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Abstract— Edge-preserving smoothing (EPS) can be formu-
lated as minimizing an objective function that consists of data and
regularization terms. At the price of high-computational cost, this
global EPS approach is more robust and versatile than a local
one that typically has a form of weighted averaging. In this
paper, we introduce an efficient decomposition-based method
for global EPS that minimizes the objective function of L2
data and (possibly non-smooth and non-convex) regularization
terms in linear time. Different from previous decomposition-
based methods, which require solving a large linear system,
our approach solves an equivalent constrained optimization
problem, resulting in a sequence of 1-D sub-problems. This
enables applying fast linear time solver for weighted-least squares
and -L1 smoothing problems. An alternating direction method of
multipliers algorithm is adopted to guarantee fast convergence.
Our method is fully parallelizable, and its runtime is even
comparable to the state-of-the-art local EPS approaches. We also
propose a family of fast majorization–minimization algorithms
that minimize an objective with non-convex regularization terms.
Experimental results demonstrate the effectiveness and flexibility
of our approach in a range of image processing and computa-
tional photography applications.

Index Terms— Edge-preserving image smoothing, joint image
filtering, weighted-least squares, alternating minimization,
majorization-minimization algorithm.

I. INTRODUCTION

EDGE-preserving smoothing has attracted a strong interest
in the fields of image processing and computational

photography. Predominantly, it appears in a manipulation task
that decomposes an image into a piecewise smooth layer and
a detail layer. These layered signals are then recombined
to meet various application goals, e.g., detail enhancement,
HDR tone mapping, and contrast manipulation [1]. Recent
works on joint smoothing provide a new paradigm, enabling
various applications such as dense correspondence [2], joint
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upsampling [3], and texture removal [4]. The problems of
segmentation [5], visual saliency [6], alpha matting [7], and
haze removal [8] may also be interpreted as joint smoothing
tasks. The basic idea of joint smoothing is to provide structural
guidance indicating how the smoothing should be performed,
assuming structural correlation between different kinds of
feature maps, e.g., depth/color and flash/no-flash images.

A significant amount of work has been developed for EPS.
We roughly classify existing methods into two groups: local
filtering-based methods1 and global optimization-based meth-
ods. The first group is highly related to the local statistics of
an input image [10]. The weighted average filter computes an
output using a mean value of the local distribution that is typi-
cally estimated by the Gaussian kernel. The early work in this
class includes the bilateral filter [12], independently proposed
in [13] and its extension to joint smoothing [14]. Similarly, the
weighted median filter outputs a filtering result which reaches
half of the local cumulative distribution [2], and the weighted
mode filter [11] aims to find a global mode of the local
distribution. Several techniques have been proposed either to
accelerate filtering-based methods [15], [16], or to introduce
fast alternatives [17], [18] of performing local EPS. These
methods are efficient and often show real-time applications.
However, they are less appropriate in preserving image details
at arbitrary scale, and are not directly applicable to advanced
image editing tasks [1]. In this context, global optimization-
based methods are advocated in some applications. They find
an optimal solution of an objective function that consists
of a data fidelity term and a regularization term. Thanks to
such global formulation, the optimization-based methods show
the state-of-the-art performance compared with local EPS
approaches. Such an outperformance is, however, achievable
only with the high computational cost, mainly arising from
solving the global objective function. The optimization-based
methods are still an order of magnitude slower than local ones,
even with recent acceleration techniques [19]–[21]. Recent
progress in hardware is expected to accelerate the global EPS,
but it becomes non-trivial and does not scale well when an
image resolution increases.

In this paper, we formulate a global EPS (e.g., based
on weighted-least squares or weighted-L1 smoothing) as
an equivalent constrained optimization problem, which
is solved by an alternating minimization method [23].

1Actually, the filtering-based methods can be formulated as a local optimiza-
tion problem [9]. We, however, will keep the term “filtering” by referring to
literatures.
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The computational efficiency is achieved by a kind of
decomposition techniques. However, unlike the previous meth-
ods [20], [21], [39], our formulation decomposes the original
optimization problem into a sequence of 1D sub-problems.
This enables using a highly efficient algorithm in both
weighted-least squares (WLS) and -L1 (WL1) smoothing,
leading to a time complexity linear to an image size. Another
appealing aspect is that our method converges within only
few iterations. We found that 5 iterations are typically enough
to get satisfactory results both for the WLS and the WL1
smoothing. We will verify this statement through an extensive
experimental analysis. Fast majorization-minimization (MM)
algorithms are also introduced to optimize an objective func-
tion using a non-convex regularization term. The main contri-
butions of this work are summarized as follows:

• We propose a new domain decomposition technique that
formulates a global EPS as an equivalent constrained
optimization problem. The proposed method is much
faster than previous decomposition-based methods.

• We introduce fast MM algorithms using a non-convex
regularization term.

• A comprehensive experimental analysis is presented to
demonstrate the performance of the proposed method.

The remainder of this paper is organized as follows.
Section II describes related works for EPS. Section III pro-
vides some background and the problem statement. We present
the proposed method in Section IV. An extensive experimental
comparison is then provided in Section V. In Section VI,
we apply our method to a few image processing and com-
putational photography applications. Finally, Section VII con-
cludes this paper.

