
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Unsupervised Texture Flow Estimation Using
Appearance-space Clustering and Correspondence

Sunghwan Choi, Student Member, IEEE, Dongbo Min, Member, IEEE, Bumsub Ham, Member, IEEE,
and Kwanghoon Sohn, Senior Member, IEEE

Abstract—This paper presents a texture flow estimation
method that uses an appearance-space clustering and a corre-
spondence search in the space of deformed exemplars. To estimate
the underlying texture flow such as scale, orientation and texture
label, most existing approaches require a certain amount of user
interactions. Strict assumptions on a geometric model further
limit the flow estimation to such a near-regular texture as a
gradient-like pattern. We address these problems by extracting
distinct texture exemplars in an unsupervised way and using an
efficient search strategy on a deformation parameter space. This
enables estimating a coherent flow in a fully automatic manner,
even when an input image contains multiple textures of different
categories. A set of texture exemplars that describes the input
texture image is first extracted via a medoid-based clustering in
appearance space. The texture exemplars are then matched with
the input image to infer deformation parameters. Specifically, we
define a distance function for measuring a similarity between the
texture exemplar and a deformed target patch centered at each
pixel from the input image, and then propose to use a randomized
search strategy to estimate these parameters efficiently. The
deformation flow field is further refined by adaptively smoothing
the flow field under guidance of a matching confidence score.
We show that a local visual similarity, directly measured from
appearance space, explains local behaviors of the flow very
well, and the flow field can be estimated very efficiently when
the matching criterion meets the randomized search strategy.
Experimental results on synthetic and natural images show that
the proposed method outperforms existing methods.

Index Terms—Texture analysis, texture exemplar, texture flow,
randomized search, medoid-based clustering.

I. INTRODUCTION

TEXTURE that consists of surfaces in real photographs
conveys semantic meanings of a scene. By exploring it

as a basic visual structure, various vision tasks such as pattern
recognition, texture synthesis, image retrieval, and segmenta-
tion can be feasible. The texture in the natural scene usually
exhibits a spatially-varying deformation which arises from
the geometric variation of surfaces. Nevertheless, the human
visual system (HVS) can recognize its perceptual organization
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Fig. 1. Examples of texture flow estimation from a natural photograph. The
input image (a) consists of repeating texture elements whose visual structure
are spatially (and smoothly) varying in terms of orientation and scale. The
underlying flow in image perception is decomposed as an orientation field (b)
and a scale field (c).

very well, since an inherent visual structure embedded in
the spatially (and smoothly) varying surface shows visual
coherency. For example, the HVS can recognize a set of
textures containing geometric deviations in orientation and
scale as the same one. This phenomenon stems from the fact
that the HVS organizes and groups parallel structures into
coherent units [1]. The visual structure characterized by a
local parallelism is typically defined as texture flow [1], [2].
Fig. 1 shows the examples of the texture flow estimated from
a natural image by using our method.

In contrast to the perceptual mechanism of the HVS,
such deviations might degrade the accuracy of computational
approaches in estimating the texture flow, mainly due to a
heavy computational burden and a lack of an effective model
representing the deformable texture. Moreover, it is non-trivial
to automatically estimate texture exemplars (to be used in the
flow estimation) from an input image, thus making a direct
application of the texture flow estimation to various vision
tasks difficult. As a result, most approaches require a user-
provided texture exemplar (a reference texture) to estimate
underlying texture flows from natural photographs. Given
synthetic or real world images, a user should specify a very
precise texture exemplar with no deformation. Furthermore,
in case of an image containing multiple textures, existing
methods can handle a single texture at a time only when a
user defines a corresponding region mask. Otherwise, the input
image needs to be segmented appropriately.

In this paper, we present the unsupervised estimation of
underlying texture flows in the image, by formulating the esti-
mation as a discrete labeling problem. Our objective is to auto-
matically extract any number of texture exemplars and to infer
a dense deformation field based on a visual correspondence
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search. From here on, we define the deformation parameter
with texture label, scale and orientation for simplicity. To this
end, we need to solve the following problems: 1) how to iden-
tify texture exemplars with no user intervention, and 2) how
to efficiently infer the deformation parameters in a globally
consistent manner. We present the texture representation model
which builds upon an inherent repeatability behind texture
appearance [3]. Namely, the texture appearance is formed
through the evolution of some explicit texture exemplars.
Based on this, we pose the extraction of texture exemplars
as a mode-seeking problem: we find the most visually similar
patch among all candidate sample patches in the image. It is
effectively solved with the medoidshift algorithm [4]. Then,
we propose a non-parametric deformation model for a texture
flow estimation through a visual correspondence search using
the estimated texture exemplars. One challenging problem is
a heavy computational complexity incurred by an extremely
large search space. We will resolve this computational is-
sue by deploying the randomized search concept recently
proposed in [5], [6]. The deformation field estimation can
be significantly accelerated, while maintaining its estimation
accuracy. To ensure a global coherency, an intermediate flow
field is adaptively filtered with the guidance of the matching
confidence.

This paper is organized as follows. Section II presents the
related work, and Section III explains the inverse problem of
estimating texture flows and provides the algorithm overview.
Section IV describes the unsupervised extraction of texture
exemplars, and the non-parametric deformation field estima-
tion is presented in Section V. Then, the performance of
the proposed method is demonstrated in Section VI. Finally,
Section VII discusses limitations and concludes this paper.

II. RELATED WORK

There is a great deal of work in a large family of texture
analysis. Here, we only discuss the work most related to our
approach.

One stream of existing work that is closely related to ours
is texel extraction. It focuses on identifying small patches,
usually known as texture exemplars. Texture exemplars are a
set of fundamental sub-images which appear as spatially re-
peated texture elements in the scene. Ahuja et al. [7] proposed
to precisely segment texture exemplars based on a multiscale
segmentation tree. The works of [8] and [9] detected texture
exemplars by discovering texture regularity. Wei et al. [10]
extracted a compact texture exemplar that best summarizes the
input image by compressing texture regions. These methods
were proven to be effective in a single texture image. However,
they are not able to distinguish multi-labeled texture exemplars
which we address in this work. Furthermore, they are primarily
designed for texture segmentation or synthesis, so not directly
applicable to our task (texture flow estimation).

Texture synthesis has long been researched as another area
of texture analysis. Early works [11], [12] aim to synthesize
isometric textures by leveraging region-growing techniques.
They start with a small exemplar image and evolve the
output texture one pixel or patch at a time, while maintaining

coherence of the grown region with its vicinity. Recently,
several algorithms [3], [13], [14] have been devised, which
incorporate texture flow to guide an anisometrically varying
synthesis output. The geometric deviation of output texture
varies according to the amount of the artificial deformation
field. In other words, the anisotropic synthesis allows local
rotation and scaling of the synthesized texture along with the
deformation field. In these anisotropic synthesis methods, the
deformation field is typically specified by a user. While the
texture flow is a fundamental component needed for this task,
there is relatively little attention in estimating the underlying
deformation field from real or synthetic images. Even existing
flow estimation methods [2], [15]–[17] all require a user
intervention and/or handle a single textured image only.

