all disc

Our method (BEST) 1.44 1.78 7.01 0.14 0.38 1.92 5.75 11.2 14.6 2.29 7.62 6.52 5.05
Our method (S=1, Dc=10%) 1.93 2.30 6.39 0.16 0.46 2.22 5.88 11.3 14.7 2.41 7.78 6.89 5.20

PatchMatch [24] 2.09 2.33 9.31 0.21 0.39 2.62 2.99 8.16 9.62 2.47 7.80 7.11 4.59
CrossLMF-1 [25] 2.46 2.78 6.26 0.27 0.38 2.15 5.50 10.6 14.2 2.34 7.82 6.80 5.13

Our method (S=2, Dc=10%) 2.09 2.44 7.12 0.14 0.38 1.92 5.92 11.3 15.5 2.70 7.93 7.48 5.41
CostFilter [12] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

NonLocalFilter [26] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48
GeoSup [27] 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80

P-LinearS [28] 1.10 1.67 5.92 0.53 0.89 5.71 6.69 12.0 15.9 2.60 8.44 6.71 5.68
Our method (S=3, Dc=10%) 2.11 2.38 7.45 0.17 0.39 2.17 6.53 11.9 16.3 2.91 8.16 7.97 5.70

GeoDif [11] 1.88 2.35 7.64 0.38 0.82 3.02 5.99 11.3 13.3 2.84 8.33 8.09 5.49
RecursiveBF [29] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68
DistinctSM [30] 1.21 1.75 6.39 0.35 0.69 2.63 7.45 13.0 18.1 3.91 9.91 8.32 6.14

CostAggr+occ [8] 1.38 1.96 7.14 0.44 1.13 4.87 6.80 11.9 17.3 3.60 8.57 9.36 6.20
AdaptWeight [4] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67
FastBilateral [31] 2.38 2.80 10.4 0.34 0.92 4.55 9.83 15.3 20.3 3.10 9.31 8.59 7.31

HistoAggr [Our prev. work] [14] 2.47 2.71 11.1 0.74 0.97 3.28 8.31 13.8 21.0 3.86 9.47 10.4 7.33
VariableCross [7] 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

DCBGrid [9] 5.9 7.26 21.0 1.35 1.91 11.2 10.5 17.2 22.2 5.34 11.9 14.9 10.9

the processing time is proportional to the number of
disparity hypotheses Dc, and inversely proportional to
the square of the sampling ratio S. Interestingly, when
the number of disparity hypotheses Dc is small (e.g.
Dc = 1 ∼ 10 for ‘Teddy’ or ‘Cone’), the processing
times for S = 3 and 4 are almost similar. The trade-
off in Fig. 6 (b) shows that the accuracy (100%−APBP)
is not monotonically increasing as the processing time
(Dc) increases.

The performance evaluation from the Middlebury test
bed is shown in Table 2 by reporting a comparison
with other state-of-the-art methods. All the leading local
methods were sorted with the average ranking listed in
the Middlebury test bed. The number of disparity candi-
dates Dc are all set to 10% of the original search range.
We measured the disparity accuracy with the varying
spatial sampling ratio S (1 ∼ 3). We found that the
proposed method with S = 1 achieved the best accuracy
among all the leading local stereo matching methods.
In comparison with all stereo matching methods, the
average ranking of the current results (S=1, Dc=10%) is
16th, while the ranking of the initial results from our
previous work [14] is 76th. As mentioned earlier, it is
mainly due to the use of the raw matching cost combin-
ing the TAD of the color images and their gradient as in
(8). ‘Our method (BEST)’ represents the result when the
parameters (S and Dc) that provide the disparity maps
with the best accuracy are used. Interestingly, using 10%
of original search range (S = 1) produces the result
which is nearly close to the best disparity quality.

For the comparison of the complexity, we referred to
the results reported in the recent work [25]. We have
optimized our C implementation for both ‘CrossLMF-
0/1’ [25] and ‘CostFilter’ [12] and achieved acceler-
ated runtime since the publication of [25]. ‘CrossLMF-
0’ and ‘CrossLMF-1’ represent cross-based local multi-
point filtering methods [25] using the zero-order and
first-order polynomial models, respectively. To analyze

TABLE 3
Comparison with other methods (as of Oct. 2012): the

runtime was measured for ‘Tsukuba’.
Algorithms Rank APBP Runtime

Our method (S=1, Dc=10%) 16 5.20 % 1.38 s
CrossLMF-1 [25] 18 5.13 % 0.50 s
CrossLMF-0 [25] 19 5.24 % 0.21 s