II. RELATED WORK

In this section, we review EPS techniques. Weighted-
average filters, such as the bilateral [12] and SUSAN [13]
filters, are the most intuitive ones among local EPS methods.
The input image is implicitly regularized by estimating the
mean distribution within a local window [10]. These have
been widely used in image abstraction [28], detail enhance-
ment [29], and noise reduction [30]. The local distribution
(or histogram) can be modified to jointly reflect the statistics
of both the input and guidance images, which contributes to
new applications [14]. However, the brute-force implemen-
tation of weighted-averaging process generally needs a high
computational load. Numerous methods have been proposed
for accelerating the bilateral filter with quantization [15] or
coarsening [31]. The guided filter [17], domain transform
filter [18], and adaptive manifolds filter [32] are popular and
efficient alternatives. These methods can imitate a similar
smoothing effect to or produce even better smoothing quality
than the bilateral filter [12], while keeping a linear-time com-
plexity with the image size. Recently, many researchers have
attempted to accelerate weighted-median and -mode filters.
Ma et al. built 3D histogram by repeatedly applying weighted-
average filters depending on the number of bins, and then
found a median value for each pixel on the histogram [2].
An efficient histogram representation, called median tracking,
with a special data structure was proposed in [33] for fast

weighted median filtering. The local EPS methods are simple
and easy to implement, but have some drawbacks due to their
local nature [1]. They do not maintain the global consistency
of the smoothing result.

On the other hand, the optimization-based methods aim at
smoothing insignificant details while preserving edges by opti-
mizing a global objective function. Farbman et al. proposed an
edge-preserving operator based on the WLS regularization [1]
for computational photography applications. The smoothing
output is obtained by solving a large linear system, where a
Laplacian matrix is defined by the given guidance image. Sim-
ilar methods have been proposed for image colorization [34],
matting [7], segmentation [3], and edit propagation [35]. Other
popular global EPS approaches employ L1 norm. Wang et al.
used an L1-regularized objective function, and derive an
efficient algorithm based on half-quadratic minimization [20].
This method is further extended in [36] with superpixels
to enforce group sparsity. Some recent methods used non-
convex regularization terms, which requires a different solver.
Xu et al. formulated a texture extraction problem using a
relative L1 (total variation) regularization, and adopted a
fixed-point iteration to solve the corresponding optimization
problem [4]. In [37] and [38], Welsch’s norm was employed
to handle structural differences between guidance and input
images in the joint smoothing tasks. Xu et al. [39] presented
a method for L0 gradient minimization, favoring piecewise
constant solutions. They achieved a good approximation of the
L0 norm by iteratively applying a hard thresholding operator.

There were many attempts to accelerating local EPS method
for weighted-average, -median, and -mode filters, but less
effort has been made for global EPS approaches. Precon-
ditioning techniques have been used to accelerate the WLS
smoothing [19]. Although they greatly reduce the iteration
number required to solve a linear system, the cost of con-
structing preconditioners is considerable. Other global EPS
approaches, involving non-quadratic and non-smooth regular-
ization terms, rely on decomposition techniques on objective
function [20], [39] or solve a series of linear systems itera-
tively [4], [37], [38]. The former yields tractable sub-problems
but requires a lot of iterations to converge, while the latter
shares similar complexity issues with the WLS smoothing.
We note that recently Min et al. [22] introduced a fast approach
for global EPS by iteratively applying 1D WLS regularization.
However, it is unclear what objective function is actually
minimized by their algorithm. The method [22] thus cannot
be generalized to fast MM algorithms.

III. PROBLEM STATEMENT AND BACKGROUND

EPS can be formulated as seeking a minimum of a global
objective function, defined from norms over image gradi-
ents. We can find the solution by using popular iterative
methods [40] or decomposition-based approaches [20], [21],
depending on the regularization terms used in the objective
function. We start with a basic formulation for EPS to provide
some intuition. In the following, the subscript p denotes the
location of a pixel (in a vector form).

Given an input image f and a guidance image g, a desired
output u is obtained by minimizing the following objective
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function:

E (u) =
∑

p

(
(u − f )2p + λ

∑

j∈{1,2}
w j,pφ(D j u)p

)
, (1)

where D1 and D2 are discrete implementations of the deriv-
ative in horizontal and vertical directions, respectively. The
parameter λ controls the amount of the spatial smoothing.
g can be the input image f or a different guidance signal
correlated with f . The weight w j,p = exp(−(D j g)2p/κ) is
defined using g and bandwidth κ . Note that various guidance
signals and distance metrics can be used to define w. The reg-
ularization function φ and the weight function w allow various
image priors that behave differently in preserving or smoothing
image features. We always assume that f and g have the same
width (W ) and the height (H ). When φ = τ 2, the objective
function of (1) becomes quadratic, and it corresponds to the
WLS smoothing [1]. Minimizing (1) with respect to u satisfies
the following linear system:

(
I + λ

∑

j∈{1,2}
DT

j W j D j

)
u = f, (2)

where D j is a discrete difference matrix, W j is a diagonal
matrix containing the weights w j , and I is an identity matrix.
Iterative solvers like the Jacobi, Successive Over-Relaxation
(SOR), and Conjugate Gradient (CG) methods are applicable
to solve the linear system of (2), but these are too slow
to converge [19]. Despite recent progress in preconditioning
techniques, the basic iterative solvers are still an order of
magnitude slower than the local weighted-average filters [19].
It is mainly because the cost of constructing the preconditioner
may outweigh the speed gain from the improved conditioning.
To our best knowledge, no previous work has used the
decomposition technique for the WLS smoothing.

EPS can also be performed by non-quadratic optimization.
The WL1 regularizer, φ = |τ |, is a well-known edge-
preserving operator, and often provides a better smoothing
capability along object boundaries. In general, the correspond-
ing optimization problem is solved based on the decomposi-
tion on objective function (DOF) [20], alternating between a
quadratic model and soft thresholding. The basic idea is to
split the data and regularization terms, as follows:

min
u,v

s.t.D j u=v j

∑

p

(
(u − f )2p + λ

∑

j∈{1,2}
w j,pφ(v j )p

)
, (3)

An auxiliary variable v is introduced to decouple the calcula-
tion of the two terms. The constrained problem of (3) is then
addressed by iteratively updating variables u, v [20]. Since v
has an analytical solution, the main computation lies in the fast
fourier transform (FFT) to compute u [20], [21], [39]. The
computational cost required for solving (3) is thus O(n log n)
per iteration (n = H W ). Moreover, the DOF is slow to
converge (see Section V).