Previous work on discovering texture deformation can be
broadly classified into two categories: local approaches based
on a texture descriptor with no consideration of their global
consistency, and global approaches using an optimization
formulation defined on high-dimensional flow labels. The
local approaches typically make use of a local attribute (e.g.,
gradient information) or a parametric model for texture rep-
resentation. Kang et al. [18] estimated the orientation field
directly from the gradient vector field. Shahar et al. [1]
proposed to incorporate curvature information, while oriented
filters were deployed to estimate a dominant orientation field
for gradient-like patterns [15]. In [16], Chang and Fisher
decomposed a deformed texture into explicit local attributes
such as orientation and scale by utilizing a steerable pyramid.
In [17], the response of the structure tensor computed at each
pixel is compared to that computed from a texture exemplar in
order to discriminate the dominant orientation inherent in the
texture. These local approaches often utilize an over-simplified
model (e.g., image gradient). With an increasing irregularity
it becomes more difficult to find a coherent flow field, and
thus these methods are only applicable to a limited subset
of textures, e.g., near-regular texture images. The method
proposed in [2] represents a texture feature as a linear array of
thresholded pixels (i.e., local binary patterns), followed by the
dimension reduction strategy through the principal component
analysis (PCA). This kind of representation was shown to be
effective in discovering the texture flow from irregular texture
images. However, similar to existing works, this method still
requires a user-provided texture exemplar with no deformation,
and it also deals with a single texture only.

To further enforce a global consistency in the flow es-
timation, a costly global optimization is often taken into
account [2], [9], [16], by minimizing an objective function
which combines the data constraint with a regularization term
enforcing smoothness on the resultant flow fields. However,
such optimization-driven methods suffer from the computa-
tional burden caused by a high-dimensional label space and/or
quantization artifacts inherent in discrete labeling tasks.

To the best of our knowledge, our method is the first ap-
proach that estimates globally consistent texture flows with no
user intervention. It thus enables the flow estimation in a multi-
textured image, which is not feasible with existing methods.
Moreover, our method directly utilizes intensity values of two
patches for computing the correlation metric, unlike existing
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texture flow estimation approaches [2], [17] that rely on more
elaborate texture descriptors. Since the texture has a stochastic
property, the intensity-based correlation measure has been
traditionally considered unfit in the texture flow estimation.
However, it was shown in the texture synthesis literature [13]
that the appearance (e.g., patch) based synthesis approach
produces a spatially coherent texture image very well, when
the deformation parameters are taken into account. Following
this observation, we will demonstrate that the local visual
similarity directly measured from a simple intensity correlation
metric captures local behaviors of the inherent flow very well.

III. PROBLEM STATEMENT AND OVERVIEW

Given a single- or a multi-texture image I that can be per-
ceptually organized into L ≥ 1 distinct regions and undergoes
smoothly varying deformation in surfaces, our objective is to
discover a dense deformation field f : I 7→ R3 defined over all
pixel coordinates p ∈ Ω through a deformable correspondence
search on an appearance space. To explore the underlying
texture regularity, existing flow estimation methods typically
define a texture deformation model with orientation θp and
scale sp only. In order to cope with a multi-texture image
in a fully automatic manner, we extend it by introducing
a texture label parameter lp ∈ {1, ..., L} indicating which
texture exemplar each pixel belongs to:

f(p) = (lp, θp, sp)T , ∀p ∈ Ω. (1)

Since orientation is periodic, the search range of orientation
is constrained to be 0 ≤ θp < 2π. The search range of
scale is preset to be in the range of 0.25 ≤ sp ≤ 2.
To mitigate quantization artifacts in the flow estimation, the
discrete parameters are very densely sampled. Here, it is
worth noting that our goal is to precisely estimate the flow
vector, not the texture label parameter. In this context, the
texture label parameter lp is used to distinguish either 1)
texture exemplars with semantically different visual structures
or 2) similar texture exemplars yet with geometric and/or
photometric variations. Conventionally, the texture exemplar
has been defined as having no distortion [2], but there is no
objective measure for defining the degree of the distortion.
Thus, the texture exemplar with no distortion is always given
by a user in existing approaches. Alternatively, our method
attempts to find all possible texture exemplars that contain a
similar perceptual structure (i.e. recognized as the same texture
by an observer) yet have a certain amount of variations. This
non-parametric sampling strategy can be a good choice to deal
with the photometric variations which are very challenging in
estimating the texture deformation field. For instance, in Fig. 2,
T2 and T3 are perceptually similar, and can be recognized
as the same texture exemplar by an observer. However, our
method assigns different labels to the two exemplars, enabling
a better representation of local attributes at each region. This
leads to a more effective deformation field estimation.

The proposed method consists of two main stages: unsu-
pervised texture exemplar extraction and dense deformation
field estimation. In the first step, L distinct texture exem-
plars T = {T1, T2, ..., TL} are automatically extracted using

histogram-based features. They are represented as a histogram
which sparsely encodes visual structure in order to reduce
matching ambiguities incurred by the geometric deviation in
the texture appearance. Based on histogram-based features,
the distance metric space is defined using the χ2 distance
[19]. The sample patches distributed in the metric space are
then clustered by using an unsupervised clustering method
such as the medoidshift algorithm [4] in order to find a set
of local modes on the feature space. The sample patches
associated with those modes are then determined as texture
exemplars T. In the second stage, a globally coherent dense
deformation field is computed based on the extracted texture
exemplars T. Please note that T is defined with a set of
patches, and histogram-based feature vectors are not used in
the inference stage any more. We cast an inverse estimation
of the deformation field as a discrete labeling problem on
the very densely quantized label space. It is efficiently solved
with the randomized search algorithm [5], [6], enabling an
efficient estimation of texture deformation without quality
degeneration, e.g., due to quantization artifacts which often
appear in the optimization-driven discrete approaches [2]. A
locally-adaptive smoothing is then applied to the intermediate
deformation field, resulting in globally coherent texture flows.

IV. UNSUPERVISED EXTRACTION OF TEXTURE
EXEMPLARS

Before explaining the estimation of texture exemplars, let us
first exploit the nature of texture synthesis. From the perspec-
tive of texture synthesis, a synthesized texture appearance is
formed through the evolution of input texture exemplars, while
maintaining a spatial coherency between stitched deformed
textures [3]. The output texture image is hence perceptually
similar to the input texture exemplars. The key idea of our
approach is drawn from this inherent similarity behind the
texture model: the texture exemplar T has the smallest distance
in terms of visual appearance among all other sample patches.
When an input image consisting of deformed textures is given,
we define a texture exemplar as a representative patch that has
a minimum distance with respect to deformation parameters
among all other sample patches obtained from the input texture
image. In this context, texture exemplars can be extracted
by computing local modes among all sample patches on a
metric space, where a valid distance measure between samples
is defined. Fig. 2 illustrates an algorithm overview of our
unsupervised texture exemplar extraction.

For ease of algorithm explanation, we first consider an input
image I with a single texture exemplar, i.e., L = 1, under the
assumption that the set of possible deformation hypotheses F
is known. Let Φ denote a set of all possible texture exemplars,
e.g., Φ = {Wp|p ∈ Ω} consisting of all patches densely
sampled from I , where Ω represents a set of 2D pixels and
Wp is a sample patch with a radius r centered at a point p.