Our method (S=2, Dc=10%) 23 5.41 % 0.52 s
CostFilter (GF) [12] 24 5.55 % 0.48 s
P-LinearS (GF) [28] 33 5.68 % 33.0 s

Our method (S=1,Dc=100%) 36 5.63 % 3.50 s
Our method (S=3, Dc=10%) 37 5.70 % 0.28 s

AdaptWeight [4] 73 6.67 % 60.0 s

the trade-off between complexity and accuracy, we list
both the processing time and the APBP (%) for some
representative local stereo matching methods in Table
3. ‘CostFilter’ and ‘P-LinearS’ used the guided filter
(GF) [13] for efficient cost aggregation. Note that the
processing time on a single core CPU was measured for
‘Tsukuba’, and the average error was calculated for all
the test sequences. The processing time of the proposed
method also includes the post-processing such as occlu-
sion detection/handling and WMF, while some of the
previous works consider the cost aggregation only. As
already explained in Fig. 5, the disparity results (S = 1,
Dc = 10%) estimated using only 10% of original search
range are better than those (S = 1, Dc = 100%) estimated
using all disparity candidates.

Fig. 7 shows the examples of the disparity maps
estimated by the proposed method when the number of
disparity hypotheses Dc is 10% of the original search
range and the spatial sampling ratio S is fixed to 1.
Namely, Dc is set to 2 for ‘Tsukuba’, 2 for ‘Venus’, 6
for ‘Teddy’, and 6 for ‘Cone’, respectively. One could
find that the proposed method provides high-quality
disparity maps, even though a small number of disparity
hypotheses are used.

To analyze the effect of prefiltering the likelihood
function eh(p, d) in the disparity candidate selection,
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Fig. 7. Results for (from top to bottom) ‘Tsukuba’, ‘Venus’,
‘Teddy’ and ‘Cone’ image pairs: (a) original images, (b)
our results, (c) error maps. The number of disparity hy-
potheses Dc is set to 10% of the original search range
and the spatial sampling ratio S is set to 1.

we measured the accuracy of disparity maps obtained
when applying the box filtering with varying window
sizes to eh. Table 4 shows the APBP for the Middlebury
test sequences (S=1 and Dc=10%). The result with no
prefiltering (1× 1) shows serious performance degener-
ation. As the size of the box filter increases, the method
produces better quality but using too large box windows
(7×7, 9×9) deteriorates the quality, and incurs more com-
putational overhead. Note that while this pre-filtering
can be seen as the first cost aggregation step, it mainly
serves the removal of noise from the per-pixel likelihood
functions.

One interesting fact is that the proposed two methods
for reducing the complexity of the joint histogram-based
aggregation can be combined with other cost aggrega-
tion methods as well. A number of local approaches
have been proposed by defining the weighting function
w(p, q) with hard or soft values. After re-formulating
these methods into the histogram-based scheme, the
compact representation of per-pixel likelihoods and the
spatial sampling of the matching window can be used
for an efficient implementation. Moreover, the trade-off
between the accuracy and the complexity presented here
can be taken into account in the complexity-constrained
algorithm design.

TABLE 4
Effect of the prefiltering in the disparity candidate

selection.
Window size 1× 1 3× 3 5× 5 7× 7 9× 9

APBP (%) 9.56 % 5.36 % 5.20 % 5.46 % 5.79 %

5 CONCLUSION

In this paper, we have presented a novel approach for
the efficient cost aggregation used in the stereo match-
ing. Given the per-pixel likelihood (evidence) function,
we re-formulated the problem from the perspective
of the relaxed joint histogram. Two algorithms were
then proposed for reducing the complexity of the joint
histogram-based aggregation. Different from the con-
ventional local approaches, we reduce the complexity
in terms of the search range by estimating a subset of
informative disparity hypotheses. We showed that the
reliable disparity maps were obtained even when the
number of labels hypotheses (Dc) was about 10% of the
original full search range. In addition, the complexity of
the window-based processing was dramatically reduced
while keeping a similar accuracy through the reference
pixel-independent sampling of the matching window.

In further research, we will investigate more elaborate
algorithms for selecting the subset of label hypotheses.
As shown in Fig. 5, the optimal number of disparity
hypotheses may be dependent on the characteristics of
input images and the spatial sampling ratio S, even
though the proposed method can provide excellent re-
sults with a fixed number of label hypotheses (e.g. 10%
of the original search range). We plan to devise an
efficient method for estimating the optimal number Dc

adaptively for different input images. Another further
research would be to extend the method to an optical
flow estimation.
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