Recently, Ham et al. [37] proposed the SD filter with
the non-convex Welsch’s norm, which is solved by the MM
algorithm [44]. They iteratively compute a quadratic upper
bound and solve the corresponding WLS objective as in (2).
This procedure guarantees a local minimum of (1) with the
non-convex φ [37]. However, since an intermediate weighting

matrix of the MM algorithm varies during iterations, a series
of preconditioners should be constructed, leading to a huge
computational overhead.

IV. PROPOSED METHOD

In this section, we propose a fast and linear time algorithm
for global EPS with either convex or non-convex φ. We first
introduce an efficient alternative of minimizing (1) when
φ = τ 2 or |τ |. This approach is then extended to solve the
non-convex objective functions with the MM algorithm. The
key idea is to decompose (1) on each spatial domain using
an auxiliary variable, and to use a constrained optimization
technique.

Let us consider the following optimization problem with
linear equality constraint:

min
u,v

s.t.u=v

∑

p

{
1

2
(u − f )2p + 1

2
(v − f )2p

+ λ (
w1,pφ(D1u)p +w2,pφ(D2v)p

) }
. (4)

The problem in (4) is equivalent to the original problem
of (1) inside the feasible set, {u = v}. The rationale behind
our formulation is that when u = v, the problem of (4)
is decomposable with respect to each spatial domain. This
property will lead to a sequence of sub-problems that is easier
to solve than the conventional DOF technique [20], [21],
introduced in Section III. We adopt the augmented Lagrangian
method to transform the constrained optimization of (4) into
an unconstrained one with the Lagrangian and an augmented
penalty term. Formally, we minimize the objective function of
the form:

min
u,v,γ

EAL(u, v, γ )

=
∑

p

{
1

2
(u − f )2p + 1

2
(v − f )2p + β

2
(u − v − γ )2p

+ λ
(
w1,pφ(D1u)p +w2,pφ(D2v)p

)}
, (5)

where γ is the augmented Lagrangian multiplier. β is the para-
meter to penalize the difference between u and v. In general,
it is difficult to find the minimizer of u, v exactly since they
are coupled to each other. We use the accelerated alternating
direction method of multipliers (ADMM) [23] to solve (5).2

uk = arg min
u

EAL(u, v̂
k , γ̂ k)

vk = arg min
v

EAL(u
k, v, γ̂ k)

γ k = γ̂ k − (uk − vk), (6)

where v̂k+1 = vk + αk−1
αk+1 (v

k − vk−1), γ̂ k+1 = γ k + αk−1
αk+1 (γ

k −
γ k−1), extrapolated version of v and γ , and αk+1 = (1 +√

1 + 4(αk)2)/2. The iteration of (6) is different from the
standard ADMM method [21], in the sense that a Nesterov-
type extrapolation [27] is applied to accelerate the algorithm.

2When φ is convex the iterative procedure of (6) guarantees quadratic
convergence for the optimal value of γ ∗ [23].
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At each iteration, we increase β by factor of ε > 1. These
procedures are all point-wise operations, except updating uk

and vk . Now we investigate how the variables uk and vk can
be computed efficiently.

A. The u − v Sub-Problems

Assuming that v̂k (or uk) and γ̂ k are fixed, we solve (6)
with respect to u (or v), which yields

min
u

∑

p

(
(u − f̃ )2p + 2λ

1 + β
w1,pφ(D1u)p

)
, (7)

min
v

∑

p

(
(v − f̄ )2p + 2λ

1 + β
w2,pφ(D2v)p

)
, (8)

Here, f̃ = (1 + β)−1( f + β(v̂k + γ̂ k)) and f̄ = (1 + β)−1

( f +β(uk −γ̂ k)).3 As D1 represents a difference operator with
respect to the horizontal axis, (7) can be decomposed into a
set of 1D sub-problems defined with horizontal signals only.
By introducing a 1D slack variable z, we have:

uk,h = arg min
z

∑

x

(
(z − f̃ h)2x + 2λ

1 + β
wh

1,xφ(D1z)x
)
, (9)

The super-script h denotes a horizontal signal along the x
dimension (x = 1, . . . ,W ). This 1D optimization process is
repeated for all horizontal signals (H in number). A similar
result can be obtained for the v. In this case, (8) is decom-
posed into 1D sub-problems with vertical signals along the y
dimension (y = 1, . . . , H ).

Note that the decomposition technique has been applied
to decouple data and regularization terms [20], [39], [41],
i.e., [D1u, D2u] = [v1, v2], resulting in O(n log n) complexity
algorithm (n = H W ). This aims at transferring D1u and
D2u out of the regularization function φ by introducing the
auxiliary variables v1 and v2, respectively. In contrast, we
introduce v to decompose the original problem (1) into a
series of 1D sub-problems. The proposed method not only
leads to easily solvable sub-problems, but also significantly
improves the convergence rate of the algorithm. Next, we
present efficient algorithms for solving the problem (9) defined
with a 1D horizontal signal. Its vertical counterpart can be
optimized in the same manner.

B. Fast 1D Solvers

1) WLS Smoothing: When φ = τ 2, (9) is read with a 1D
horizontal signal f̃ h and a guide signal gh as:

min
z

∑

x

(
(z − f̃ h)2x + 2λ

1 + β
wh

1,x(D1z)2x
)
. (10)

The 1D output z that satisfies the above equation is obtained
by solving the following linear system of size W × W .

(
I + 2λ

1 + β
DT

1 Wh
1D1

)
z = f̃h . (11)

3For scalar variables, arg min
e

a(e − c)2 + b(e − d)2 = arg min
e

(a + b)

(e − ac+bd
a+b )2.

where Wh
1 is a diagonal matrix containing wh

1 . Note that the
size of D1 and I is W ×W , not H W × H W as in (2). Interest-
ingly, the problem (11) becomes much easier to solve than (2)
since the system matrix is tridiagonal. We can solve (11)
with O(n) cost (n = W ) by the Thomas algorithm [42], the
Gaussian elimination for tridiagonal systems.