A texture exemplar T ∈ Φ can then be estimated by
minimizing the following global coherence function:

O(T ) =
∑
p∈Ω

min
f∈F

d(T (f),Wp), T ∈ Φ, (2)
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Fig. 2. Overview of the unsupervised texture exemplar extraction algorithm. The input texture image is represented as a set of sparsely sampled features
based on a normalized 3D histogram. Texture exemplars T1, . . . , T4 are then extracted from the modes of the density estimated with a Gaussian kernel in
the feature space. The set of all sample patches that converge to the same mode defines the cluster C1, . . . , C4 of that mode.

where f corresponds to a possible deformation parameter
consisting of scale and orientation. A superscript (f) denotes
a deformation operator, such that T (f) represents a patch that
is deformed with respect to the parameters f ∈ F. d(·, ·) is a
local similarity measure between two patches, e.g., Euclidian
distance. Our global coherence function requires that the
texture exemplar T must meet visual coherency among sample
patches Wp for all p ∈ Ω. The coherence for each pixel p is
measured by hypothesizing all the possible deformations F.

One can estimate a global mode (i.e., texture exemplar T ) by
minimizing the coherence function (2) over all possible sample
patches Φ. However, such an exhaustive search is computa-
tionally expensive, since the original deformation parameters
actually exist on the continuous space, and thus the discretized
search space F is typically very huge. Also, the number of
candidate texture exemplars Φ is proportional to the image
size, thus leading to huge computational cost.

A. Histogram-based Feature Vectors

Our strategy to overcome this problem is to use a sparse
representation of the input texture, where a patch histogram
representing the joint distribution of lightness (IL) and the
opponent colors (Ia and Ib), which are expressed in the
CIELAB color space, is adopted as a feature vector. This
representation leads to a certain invariance against geometric
variations by scale and orientation. It thus allows one to
measure correlation between two patches without explicitly
considering their possible deformation hypotheses. In addition,
we compute the feature vectors only at sparsely sampled
interest points, since relevant visual cues for capturing the
deformation field are mostly concentrated around these interest
points [9].

Other applications such as image classification [20] typi-
cally require using a more sophisticated representation (e.g.,
bag-of-features [21]) to deal with a problem defined over a
general scene. In contrast, our approach takes as an input
a specific type of scene that consists of repeated texture
elements only. This inherent repeatability behind the texture
appearance suggests that texture elements (sample patches)
show a similar color distribution, even when they undergo a
certain amount of geometric variations (scale and orientation).

Therefore, our simplified representation for a texture image is
sufficient enough to extract texture exemplars.

For defining a feature vector for a patch Wp, let us denote
hWp (b) as a bin of 3D histogram:

hWp (b) =
1

|Wp|
∑

q∈Wp

δ (b,u(q)), (3)

where u(q) = (IL(q), Ia(q), Ib(q))
T . The indicator function

δ(m,n) = 1 when m = n, and 0 otherwise. We define a fea-
ture vector hWp as a normalized 3D histogram representing a
generic color distribution with appropriate quantization levels
[q1, q2, q3]. In this paper, the quantization levels for histogram
generation are set to [10, 5, 5]: they are not tuned for particular
images but chosen to capture general aspects of texture. Here,
the feature vector can be viewed as concatenated bins of the
histogram, i.e., 250-dimensional vector.

Accordingly, our global coherence function can be reformu-
lated using the histogram based similarity measure as follows:

Õ(T ) =
∑
p∈Ωs

d̃(hT , hWp), T ∈ Φs, (4)

where Ωs is a set of sparsely sampled points using interest
point detector [9]. So, the set of candidate texture exemplars
is also defined as Φs = {Wp|p ∈ Ωs}. Note that, unlike (2),
our relaxed global coherence function (4) does not need to
consider all possible deformation hypotheses f ∈ F. d̃ (·, ·)
is a metric function for measuring a similarity between two
histograms. We use the χ2 distance [19] which is given by

d̃(h1, h2) = 2

B∑
b=1

h1(b)h2(b)

h1(b) + h2(b)
, (5)

where B = 250 is the number of bins used in the histogram,
and hx(b) represents a value at bin b of the histogram hx.

B. Texture Exemplar Extraction

So far, we have presented a method for extracting a single
texture exemplar by minimizing (4), when L = 1. This
method is further extended into a generalized texture exemplar
estimation, i.e., L is unknown. We can estimate a set of
texture exemplars T = {T1, T2, ..., TL} as well as L by
computing all the local modes (including the global mode).
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Fig. 3. Examples of texture exemplar extraction via the medoidshift
clustering. Once sparsely sampled interest points form the feature space,
texture exemplars are then defined as the local modes of the underlying density
estimated with the kernel ϕ from the feature space. L = 3 explicit texture
exemplars are automatically extracted in this example. The clustered sample
patches in Cx show strong correlation to the corresponding texture exemplar
Tx.

Each mode corresponds to a local minimum and represents
a texture exemplar. In short, this minimization task can be
seen as an unsupervised mode-seeking problem on the sample
domain Φs. The set of all sample patches that converges to
the same mode is defined as the cluster of the mode. The set
of candidate exemplars Φs can be partitioned into different
coherent clusters C1, ..., CL based on histogram similarity
measures. Here, we adopt the medoidshift algorithm [4], which
can work on the non-Euclidean metric space (e.g., χ2 distance
employed in this paper), unlike the meanshift like clustering
approaches [22].

More specifically, we estimate texture exemplars that con-
verge to local minima which exist on the following density
function corresponding to (4). For all p ∈ Ωs,

Tp = arg min
V ∈Φs

∑
q∈Ωs

d̃
(
hV , hWq

)
ϕσ

(
d̃
(
hWq , hWp

))
, (6)

where ϕσ is an exponential kernel with a bandwidth param-
eter σ = 0.2 used to evaluate the underlying density, i.e.,
ϕσ(x) = exp

(
− |x|σ

)
. The patch Tp ∈ Φs represents the mode

of the patch Wp that has the minimum weighted distance to
all other patches in Φs, such that it is a minimizer of the
objective function (6). Note that, with ϕσ = 1, the function
(6) becomes exactly the same as what provides a global mode.
By evaluating (6) for all sample patches in Φs, the trajectory of
each sample patch Wp is evolved toward a local mode Tp for
some p ∈ Ωs. Here, we define the set of points representing
local modes as Ω̄s, such that Ω̄s ⊂ Ωs. Accordingly, the set
of texture exemplars is defined as T = {Wp|p ∈ Ω̄s}. It
is worth noting that the trajectories p ∈ Ω̄s are constrained
to pass through the sample points Ωs, so the modes should
belong to points in the sample set Ωs [4].

To avoid over-fragmentation of the resultant clusters, the
minimization of (6) is iteratively performed on the constrained
sample points Ω

(0)
s ,Ω

(1)
s , . . . ,Ω

(t)
s , where at each iteration t

the sample points are redefined with their previous modes:
Ω

(t)
s , Ω̄

(t−1)
s with initial values Ω

(0)
s = Ωs. Namely,

for every iteration step, input sample patches are replaced
with their modes Ω

(t)
s at the previous iteration, and then

the clustering process proceeds with new Ω
(t)
s as the sample

patches.