Algorithm 1 Fast domain decomposition
1: Input: f (an input image); g (a guidance image)
2: Parameters:

γ (a Lagrangian multiplier, γ 0 = γ̂ 1)
v (an auxiliary variable, v0 = v̂1 = f )
β (a penalty parameter, β1 > 0)
λ (a smoothing parameter, λ > 0)

3: Procedure Image smoothing with φ = τ 2 or |τ |
4: for k = 1 : K do
5: for y = 1 : H
6: f̃ h

x = (1 + βk)−1( fx,y + βk(v̂k
x,y + γ̂ k

x,y)) for all x
7: Compute z minimizing (10) or (12) according to φ
8: uk(x, y) = z(x) for all x
9: end for

10: for x = 1 : W
11: f̄ v

y = (1 + βk)−1( fx,y + βk(uk
x,y − γ̂ k

x,y)) for all y
12: Compute z minimizing (10) or (12) according to φ
13: vk(x, y) = z(y) for all y
14: end for
15: γ k = γ̂ k − (uk − vk); βk+1 = εβk

16: αk+1 = (1 +
√

1 + 4(αk)2)/2
17: γ̂ k+1 = γ k + αk−1

αk+1 (γ
k − γ k−1)

18: v̂k+1 = vk + αk−1
αk+1 (v

k − vk−1)
19: end for
20: Output: uK (smoothing output)

2) WL1 Smoothing: When φ = |τ |, (9) can be rewritten as
follows:

min
z

∑

x

1

2
(z − f̃ h)2x + w̃h

1,x |D1z|x , (12)

where w̃h
1 = λwh

1/(1 + β). There exists a non-iterative, O(n)
method for the 1D L1 minimization [43]. While this method is
designed to solve the unweighted version of (12), it is possible
to extend it to minimize 1D WL1. Note that this extension
will enable the fast MM algorithm using L1 upper-bound. See
Section IV.E for details.

We introduce the (Fenchel-Moreau) dual form of (12) as
follows:

min
s

∑

x

( f̃ h −DT
1 s)2x , s.t. |s|x ≤ w̃h

1,x , s1 = sW = 0, (13)

where s is the dual variable. Once the solution s∗ of the
problem (13) is found, we can recover the solution z∗ of its
primal form by

z∗
x = f̃ h

x − s∗
x + s∗

x−1, for 1 ≤ x ≤ W. (14)
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Fig. 1. Objective evolution of the WLS smoothing according to the difference
choices of λ and ε: (Left) λ = 400. (Right) λ = 1600. Increasing β by a factor
of ε=1.2 works well for a wider range of λ. It can be seen that the margin is
more significant with larger value of λ. The input image is shown in Fig. 4
and κ is set to 7.65.

The optimality condition which characterizes the solutions z∗
and s∗ is then expressed as

⎧
⎪⎨

⎪⎩

s∗
x = w̃h

1,x if z∗
x+1 > z∗

x

s∗
x = −w̃h

1,x

s∗
x ∈ [−w̃h

1,x, w̃
h
1,x ]

if z∗
x+1 < z∗

x

if z∗
x+1 = z∗

x .

(15)

The detailed derivations of (13) and (15) are available at
Appendix.

C. 2D Smoothing Algorithm
The proposed method for 2D image smoothing is summa-

rized in Algorithm 1. Given an input f , a guidance g and a
smoothing parameter λ, the global 1D smoothing operations
are sequentially performed along with the horizontal and
vertical directions − although the original problem of (1)
is decomposed into a series of sub-problems, we compute
exact solutions of the objectives (7) and (8) defined on two-
dimensions. At each iteration, the input for the horizontal
smoothing is recalculated as the linear combination of f and
(v̂k + γ̂ k) (Line 6). In the same manner, the vertical smoothing
is applied to the linear combination of f and (uk − γ̂ k)
(Line 11). It can be seen that the output produced by the
horizontal pass contributes to the input for the vertical one
(and vice versa). The Lagrangian multiplier γ and penalty
parameter β are also updated (Line 15). We extrapolate γ and
v to guarantee the fast convergence [23] (Line 17 and 18).
Finally, the algorithm is terminated after k = K iterations.
Note that color images are handled for each channel separately
while using the same weight w for all channels.

D. Parameter Selection and More Discussion
Imposing the large regularity (with large λ) makes u and v

evolve quite independently. β thus should be proportional to
λ. Empirically, we set β1 = √

λ/2, and increase it during
iteration by a factor of ε =1.2.4 This strategy ensures that v
should be close to u, satisfying the constraint in (4). Figure 1
shows the WLS objective evolution according to the different
choices of ε and λ. It can be seen that increasing β by a
factor of ε =1.2 works well for a wide range of λ. The
difference is more significant with larger values of λ. The
auxiliary variable v is initially set to the input image f .
We use the constant initialization for the Lagrangian multiplier,
e.g., γ 1 = 0.

4Increasing β during iteration is uncommon in the augmented Lagrangian
method [25]. But, we found that this strategy works well in our
application [26].

Fig. 2. Illustration of the MM principle using a convex upper bound: (Left)
quadratic upper bound. (Right) L1 upper bound. At the current iteration,
a convex upper bound is computed that is locally tight at ut . After minimizing
the convex upper bound, we obtain ut+1 such that E(ut+1) ≤ E(ut ).

The convergence of ADMM to solve the constrained opti-
mization problem has been extensively studied [23], [24].
We show why our domain decomposition is more appealing
than the DOF [20], [21], [39] by transforming (4) into a
standard form. Consider the general problem of minimizing
a convex functional subject to linear equality constraints:

min
u,v

F(u)+ G(v), s.t Au = v. (16)

The convergence of ADMM is then expressed as [23], [24]:

H (γ ∗)− H (γ k) ≤ c||γ ∗ − γ 1||2
kη

. (17)

Here H is a dual functional related to (16), and η is an order of
convergence rate. An optimal Lagrange multiplier is denoted
as γ ∗. c is a constant proportional to ρ(AT A), where ρ denotes
spectral radius of a matrix. Comparing (3) and (4), we can
see that the convergence of the DOF [20], [21], [39] depends
on ρ(DT D) < 8, while our domain decomposition (A = I )
does not depend on the spectral radius of DT D. We found
that this property considerably accelerates the convergence
speed of Algorithm 1. 3-5 iterations are typically enough
to get satisfactory results in both WLS and WL1 smoothing
(see Section V).

Our formulation is not rotationally invariant as the original
objective function of (1) enforces the regularization term
to be aligned for each axis individually. However, visible
artifacts were hardly found in all experiments for the WLS
smoothing. A similar observation was also reported in [1].
When φ = |τ |, it prefers object boundaries which are minimal
in the Manhattan distance (see Fig. 4).

E. Extension to Fast MM Algorithms

The proposed method can be extended for a wider class
of regularization functions by using the MM algorithms [44].
This extension enables our approach to be applied to a range
of applications, which require for sparse image gradients
and sharp edges. Let us consider a non-convex φ. Examples
include Welsch’s norm [37], logarithm [46], and L p norm [25].
The principle of the MM algorithm is to iteratively find a
convex function which serves as the upper bound of (1), and
to solve the corresponding optimization problems. It allows
for explicit algorithms according to the construction of the
upper bounds, as illustrated in Fig. 2. In the following,
t = (1, . . . , T ) denotes the external iteration index used to
minimize the non-convex objective function.
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Fig. 3. Comparison of the WLS objective decrease versus the number of iterations: (Left) the proposed method vs linear system solvers. λ and κ are set
to 400 and 7.65, respectively. (Right) the proposed method vs decomposition on objective function. Our approach rapidly reduces the WLS objective value
of (1), and converges after a few iterations. The input image is shown in Fig. 4.

1) The Quadratic Majorization: This algorithm uses the fact
that many regularization functions can be seen as minima
of the quadratic upper bound [44]. Using an intermediate
estimate ut , we compute ut+1 by minimizing

Et
MQ
(u) =

∑

p

(
(u − f )2p + λ

∑

j∈{1,2}
a j,p(D j u)

2
p

)
(18)

where a j,p = w j,p
φ′(D j ut )p
2(D j ut )p

. Minimizing (18) is equivalent to

solving a linear system (2), except that a Laplacian matrix
is computed with a j,p. Thus, we can obtain ut+1 using
Algorithm 1 with K internal iterations. Our approach involves
only simple arithmetic operations for minimizing (18), while
most existing linear system solvers [40] suffer from addi-
tionally computing the preconditioner at each external iter-
ation due to intermediate linear systems that vary with
t = (1, ..., T ).

2) The L1 Majorization: Theoretically, the quadratic
majorization can be applied only when the regularization func-
tion is well approximated with a quadratic upper bound [44].
This, however, does not cover interesting functions such
as φ = log(1 + |τ |) [46] and L p (p < 1) norm [25],
which are concave and non-differentiable at origin. Here we
extend the proposed method to the MM algorithm using
the L1 majorization.

Et
ML1

(u) =
∑

p

(
(u − f )2p + λ

∑

j∈{1,2}
b j,p

∣∣D j u
∣∣

p

)
, (19)

where b j,p = w j,p∂φ(D j ut )p , φ is concave, and ∂ denotes the
sub-gradient. The method exploits a convex function obtained
by linearizing the regularization function φ − (19) serves as
the upper bound of (1) due to concavity of φ [46]. Obviously,
each iteration is the WL1 problem which can be solved
efficiently using Algorithm 1.

The pseudo-code is provided in Algorithm 2. Note that the
exact minimum of (18) or (19) is not necessarily required to
minimize an objective function using a non-convex regularizer.
Instead, the MM algorithm guarantees (1) to decrease if
Et

M (u
t+1) < Et

M (u
t ) [44]. We will show in experiments that

3-5 internal iterations of Algorithm 1 are sufficient for meeting
a monotonic property of the MM algorithm.

Algorithm 2 Fast MM algorithm
1: Input: f (an input image); g (a guidance image)
2: Parameters:

λ (a smoothing parameter, λ > 0)
3: Procedure Image smoothing with ψ
4: Initialize u1

5: for t = 0 : T − 1 do
6: Construct the majorization function using (18) or (19)
7: Compute ut+1 using Algorithm 1
8: end for
9: Output: uT (smoothing output)

V. EXPERIMENTAL VALIDATION

We evaluated the convergence and runtime performance
of the proposed method. The smoothing quality in terms of
structural similarity indexes (SSIM) [45] was also presented.
The experiments were simulated with a single Intel i7 3.4GHz
CPU. Our approach is easy to implement and the source
code will be publicly available later. It was implemented on
the MATLAB with MEX interface and all other results in
comparison were obtained using the source codes provided by
authors.

A. Objective Evolution

For convergence analysis of the WLS smoothing, we first
compare our approach with the linear system solvers, including
the conjugate gradient (CG), Gauss-Seidel (GS), Jacobi iter-
ation (JI), and successive over relaxation (SOR). The SuiteS-
parse library [48] was used to solve a triangular system, arising
from GS and SOR. Figure 3(a) shows how the WLS objective
evolves at each iteration (all the methods were initialized by
the input f ). Although each iteration of CG, GS, JI, and
SOR runs in a linear time O(n) (n = H W ), they require
a very large number of iterations to converge. In contrast,
our solver converges in a few iterations only. The comparison
with the DOF in (3) (using the accelerated ADMM [23] for
fair comparison) is also provided in Fig. 3(b).5 The FFTW
library [49] is used to solve the u subproblem of the DOF.