(a) Input texture (L = 3)

(b) Inverse texture synthesis [10]

(c) Ours

Fig. 4. Comparisons of extracted texture exemplars using inverse texture
synthesis [10] and our method. (a) The input texture shows L = 3 photometric
variations. (b) A single texture exemplar is extracted by [10] that best
summarizes a contextual sense of the given texture, while (c) three explicit
texture exemplars that cover L = 3 physical texture elements are completely
extracted by our method. As can be seen in (c), our approach allows an
automatic separation of visual cues prior to the inference of deformation field.

For ease of implementation, we can formulate (6) as a
matrix form [4]:

S(t)(i, j) =

N(t)∑
k=1

d̃(hW [j], hW [k])ϕ
(
d̃(hW [i], hW [k])

)
, (7)

where S(t) is an N (t)×N (t) symmetric matrix at the tth itera-
tion with N (t) = |Ω(t)

s | and W [i] denotes a patch located at ith

sample point in Ω
(t)
s . Each entry along the ith column of S(t)

contains the sum of weighted distance from all other sample
patches for W [i]. Once the matrix S(t) is constructed, the local
mode of iteration t for the ith sample patch W [i] is denoted
by the index i(t) with the minimum value in the ith column
of S(t), i.e., i(t) = arg minjS

(t)(i, j). This step repeats until
no further change occurs at iteration t′. The index set of final
modes is then defined as Λs = {i(t′)|1 ≤ i ≤ N (t′)}. Finally,
texture exemplars T1, . . . , TL are extracted as W [i] for all
i ∈ Λs, and the number of extracted texture exemplars is
L = |Λs|.

Fig. 3 shows the results of texture exemplars extracted
by our method. The extracted texture exemplars summarize
clustered patches well in terms of visual appearance. It is
important to note that the extracted texture exemplars have a
slightly different context from those of other approaches. For
example, the texture compaction method in [13] aims to extract
a single compact exemplar that best depicts a contextual sense
of a given texture. Hence, this method describes the image
as a synthesized result with a single texture only. When a
multi texture image as in Fig. 4(a) is given, three texture
elements are combined together as in Fig. 4(b), giving poor
flow estimation results in our case. In contrast, our method
treats the image locally by clustering input patches. Thus,
our method enables an unsupervised estimation of L and an
automatic separation of visual cues, as shown in Fig. 4(c). We
found this to be effective in the texture flow estimation, since
extracted multiple texture exemplars provide a wider range of
coverage for particular texture elements than a single one.

C. Reference Orientation Assignment

After texture exemplars are extracted, the reference ori-
entation (RO) φl is assigned to each texture exemplar Tl
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Fig. 5. Results on the automatic assignment of reference orientation (RO)
using orthogonal gradient histogram (OGH). Given the texture exemplars T1
and T2 of Fig. 3, (a) and (c) represent the computed OGH for T1 and T2,
respectively. Selected reference orientations are respectively (b) φ1 = 52◦

(or 232◦) and (d) φ2 = 91◦ (or 271◦).

(l = 1, ..., L). This procedure is needed to visualize the texture
flow. Although a relative orientation between the texture
exemplar and each patch from an input image is estimated in
the next section, our method still requires estimating the RO
to visualize an absolute orientation of the estimated texture
flow in a visually natural manner.

Fig. 5 shows the results of the ROs selected using the
orthogonal gradient histogram (OGH) proposed in this section.
The input texture exemplars T1 and T2 are extracted from the
image in Fig. 3. In case of well-structured texture exemplars
like T2, the RO is obtained automatically by taking a direction
with a maximum frequency from the OGH. Specifically, we
use a histogram of possible orientations from gradient informa-
tion, where each bin is linearly spaced by 1◦. Supposing that
a gradient vector field g(p) = (gx(p), gy(p))T of a particular
texture exemplar T is given, one can compute an orthogonal
direction θ⊥(p) of a vector perpendicular to the image gradient
g by, for example, θ⊥(p) = arctan(gy(p),−gx(p)). We add
the magnitude value m(p) = ||θ⊥(p)||2 to the corresponding
bin of θ⊥(p). When m(p) < τ , we skip the binning of θ⊥(p)
(τ = 10 in this paper). Once the histogram is computed, the
RO is set to the direction that corresponds to the maximum
magnitude (peak) in the histogram. Originally, the orientation
field is represented with 2π-periodicity, but considering the bi-
directional property of the texture flow, we represent it with
π-periodic orientation [1].

In Fig. 5(d), the RO for T2 is computed as φ2 = 91◦

which corresponds to the peak in the histogram of Fig. 5(c).
In case of the unstructured texture exemplar T1 as in Fig. 5(b),
however, no distinct orientation is observed due to homoge-
neous textures as shown in Fig. 5(a). For such cases, the RO
may be assigned manually by a user. Otherwise, for a fully
automatic estimation, we can simply assume that this exemplar
contains no meaningful texture if the standard deviation of its
normalized OGH exceeds a pre-defined threshold κ = 3, and
the pixels belonging to this texture label are also considered
invalid in the following deformation estimation. It should be
noted that the RO estimation is just for visualizing the texture
flow estimated in the following section, and thus estimating
relative orientations is still feasible without the RO.

V. NON-PARAMETRIC DEFORMATION FIELD ESTIMATION

We now focus on the non-parametric estimation of the
deformation field, and expose the strategy for casting this
inverse problem as a globally consistent deformable matching

s

θ

s

θ

Texture image
Exemplars

Fig. 6. Non-parametric deformation model for estimating the underlying
deformation field. The local visual similarity between texture exemplars and
target patches in the image is directly measured from the appearance space,
where rotation and scale transformations with varying parameters are taken
into account to find best matches.

using the randomized search concept. Once texture exemplars
are extracted, we infer the underlying deformation field f by
matching texture exemplars with target patches for all pixels
in the given texture image.