5For the WLS (or WL1) smoothing, the v subproblem of the decomposition
on objective function is component-wise division (or thresholding).
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Fig. 4. Examples of the WL1 objective decrease versus the number of iterations: (a) Objective evolution, (b) input image, (c) SALSA [21] (at k=5),
(d) SALSA [21] (at k=30), and (e) the proposed method (at k=5). Our approach rapidly reduces the WL1 objective value of (1), and converges after a few
iterations. For (c)−(e), λ, κ , and k are set to 400, 25.5, and 5, respectively.

Fig. 5. Comparison of a sum of intensity difference between successive
iterations: (Left) the WLS smoothing. (Right) the WL1 smoothing. Our
approach rapidly reduces the sum of pixel difference between successive
iterations. After k=5 iterations, the average values of the per-pixel difference
are 0.13 and 0.3, respectively (the range of image values is [0 ∼ 255]). We
set u0 = f .

We can see that as the smoothing parameter λ gets larger, the
DOF converges more slowly. Our approach, however, gives
almost the same convergence property regardless of λ.

The objective evolution of the WL1 smoothing, with vary-
ing the regularization parameter λ, is shown in Fig. 4(a).
We compare our approach with the split augmented
Lagrangian shrinkage algorithm (SALSA) [21]. This method
decomposes the WL1 objective function as in (3), and adopts
the ADMM algorithm. We additionally perform the Nesterov-
type extrapolation [23] for fair comparison. The SALSA [21]
has O(n log n) complexity per iteration (n = H × W ), while
our solver runs in linear time. It should be noted that the
the convergence of SALSA [21] using the DOF is slow as
in Fig. 4(a). It did not produce the desired smoothing result
at early iterations (see Fig. 4(c)). In contrast, the proposed
method achieves the satisfactory result after only 5 iterations
as shown in Fig. 4(e).

In general, the WL1 smoothing requires more iterations than
the WLS method for convergence (see Fig. 3(b) and Fig. 4(a)).
However, our method gives almost the same smoothing results
after few iterations (Fig. 5). The per-pixel color difference
‖uk −uk−1‖2 is reduced substantially after 5 iterations, where
the average values are 0.13 and 0.3 for the WLS and the WL1
smoothing, respectively. We also evaluate the performance
ratio using the criterion proposed in [47].

R = Ts

Tour
, (20)

TABLE I

COMPARISON OF THE PERFORMANCE RATIO [47] BETWEEN OURS

AND OTHER METHODS. USING λ [100 ∼ 3600] AND κ [0.03 ∼ 0.3],
WE RUN OTHERS UNTIL THEY ACHIEVE THE OBJECTIVE VALUES

OF (1) SMALLER THAN (OR EQUAL TO) THOSE OF OURS

where Ts and Tour represent the computing times required
to solve the same problem using existing methods and the
proposed method, respectively. The objective values of (1),
with λ [100 ∼ 3600] and κ [0.03 ∼ 0.3], are first measured
after 5 iterations of Algorithm 1, and then we run other
methods until they achieve the objective values of (1) equal to
ours. The average performance ratios between ours and other
methods are reported in Table 1.

B. Smoothing Quality

To further demonstrate the effectiveness of our approach,
we additionally collect 100 natural images containing diverse
contents from the BSD500 dataset [50], and compare the
smoothing results. For the WLS smoothing, the result obtained
by MATLAB “\” (backslash) command is used as the refer-
ence. In the case of the WL1 smoothing, the result obtained
by the SALSA [21] with tight stopping criterion (K = 200)
is assumed to be the reference image. The difference images
between the reference and the results at k = 5 are visualized in
Fig. 6. The parameters are set as κ = 0.03 and λ = 100. The
smoothing results of ours are almost same as the reference
image. Using a variety of parameters λ [100 ∼ 3600] and
κ [0.03 ∼ 0.3], we also measure the SSIM index [45] between
the references and the results obtained by our method. The
average value of the SSIM index [45] is plotted as a function
of k in Fig. 7. In general, we found that the proposed method
yields satisfactory results after k = 3 ∼ 5 iterations. The
average SSIM values at k = 3 and 5 are 0.983 (0.981) and
0.996 (0.991), respectively for the WLS (WL1) smoothing.

C. Runtime

The average running time, on single CPU core, is reported
in Table 2. Ten images are sampled from the BSD500 [50] and
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Fig. 6. Visualization of differences between the reference and results of each method for the WLS smoothing (at k = 5): (a) the input image, (b) the reference
image obtained by MATLAB backslash, (c) CG, (d) DOF, and (e) the proposed method. The smoothing result of ours is almost same as the reference image.
We set the parameters κ and λ as 0.03 and 100, respectively.

TABLE II

COMPARISON OF THE COMPUTATIONAL COMPLEXITY FOR DIFFERENT METHODS (IN SECONDS).
ALL METHODS ARE IMPLEMENTED IN MATLAB WITH MEX INTERFACE

Fig. 7. The average SSIM indexes [45] for the WLS and WL1 smoothing,
as a function of the number of iterations: (Left) the WLS smoothing. (Right)
the WL1 smoothing. For the reference images, MATLAB backslash and the
SALSA method [21] are used for the WLS and WL1 smoothing, respectively.
The average SSIM values exceed 0.99 after k = 5 iterations for both cases.

resized to specific resolution as in Table 2. In our method, the
number of iterations K is fixed to 5 based on the convergence
analysis in Section V.A and V.B. For the WLS smoothing, our
approach is compared with the state-of-the-art preconditioned
conjugate gradient (PCG) method [19], MATLAB backslash
operator, and the DOF. The result for the PCG [19] is obtained
from the source code provided by the author. Note that the
MATLAB backslash uses the sparse cholesky decomposition
in the SuiteSparse libray [48] to solve the linear system
of (2). Although the preconditioning method proposed in [19]
improves the convergence rate significantly,6 constructing the
preconditioner is very time-consuming, taking about 2.6 sec-
onds for a one megapixel (RGB) image. The stopping criterion
of the DOF and the SALSA [21] is

∥∥uk+1 − uk
∥∥

2 < 0.1

6After preconditioning [19], 5 CG iterations are enough to solve (2).

Fig. 8. Objective evolution of the MM algorithms depending on the number
of inner iterations K (please see legend): (a) the MM using quadratic upper
bound, (b) the MM using L1 upper bound, (c) the input image, (d) MATLAB
backslash, and (e) ours. The quadratic majorization method is used to obtain
(d) and (e) from (c) (see text). Each subproblem is minimized by MATLAB
backslash and the proposed method (K = 5) for (d) and (e), respectively.

and 0.37 for the WLS and the WL1 smoothing, respectively.
On average, these methods require 15 iterations to meet the
stopping criterion. The runtime analysis may vary accord-
ing to the degree of code optimization, but the proposed
method tends to be about an order of magnitude faster than

7These are based on the result obtained by our method. See Section V.A.
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Fig. 9. Examples of the texture removal task: (a) the input image, (b) RGF [51], (c) WMF [33], (d) RTV [4], and (e) the proposed method. For each method,
the running times are reported in seconds (yellow). The image sizes are 1254 × 1067 (top) and 495 × 536 (bottom), respectively. In this example, we employ
the model proposed in [37], and minimize the corresponding optimization problem using our fast MM algorithm (with quadratic upper bound).

competing methods. It is even comparable to state-of-the-art
local filters. For instance, the guided filter [17], one of the
most popular and fastest local filters, takes 0.2 seconds for
filtering a 923×1128 RGB image.

D. Analysis of Fast MM Algorithms

In this section, we present the analysis of our fast MM
algorithms. We first minimize the objective function of (1)
with φ = σ(1 − exp(− τ 2

σ )), known as Welsch’s function and
σ = 12. Each quadratic upper bound is minimized by
Algorithm 1. Figure 8(a) shows that the results differ depend-
ing on the number of inner iterations K . For φ = log(1+|τ |),
we use the L1 upper bound as the logarithm function has an
absolute behavior around 0 [46]. The objective evolution is
plotted in Fig. 8(b). Overall, we observe that the objective
evolutions with K = 1 (navy blue line of Fig. 8(a) and (b))
are very different from those of the reference implementation
(red line of Fig. 8(a) and (b)). It is thus crucial to solve the sub-
problems of MM algorithms until reaching the certain level
of accuracy. Figure 8(c)-(e) shows that 5 inner iterations of
Algorithm 1 are enough when using quadratic upper bounds.
We set the external iteration T = 5 to obtain Fig. 8(d) and (e).
The corresponding quadratic sub-problems are minimized
by using MATLAB backslash (Fig. 8(d)) and Algorithm 1
(Fig. 8(e)). The result obtained by MATLAB backslash is
very similar to ours. The input image is taken from [36].
In general, we found K = 5 and T = 5 iterations to be a good
choice for fast MM algorithms. The MM algorithms guarantee
convergence to a local minimum of the non-convex E , and thus
different initializations for u1 may give different solutions. The
results in Figs. 8(d) and 8(e) are obtained from u1 = f .

VI. APPLICATION

Our flexible approach finds several applications. We apply
our method to texture removal, scale-space filtering, content-
based color quantization, sparse color denoising, and style

TABLE III

THE CONFIGURATION OF EACH APPLICATION. MQ AND ML1 DENOTE THE
QUADRATIC AND L1 MAJORIZATION, RESPECTIVELY

transfer. To this end, the various image priors, i.e., regulariza-
tion function and weight w, are exploited to match different
application goals. Table 3 summarizes the configuration of
each application. The results of other methods were obtained
from the source codes provided by the authors. The parameters
were carefully tuned through extensive experiments.

A. Texture Removal

For texture removal, we employ the model proposed in [37]:
φ is set to σ(1 − exp(− τ 2

σ )) and g = G ∗ f where G is
the Gaussian kernel with standard deviation 2. This type of
guidance image is very effective since texture on the object is
usually of small scale structures. The smoothing parameters κ ,
and σ are fixed to 5 and 7.65, respectively, but λ varies accord-
ing to image size. In this setting, we minimize the objective
function of (1) using our fast MM solver (with the quadratic
majorization). Figure 9 shows examples of texture removal
task obtained by the rolling guidance filter (RGF) [51], the
fast weighted median filter (FWMF) [33], the relative total
variation (RTV) [4], and ours. The RGF [51] is implemented
by iteratively applying the fast bilateral grid [31]. The runtime
of our approach is comparable (or even faster) to the texture
smoothing tools based on the local filtering (RGF [51] and
FWMF [33]), while outperforming them in the subjective
evaluation. The quality of RTV [4] is similar to ours, but
the proposed method runs about 10 times faster. For example,
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Fig. 10. Examples of scale-space filtering: (a) RGF [51] (from left to right σ s = 4, 8, 40 for each image) and (b) the proposed method (from left to right
λ = 100, 1200, 6500 for each image). The smoothing parameters were chosen, such that two methods have similar smoothing effect.

the RTV [4] and the proposed method take about 14.5 and
1.5 seconds to process a 1254 × 1067 image, respectively.
Interestingly, minimizing the objective function in the RTV [4]
needs to iteratively solve a large linear system, where a system
matrix varies during iterations. Thus, it can be also accelerated
by Algorithm 1.

B. Scale-Space Filtering

We obtain a scale-space representation by minimizing the
same objective function as the texture removal task, except
that the input image is guided by itself (g = f ). Two
images in Fig. 10 are of size 640 × 376 and 1500 × 730,
respectively. We alter the scale of filtered image by adjusting
the smoothing parameters, and these are chosen such that two
methods have similar amount of smoothing. The proposed
method better preserves edges and corners than the RGF [51]
with a faster runtime. The RGF [51] shows color artifacts and
poor boundary localization at coarse scales (Fig. 10(a)). For
the image of 1500×730, RGF [51] and our fast MM algorithm
(with the quadratic majorization) take 1.62 and 1.35 seconds,
respectively.