A. Non-parametric Deformation Model

Our inference algorithm based on a non-parametric defor-
mation model aims to best match a texture exemplar Tl with a
deformed target patch, centered at a pixel p from I , by varying
the amount of rotation and scale, as shown in Fig. 6. Let EI
and EG denote respectively a distance function for measuring
intensity and gradient similarity of two patches as:

EI(p, l, θ, s) =
∑

q∈N (Tl)

∥∥∥Tl(q)− I(φ(θ,s)
p (q))

∥∥∥2

, (8)

EG(p, l, θ, s) =
∑

q∈N (Tl)

∥∥∥∇Tl(q)−∇I(φ(θ,s)
p (q))

∥∥∥2

, (9)

where ∇ is a gradient operator and N (Tl) is a set of relative
pixel locations with setting the center of the texture exemplar
Tl to an origin. φ(θ,s)

p (·) denotes a warping operator with
respect to rotation θ and scale s, which yields

φ(θ,s)
p (q) = p + s

[
cos θ − sin θ
sin θ cos θ

]
q. (10)

Based on these intensity-based distance measures, the visual
similarity of two patches is defined as follows:

V(p, l, θ, s) = EI(p, l, θ, s) + EG(p, l, θ, s). (11)

The deformation field f(p) is then estimated by minimizing
the following objective function:

f(p) = arg min
(l,θ,s)∈F

V(p, l, θ, s), (12)

where F is the set of all possible parameters with respect
to label l, rotation θ and scale s. Indeed, this minimization
problem can be simply solved by exhaustively searching over
the discretized label space of F. However, such an exhaustive
search is computationally expensive, since the number of
possible deformation parameters is typically very huge.
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(a) Input texture (b) 1
3

iteration (c) 1 iteration (d) 3 iterations (e) Field smoothing (f) Orientation field (g) Scale field

Fig. 7. Overview of the randomized inference. Given the input texture (a) with the extracted L = 1 texture exemplar (overlaid over (a)), our randomized
inference algorithm iteratively updates the deformation field (b)-(d) from random initialization, followed by local field smoothing (e). It produces globally
consistent orientation (f) and scale (g) fields. Note that orientation fields are encoded in colors for visualization.

B. Randomized Inference

To handle the computational complexity introduced by a
large number of candidate labels, we deploy the randomized
search algorithm [5], which is proven to be highly efficient
in the high-dimensional discrete label search. Fig. 7 presents
the overview of our randomized inference algorithm. Instead
of an exhaustive search over all possible parameters, we
smartly traverse parts of it using a randomized cooperative hill
climbing strategy: propagation and random search. A basic
motivation of the randomized search algorithm [5] is rather
simple: if the deformation field is initialized by random
labels, then correct labels are likely to exist among the set
of these random labels. A good guess of some pixels guides
the rest of pixels so that they also have a good guess by
propagating its current labels to the vicinity. This randomized
inference process iteratively updates the deformation field
f until convergence. For each iteration, good guesses are
examined in scan order by alternating between propagation
and random search. It should be noted that our algorithm
randomly selects arbitrary (floating) values for the orientation
and scale within the given search range. Therefore, although
discrete, our method does not suffer from severe quantization
artifacts while maintaining its runtime efficiency.
Propagation. In the first step, a propagation proceeds in
order to improve an intermediate deformation label f(p) by
considering current best label pairs Ψp of its neighboring
pixels including itself. For instance, Ψp = {f(p), f(p −
(1, 0)), f(p−(0, 1))} on odd-numbered iteration. The hypoth-
esis test is then performed as follows:

f(p)← arg min
(l,θ,s)∈Ψp

V(p, l, θ, s), (13)

c(p)← V(p, f(p))

where V is the visual similarity distance defined in (11) and←
is an assignment operator. Intuitively, the current deformation
label f(p) is replaced with the label that provides the smallest
matching cost among candidate labels Ψp. Also, the smallest
matching cost is stored in the distance map c(p), which will
be used to guide the field smoothing in the next section. This
process helps improve the convergence, since neighboring pix-
els tend to have similar orientation and scale in natural images.
On even-numbered iteration, the propagation is performed in
reverse scan order: Ψp = {f(p), f(p+(1, 0)), f(p+(0, 1))}.
Random Search. In the second step, a random search pro-
ceeds to prevent the estimated parameters from being trapped

in local minima. We update the current optimal label f(p) by
a sequence of random trials which are constructed by sampling
around f(p) at an exponentially decreasing distance as

(lip, θ
i
p, s

i
p)T = (lp, θp, sp)T +αiRiZ, i = 0, 1, 2, . . . , (14)

where Ri is a 3×3 diagonal matrix whose diagonal entries are
uniform random numbers in [−1, 1], αi is the ith exponential
of a ratio α = 0.5, and Z = (L, π, 2.0)T is the maximum
search range. The index i increases until the orientation
search radius as the second entry in αiZ is below 1. Using
this sequence, the current label f(p) is refined if the target
random pair has a smaller cost. Note that, in terms of energy
minimization, our randomized inference method shares similar
principles with the recent work of [23], called PatchMatch
Belief Propagation (PMBP). Interestingly, the work of [23]
showed that the random sampling and propagation steps of
PatchMatch [5], [6] are related to steps in a special form of
belief propagation.

Fig. 7 shows the intermediate results of the orientation
field during iterations. Starting from random orientations of
Fig. 7(b), the orientation field is progressively evolved during
iterations. As a result, the resultant orientation field is locally
aligned with the visual structure of the input texture image as
in Fig. 7(d). However, the inference mechanism is inherently
local, thus often missing a spatial coherency in the estimation.
Instead of using a costly global optimization, we resolve this
problem by implicitly imposing the smoothness prior on the
deformation field via a local filtering approach, which will be
detailed in the following section.

C. Field Smoothing

After the deformation parameters are inferred through the
randomized search, the nonlinear vector field smoothing is
performed with the guidance of the distance map c(p) as a
matching confidence in order to enforce global consistency.
We extend the work of [18] by introducing the scale field
as well as the orientation field into the smoothing process as
a two-tuple flow vector f̄ . We also introduce the normalized
matching cost c̄(p), computed by the randomized inference, as
the guide signal for adaptive smoothing, making the smoothing
more robust against matching outliers. Intuitively, dominant
flow vectors having smaller matching costs are preserved,
while weak flow vectors having larger costs are directed to
follow neighboring dominant ones. It should be noted that
the vector field smoothing is performed on the scale and
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(a) Distance map c̄ (b) Initial scale field (c) Refined scale field

Fig. 8. Results on scale smoothing to Fig. 11(a). (a) the normalized distance
map c̄, (b) initial scale field obtained by the randomized inference, and (c)
the refined scale field by our field smoothing.

orientation fields only. It is because the texture label field
is just used as intermediate parameters to deal with multi
texture images having a certain amount of geometric and/or
photometric variations, not to precisely segment perceptually
similar regions. The field smoothing is defined as follows:

f̄m+1(p) = K−1(p)
∑

q∈Nf (p)

W(p,q)f̄m(q), m = 1, ..., η,

(15)
where f̄m is an intermediate result at the mth iteration, and
f̄1 = (θp, sp)T represents the scale and orientation estimated
through the randomized inference. For further enhancing a
global coherency of the intermediate flow field, the field
smoothing is iteratively applied η times. K−1(p) is a diagonal
matrix for a normalization and Nf (p) denotes the neighbor-
hood of p. W is a 2× 2 diagonal weighting matrix, which is
defined as:

W(p,q) =

[
wr(p,q)wd(p,q) 0

0 wr(p,q)

]
, (16)

where wr and wd represent the range kernel and the direction
kernel, respectively. The range kernel wr encourages dominant
orientations and scales to be preserved during smoothing,
which is defined as follows:

wr(p,q) =
1

2
(1 + tanh (c̄(p)− c̄(q))), (17)

where c̄(p) represents a normalized matching distance across
an entire image. tanh(·) is a monotonically increasing function
with respect to the distance difference c̄(p) − c̄(q), and
thus bigger weights are assigned to the neighboring pixels
q whose matching distances are lower than that of the center
p. Accordingly, the pixels having lower matching distances
contribute more in the filtering of the flow field. Note that the
guide signal for calculating adaptive weight wr is the matching
distance, while the work of [18] uses the gradient magnitude.
The direction kernel wd helps tighter alignment of neighboring
orientations, which is defined as:

wd(p,q) = |cos(θp − θq)|. (18)

The direction weight increases as the difference of two orien-
tations approaches to 0 or π. Note that wd is only applicable
to the orientation field, since the scale field is not directional.
In Fig. 7(e), our smoothing improves global coherency of the
orientation field, resulting in a good continuation of texture
flows. In addition, as shown in Fig. 8, our smoothing helps

remove outliers in the scale estimation as in Fig. 8(b), which
are caused by severe variations on the texture appearance.

VI. EXPERIMENTAL RESULTS

In this section, we validate the performance of the proposed
method on various texture images including both synthetic
and natural photographs. Test images were selected which
undergo sufficient deformation such as rotation and scale
transformations, and also show a clear distinction enough
to be interpreted by the HVS. In addition, they contain at
least one coherent region (L ≥ 1) in order to evaluate
the validity of our exemplar extraction method. To verify
the applicable extent of the proposed method, we applied
it to various types of texture images, which involve regular
textures having a lattice structure, near regular textures like
line patterns, irregular textures with apparent orientation, and
stochastic textures with no obvious orientation. The proposed
method was implemented in the MATLAB and was simulated
on a PC with Quad-core CPU 2.93GHz. In all experiments,
the window radius r and the quantization levels [q1, q2, q3]
in computing histogram-based features (Sec. IV-A) are set to
r = 15 (unless otherwise stated) and [10, 5, 5], respectively.
The kernel bandwidth in the medoidshift clustering (Sec. IV-
B) is set to σ = 0.2. The maximum iteration of the randomized
inference process (Sec. V-B) is set to 3. For each test image,
the window size Nf and the maximum iteration η of the
field smoothing (Sec. V-C) are empirically set in the range of
[15, 25] and [5, 15] according to image resolution, respectively.
For flow visualization, the line integral convolution (LIC) [24]
is used.

Since our method is inherently local, we mainly compare the
proposed method with state-of-the-art local methods including
the edge tangent filter [18] (ETF) and the statistical invariance
(SI) method [17]. In addition, although the objective is slightly
different, the deformed lattice detection (DLD) algorithm [9],
which aims to discover a lattice structure, is also compared
for the evaluation of regular-type textures. It is important to
notify that all these flow estimation approaches (except DLD)
require a user interaction, while our method is fully automatic.

A. Evaluation on Single Texture Images (L = 1)

Fig. 9 shows the estimated deformation fields on both
natural and synthetic textures, when the input image has a
single texture element. All texture exemplars are automatically
extracted by our method, and thus no human assistance is
involved in the estimation. The resultant deformation fields
are visually consistent with the human perception in terms
of scale and orientation. As shown in the top row of Fig. 9,
the proposed method can capture the inherent flows of the
circular pattern very well. It is also observed that the resulting
scale field is represented well as a convex shape that bulges
inward. For the input image with a regular-type texture as
in the ‘Roof tiles’ image, our method still produces globally
consistent flows.

Fig. 10 presents subjective evaluation results on a synthetic
image. The results of Paris et al. (Fig. 10(b)) and ETF (Fig.
10(c)) methods are poor since they exploit local gradient
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Fig. 9. Experimental results on natural and synthetic images: (from left to right) input texture images (L = 1), estimated orientation and scale fields. The
extracted texture exemplars are overlaid over the input image.

(a) Input texture (b) Paris et al. (c) ETF (d) ITS (e) SI (f) Ours (g) Ours-GT

Fig. 10. Comparisons of the proposed method with state-of-the-art local methods. (a) The input texture shows a near regular geometry. (b)-(f) Estimated
orientation fields obtained by (b) Paris et al. [15], (c) ETF [18], (d) inverse texture synthesis (ITS) [10], (e) SI [17], and (f) the proposed method. Texture
exemplars are overlaid over the corresponding flow fields. Note that the input exemplar provided to (e) SI method and (g) the proposed method is the ground
truth (GT) with no deformation, while the one provided to (f) ours is automatically extracted from (a) the input image using our automatic exemplar extractor.

(a) ETF (b) SI (c) Ours-GT (d) r = 15 (e) r = 25 (f) r = 35 (g) r = 45 (h) GT

Fig. 11. Comparisons of the estimated scale and orientation fields with ground truth (GT) data. (a) Input texture and the estimated orientation field by ETF
[18]. (b),(c) Estimated scale and orientation fields by (b) SI method [17] and (c) the proposed method using the ground truth exemplar (red). (d)-(g) Estimated
scale and orientation fields by the proposed method using automatically extracted exemplars (green) with (d) r = 15, (e) r = 25, (f) r = 35, and (g) r = 45.
(h) The ground truth scale and orientation fields. Note that the scale fields are normalized.

information only, and thus the deformable structure of the
texture is not taken into account. In addition, although the
ETF method [18] employs vector smoothing similar to ours,
it fails to capture a desired flow field due to inaccurate local
estimates. The inverse texture synthesis (ITS) method in Fig.
10(d) requires a cumbersome initialization using a manual
specification of sparse texture flows from a user. Our method
shows comparable performance to the SI method of Fig. 10(e).
The ground truth exemplar overlaid on Fig. 10(e) should be
provided manually in the SI method, since it is designed to

use either a carefully selected or a ground truth exemplar.
In contrast, our method uses the automatically extracted ex-
emplar as shown in Fig. 10(f). Since the extracted exemplar
is sampled directly from the input image, it still contains a
certain deformation compared to the ground truth exemplar
that are not distorted. Nevertheless, the proposed method
outperforms other methods or at least shows a comparable
quality, indicating that our texture exemplar defined as a
local mode explains the local behavior of the underlying flow
field well. When the proposed method uses the ground truth
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(a) Near regular texture (b) T (c) Texture label (d) Ours (e) SI-User (f) SI-Ours

(g) Irregular texture (h) T (i) Texture label (j) Ours (k) SI-User (l) SI-Ours

(m) Irregular texture (n) T (o) Texture label (p) Ours (q) SI-User (r) SI-Ours

Fig. 12. Results of the proposed method with the SI method [17] in estimating L = 2 multi texture images. (from left to right column) Input images,
extracted texture exemplars, estimated texture label maps, results of the proposed method, results of the SI method using a user-provided texture exemplar,
and results of the SI method using extracted texture exemplars by our method.

exemplar instead of the automatically extracted one, the best
performance is achieved as shown in Fig. 10(g). Here, different
orientations of two texture exemplars in Figs. 10(e) and (f)
do not matter in the visualization of the flow field, since the
absolute orientation is displayed using the RO of each texture
exemplar, as explained in Section IV-C.