C. Color Quantization

Content-based color quantization is used to reduce the
number of colors in images. The quantization effect makes
prominent structures easier to be detected and more visually
distinct. This is useful for many computer vision and com-
putational photography applications, including image retrieval
and segmentation. We impose the sparsity using the regular-
ization function, φ = log(1 + |τ |) to reduce the number of
colors, and set g = f . With this setting, we minimize the
objective function of (1) using our fast MM algorithm (with
L1 majorization). The results were compared in Fig. 11. Our
solver shows performance comparable to state-of-the-art L0
minimization [39], [52], while running faster. The method [39]
decomposes their objective function into two sub-problems
and solve them by an L0-L2 framework. A continuation
parameter was introduced to balance the influence of the L0
norm on the smoothing result. A smaller continuation value
gives better L0 regularized results, but at the cost of a longer
running time. It should be noted that Fig. 11(c) was obtained

Fig. 11. Examples of the content-based color quantization: (a) the input
image, (b) L0−L2 [39], (c) L0 fusion [52], and (d) ours. Our approach shows
performance comparable to state-of-the-art L0 minimization. The runtime is
reported in seconds (the image size is 494×371). In this example, we minimize
the objective function of (1) with φ = log(1+|τ |) using our fast MM algorithm
(L1 majorization).

using the region fusion (RF) method tailored to a fast L0
gradient minimization only [52].

D. Sparse Color Denoising

The regularization function, φ = log(1 + |τ |) approximates
the input signal by a series of piecewise constant functions.
Thus, it is also suitable for denoising the image that contains
sparse colors with sharp transitions, e.g., cartoon and clip
art. The guidance image is not used in this application, i.e.,
w j,p = 1 for all j and p. We compare our method against L0
gradient minimization proposed by Xu et al. [39]. Figure 12
shows three examples of image denoising. In our experiments,
we set the continuation parameter of [39] such that the
best results are obtained in terms of peak signal-to-noise-
ratio (PSNR). Refer to Section VI.C for more details. Thus,
its runtime varies although the images in Fig. 12 are of similar
spatial resolution (three images are of 481 × 321, 367 × 372,
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Fig. 12. Comparisons of image denosing: (a) the input image,
(b) L0 − L2 [39], and (c) ours. We also report the running time (in seconds)
and the SNR (in dB). We set φ = log(1 + |τ |) and the guidance image is
not used in this application. The results of (c) are obtained by our fast MM
algorithm with L1 majorization.

Fig. 13. Style transfer effect: (a) the input image, (b) the guidance image, (c)
FWMF [33], and (d) ours. The edge map of the input is used as the guidance
image. Note that the input (a) and guidance (b) images are taken from [33].

and 400 × 300, respectively). Our quantitative results are
consistently better than [39], and the runtime is also faster.

E. Style Transfer

The aim of style transfer is to transfer fine structures of
guidance signals to input images, enhancing or altering image
structures. Any feature map from input image or others can
be taken as the guidance image g. Therefore, it can be

applied to image editing, RGB/NIR restoration, flash/non-
flash denoising, and depth super-resolution. Figure 13 shows
a specific style transfer example obtained by the FWMF [33]
and ours. The edge map of the input image is used as the
guidance signal. The window size of the FWMF [33] is set to
5 × 5, taking about 0.4 seconds. Our WLS (WL1) smoothing
takes only 0.09 (0.3) seconds for an image of size 640 × 480.

VII. CONCLUSION

We have introduced an efficient global EPS method that
is widely applicable to image processing and computational
photography tasks. Contrary to previous decomposition meth-
ods, our formulation enables fast, linear time solvers for
both WLS and WL1 smoothing. We have showed through
intensive experiments that our method converges quickly after
few iterations. The runtime is much faster than conven-
tional methods, and is even comparable to the state-of-the-
art local EPS approaches. A family of fast MM algorithms
were also proposed using a non-convex regularization term.
As confirmed by our results, the proposed method has been
successfully used in several applications. In the future, we will
implement the proposed method on the GPU and embedded
system.

APPENDIX

We consider 1D WL1 problem as follows:

arg min
z

∑

x

(
1

2
(z − f )2x +wx |Dz|x

)
. (21)

By the MinMax theorem [53], we have

min
z

∑

x

(
1

2
(z − f )2x + wx |Dz|x

)

= max|s|x ≤wx
min

z

∑

x

(
1

2
(z − f )2x + 〈s, Dz〉x

)
, (22)

for all x = 1, . . . ,W. s is the dual variable. The minimizer of
the last expression with respect to z is

z = f − DT s. (23)

Substituting (23) into (22), we obtain the dual form of (21).

min
s

∑

x

( f − DT s)2x , s.t. |s|x ≤ wx , ∀x = 2, . . . ,W − 1,

(24)

where sW = s1 = 0. Let us consider the first-order optimality
condition of the Euclidean projection problem (24).

D( f − DT s∗) ∈ N(s∗), (25)

where N(s∗) is the normal cone with respect to a set |s|x ≤
wx , x = 1, . . . ,W . According to (23), we also have

D( f − DT s∗) =

⎧
⎪⎪⎨

⎪⎪⎩

z∗
2 − z∗

1
...

z∗
W − z∗

W−1

(26)
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From (25), (26), and the definition of the normal cone, we
finally conclude

⎧
⎪⎨

⎪⎩

s∗
x = wx if z∗

x+1 > z∗
x

s∗
x = −wx

s∗
x ∈ [−wx , wx ]

if z∗
x+1 < z∗

x

if z∗
x+1 = z∗

x ,

(27)

and

z∗
x = fx − s∗

x + s∗
x−1. (28)
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