Fig. 11 shows additional flow estimation results. The ground
truth exemplar (red) is used for the SI method as well. For
quantitative evaluation, we measure the root mean square
(RMS) error on the estimated orientation and scale fields
against the ground truth data which is generated by the
anisotropic texture synthesis algorithm [13]. Note that both
estimated and ground truth scale fields are normalized prior
to evaluation. Table I presents the results of the quantitative
evaluation. The RMS errors of orientation and scale are
respectively 5.71◦ when r = 25 and 0.13 when r = 45,
while other methods exceed about 30◦ and 0.27, respectively.
The test image as in the top row of Fig. 11(a) has complex
structures, and thus such gradient-based local methods fail to
produce correct flows.

We also evaluated the performance of our method by
varying the window radius r = 15, 25, 35, 45 when texture
exemplars are extracted. As shown in Figs. 11(d)-(g), the
scale in the extracted texture exemplars becomes broader as r
increases. This, however, does not affect the quality on the final
orientation field. The extracted texture exemplar is the most
visually similar patch from well-structured regions (interest
points), making it discriminative when an orientation field is
estimated on appearance space. In case of scale estimation, it
is observed that using a large scale exemplar produces slightly
better results.

(a) Regular texture (b) Ours (T1, T2) (c) DLD

(d) SI (T1) (e) SI (T2) (f) SI (T1, T2)

Fig. 13. Performance comparison on a regular-type texture. (a) The input
texture shows a lattice structure. (b) The estimated orientation fields by the
proposed method. The extracted texture exemplars T1 (green) and T2 (yellow)
are overlaid over (b). (c) The detected lattice structure by DLD [9]. (d)-(f)
The estimated orientation fields obtained by SI method [17] using (d) T1, (e)
T2, and {T1, T2}.

B. Evaluation on Multi Texture Images (L ≥ 2)

Fig. 12 shows the results obtained by our method and the
state-of-the-art exemplar-based method [17], when the input
image consists of multiple textures. Test images include the
near regular texture as in Fig. 12(a), the irregular texture
with apparent orientation as in Fig. 12(f), and the stochastic
texture with no obvious orientation as in Fig. 12(k). In all
test images, the number of extracted texture exemplars is
L = 2. Different textural elements are combined together in
the image, leading to the complex structure. In existing flow
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TABLE I
QUANTITATIVE EVALUATION OF FIG. 11 BASED ON RMS ERROR METRIC

Method Orientation Error Scale Error
ETF [18] 31.1647◦ N.A

SI with GT [17] 33.4883◦ 0.2713
Ours r = 15 8.1788◦ 0.1977
Ours r = 25 5.7080◦ 0.1633
Ours r = 35 7.0586◦ 0.2409
Ours r = 45 6.8479◦ 0.1252
Ours with GT 7.5818◦ 0.1722
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Fig. 14. Cost profiles of our non-parametric sampling process. Given the
input image of Fig. 13(a), the sum of matching costs is measured at each
iteration of the randomized inference. Using two texture exemplars T1 (green)
and T2 (yellow) as in Fig. 13(b) gives the lowest matching cost, enabling
more accurate and robust matching performance in the existence of texture
variations.

estimation approaches, it is typically assumed that a single
exemplar contains discriminative visual cues that covers an
entire image. This assumption, however, is unfit to the cases
of multi-texture images. Thus, the input image should be
manually segmented (e.g., [2], [17]), and a suitable texture
exemplar should be provided for each region. Contrarily, our
method is directly applicable to these images by automatically
estimating deformation fields of each coherent region using
corresponding exemplars which represent texture attributes for
each region very well. This unsupervised sampling strategy
is very effective in that distinct visual cues increase the
discriminative power of matching in the inference. As shown
in Fig. 12(f), while local regions are highly irregular under
substantial contrast changes, our method can cope with such
challenging textures as two texture exemplars effectively cover
the distinct texture attributes of the image. Moreover, even
when the texture is stochastic with no obvious orientation as
in Fig. 12(k), our method can produce a globally coherent flow
field as in Fig. 12(n). Our per-pixel labeling framework also
allows one to estimate texture label parameters as shown in
Figs. 12(c), (h), and (m). In Fig. 12(a), the ‘sky’ regions have
no obvious orientation, and thus they are invalid in estimating
the orientation field. Such regions are detected in the texture
label field (yellow in Fig. 12(c)), where their validity is
automatically determined by the RO assignment process. As
shown in Fig. 12(d), orientations for the ‘sky’ regions are
not estimated, while the SI method has no ability to validate
correct regions. Note that the orientation field estimated by
the SI method using a single texture exemplar were shown
together in Figs. 12(e), (j), and (o) to show how this method
works in multi-texture images.

For fair comparison, we also report the results of the
SI method [17] with multiple texture exemplars extracted

(a) (b) (c) (d) (e) (f)

Fig. 15. Results of the proposed method under different illumination condi-
tions. When an input texture under (a) uniform or (d) varying illumination is
given, a set of relevant texture exemplars is extracted as (b) L = 1 single patch
or (e) L = 2 multiple patches. Using (e) L = 2 exemplars, (f) the desired
orientation field is successfully estimated from (d) the image under shadows,
which is comparable to (c) the one estimated from (a) a clean texture.

(a) (b) (c) (d)

Fig. 16. Results of the proposed method with the input image containing
blurred regions. (a) Input image containing blur regions, (b),(c) the extracted
L = 2 texture exemplars, and (d) the estimated orientation field.

by the proposed method. We modified the SI method to
allow using the same number of exemplars as distinct texture
regions detected by our deformation field estimation method.
Specifically, the SI method was performed separately on each
labeled region, and the resulting flow fields were re-combined
to produce the final flow field for the entire image. As shown
in Figs. 12(f),(l), and (r), the SI method is not able to produce
a coherent flow field even with the multiple texture exemplars
that cover each of the pre-labeled regions.

Fig. 13 shows the results for regular-type textures, where the
flow estimation is difficult due to an orientation ambiguity. As
a result, the orientation field of the SI method [17], which
heavily relies on image gradients, is misleaded by ambiguous
local structures. Indeed, the flow estimation in regular-type
textures can be seen as a special case of a lattice detection
[9]. However, if the image undergoes significant orientation
and scale changes, they also fail to produce a convincing
result as in Fig. 13(d). In contrast, our method captures the
inherent lattice-type regularity well. The advantage of our
unsupervised sampling strategy can also be explained from
energy minimization perspective. Fig. 14 presents cost profiles
in estimating the deformation field of Fig. 13(a) using various
combinations of input texture exemplars, i.e. T = {T1}, {T2},
or {T1, T2}. Using L = 2 texture exemplars achieves a faster
convergence than other single texture exemplar usages. In
addition, it gives the lowest matching cost, indicating more
accurate and robust matching performance in the existence of
texture variations.

Another advantage of our method is a robustness against
illumination variations by virtue of the unsupervised sampling
strategy. In general, the inference is heavily affected by
illumination and exposure changes, in particular by shadows.
Existing approaches usually require a clean texture that has
uniform illumination [2] or performing an illumination de-
composition as a pre-processing [17]. Instead, we deal with
this challenge by extracting texture exemplars that can cover
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particular texture elements of those problematic regions under
shadows. Fig. 15 shows a texture image with illumination
changes. While a single texture exemplar as in Fig. 15(b) is
extracted from the input image under uniform illumination,
two exemplars covering the parts under different illumination
as in Fig. 15(e) are extracted from Fig. 15(d). Using these
appropriate exemplars, the desired orientation field is success-
fully estimated under shadows as shown in Fig. 15(f). When
the image contains blurred regions as shown in Fig. 16, our
method is able to produce a desired flow field as well.

C. Trade-off Analysis with Existing Approaches

We analyze the computational efficiency of our method.
First, we compare the runtime of our deformation field esti-
mation process with that of existing approaches, since texture
exemplars are provided by a user in the existing approaches.
Given an input texture of size 256× 256 and an exemplar of
size 64× 64, the running times of deformation estimation are
respectively around 4 seconds (ETF) and 10 seconds (SI) on
average, while our method takes 79 seconds (75 seconds for
randomized inference and 4 seconds for vector field smooth-
ing). For a complex input texture as in Fig. 11(a), these two
local approaches fail to produce a coherent flow field. These
local methods directly calculate the deformation field with a
over-simplified model (e.g., intensity gradient), and thus they
run faster than ours but cannot discriminate correct orientations
in the presence of complex structure. Moreover, the ETF
[18] does not consider the scale field. In contrast, though
inherently local, our method formulates the deformation field
estimation as the per-pixel labeling framework based on a
non-parametric deformation model. This labeling algorithm
shares a similar spirit with several global optimization-driven
approaches, but our randomized search strategy along with
the vector field smoothing enables a much faster inference,
with a comparable estimation quality to global approaches. For
instance, the global approaches typically take about 10 ∼ 20
minutes [2]. In addition, our inference algorithm requires only
a little extra memory for storing a distance map, unlike existing
optimization-driven approaches [2], [9] that typically require
a huge memory usage to handle the high-dimensional label
space.

D. Applications

Estimated deformation fields are directly applicable in the
tasks of texture manipulation such as anisotropic texture syn-
thesis [13] and re-texturing [17]. In this section, we introduce
two image processing applications based on our deformation
fields: flow based image retrieval and unsupervised texture
segmentation.

1) Flow-based Image Retrieval: Inspired by the HOG de-
scriptor [25] which shows an excellent performance on detect-
ing objects, we attempt to find the most similar image, where
a visual similarity is measured in a slightly different manner
from that of existing descriptors. We define the similarity with
an inherent regularity in terms of orientation and scale, so that
an image, which undergoes a similar deformation to that of a
query image, is retrieved among a set of test images.

(a) Query (b) Ours (c) HOG (d) GIST

Fig. 17. Flow-based image retrieval. Best matching results obtained by our
method, HOG, and GIST are presented in (b), (c), and (d), respectively. The
correct retrieval results were marked with a red border.

The inherent regularity of an image is characterized by the
distribution of local orientation and scale. For this represen-
tation, the image is divided into 4-by-4 regions, called cells,
and each cell accumulates a local 1D histogram of orientations
over the pixels inside the cell. Each pixel within the cell gives a
weighted vote to its corresponding bin of the local histogram.
The amount of contribution for voting is determined by the
corresponding scale value sp(p ∈ Ω). The feature vector is
then formed with concatenated 16 local histograms. Euclidean
distance is measured between feature vectors to retrieve the
most similar image. Note that the rationale behind using the
scale as a weighting factor in the final feature representation
is that this helps capturing of informative orientations. In our
experiment, local flows having small scale have very little
contributions in retrieving desired image matches. Thus, using
larger scale parameters is more effective to represent the local
shape of an inherent flow structure. This is similar to the one
used in the HOG representation [25]. For example, the HOG
determines the presence/absence of informative edges by using
the magnitude of gradient.

We simply test the proposed retrieval scheme using 20
manually selected test images. A query image is chosen from
the test set, and the most similar image is then retrieved among
19 images. The retrieval results are shown in Fig. 17 with a
comparison to the existing approaches using the HOG [25] and
the GIST [26]. For subjective evaluation, we experimentally
extracted the most visually-similar results, which were most
frequently selected by twelve users. In ‘Pebble’ image contain-
ing a simple circular deformation field, the HOG works very
well, since such deformation fields are estimated relatively
well by using image gradients only. But, when it comes to
a query image with more complicated textures, this simple
HOG-based approach produces an inaccurate result, e.g., for
‘Brick’ image. The GIST based approach also fails to retrieve
visually similar images, since it was originally developed
for representing the general aspect of spatial properties in
the image such as the intensity distribution. In contrast, our
approach always provides the images with visually similar
flows, regardless of the degree of texture complexity.

2) Unsupervised Texture Segmentation: The estimated tex-
ture label field lp(p ∈ Ω) can be used for a better initialization
in the unsupervised segmentation algorithm such as [27]. Typ-
ical methodologies used for unsupervised segmentation rely
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(a) Donoser et al. [27] (b) Ours

Fig. 18. Comparisons of the results on the unsupervised texture segmentation
using [27]. (a) The results obtained by the original method in [27] and (b)
the results of [27] with the initialization using the estimated label field.

on a representative color model for discriminating dominant
regions, and thus they often show unsatisfactory results in
grouping highly textured regions, as shown in Fig. 18(a). To
be specific, the method in [27] devises the sub-segmentation
integration approach where each of sub-segmentation phases
automatically computes the Gaussian Mixture model (GMM)
representing the color distribution of each region-of-interest
(ROI) and each pixel in the image. However, the estimation
of ROIs relies only on color distributions. Thus, the original
method [27] often fails to estimate accurate segmentation
results, when there are complex texture boundaries. We resolve
this limitation by deploying the estimated texture label field.
The ROIs are initialized by the estimated texture label field,
where only reliable texture labels l̃p are assigned in the
initialization. We define a reliable texture label l̃p whose
matching cost c(p) is lower than the mean matching cost
across the entire image. This enables more coherent estimation
of GMMs. Fig. 18(b) shows the segmentation results that are
significantly improved by our initialization strategy. Note that
our deformation model is based on the visual similarity, and
thus the texture label parameter encodes both color and texture
distributions.

VII. DISCUSSIONS AND CONCLUSIONS

This paper has addressed the inverse estimation of the un-
derlying texture deformation field based on the non-parametric
visual correspondence mechanism. The unsupervised sampling
strategy in extracting texture exemplars allows one to estimate
deformation fields of multi texture images in a fully automatic
manner. It is also beneficial to deal with various imaging con-
ditions like non-uniform illumination. The efficient random-
ized search enables the direct application of the non-parametric
deformable texture model to a high-dimensional search space,
and the locally-adaptive vector field smoothing provides an
excellent alternative for costly optimization based approaches.
More importantly, our method is the first automated approach
that is capable of estimating the texture flow field in a multi-
texture image.

There are some limitations in our approach, though. Our
method is not able to produce a convincing result when the
input texture undergoes severe affine deformations, e.g. shears.
Like other exemplar-based methods, our deformation model
is established on the typical rotation and scale deformation
scenario. Hence, the matching quality might decrease in such
severely deformed regions. However, the proposed method can
be naturally extended to incorporate the affine deformation
model, since the randomized inference is very effective in
yielding a solution in the high-dimensional search space [28].
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