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Abstract—Though many tasks in computer vision can be formulated elegantly as pixel-labeling problems, a typical challenge

discouraging such a discrete formulation is often due to computational efficiency. Recent studies on fast cost volume filtering based on

efficient edge-aware filters provide a fast alternative to solve discrete labeling problems, with the complexity independent of the support

window size. However, thesemethods still have to step through the entire cost volume exhaustively, whichmakes the solution speed

scale linearly with the label space size.When the label space is huge or even infinite, which is often the case for (subpixel-accurate)

stereo and optical flow estimation, their computational complexity becomes quickly unacceptable. Developed to search approximate

nearest neighbors rapidly, the PatchMatchmethod can significantly reduce the complexity dependency on the search space size. But, its

pixel-wise randomized search and fragmented data access within the 3D cost volume seriously hinder the application of efficient cost

slice filtering. This paper presents a generic and fast computational framework for general multi-labeling problems called PatchMatch

Filter (PMF). We explore effective and efficient strategies to weave together these two fundamental techniques developed in isolation,

i.e., PatchMatch-based randomized search and efficient edge-aware image filtering. By decompositing an image into compact

superpixels, we also propose superpixel-based novel search strategies that generalize and improve the original PatchMatchmethod.

Further motivated to improve the regularization strength, we propose a simple yet effective cross-scale consistency constraint, which

handles labeling estimation for large low-textured regionsmore reliably than a single-scale PMF algorithm. Focusing on dense

correspondence field estimation in this paper, we demonstrate PMF’s applications in stereo and optical flow. Our PMFmethods achieve

top-tier correspondence accuracy but runmuch faster than other related competingmethods, often giving over 10-100 times speedup.

Index Terms—Approximate nearest neighbor, edge-aware filtering, stereo matching, optical flow

Ç

1 INTRODUCTION

MANY computer vision tasks such as stereo, optical flow
and dense image alignment [24] can be formulated

elegantly as pixel-labeling problems. In general, the com-
mon goal is to find a labeling solution that is spatially
smooth and discontinuity-preserving, while matching the
observed data/label cost at the same time. To achieve this
goal, a Markov Random Field (MRF)-based energy function
is often employed which involves a data term and a pair-
wise smoothness term [38]. However, a serious challenge
posed to this discrete optimization framework is computa-
tional complexity, as global energy minimization algorithms
such as graph cut or belief propagation become very slow
when the image resolution is high or the label space is large.

Recently, edge-aware filtering (EAF) of the cost volume [25],
[34] has emerged as a competitive and fast alternative to
energy-based global approaches. Though simple, cost vol-
ume filtering techniques can achieve high-quality labeling
results efficiently. However, despite their runtime being
independent of the filter kernel size, EAF-based methods do
not scale well to large label spaces.

Almost concurrently, computing approximate nearest-
neighbor field (ANNF) has been advanced remarkably by the
recent PatchMatch method [6] and methods improving it [7],
[16], [20]. The goal of ANNF computation is to find for each
image patch P centered at pixel p one or k closest neighbors in
appearance from another image. In the energy minimization
context, ANNF’s sole objective is to search for one or k patches
that minimize the dissimilarity or the data term with a given
query patch, but the spatial smoothness constraint is not
enforced at all. This fact is consistent with ANNF’s desire of
mapping incoherence [20] that is crucial for image reconstruc-
tion quality. The complexity of ANNF methods is only mar-
ginally affected by the label space size i.e., the number of
correspondence candidates, which is vital for interactive
image editing tasks [6].

Then a motivating question that follows is—whether
these two independently developed fast algorithms, i.e.,
PatchMatch-based randomized search and EAF, can be
seamlessly woven together to address the curse of large
label spaces very efficiently, while still maintaining or even
improving the solution quality. For the very first time, this
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paper is positioned to solve this interesting yet challenging
problem of general applicability to many vision tasks. How-
ever, this goal is nontrivial. First, these two algorithms have
different objective functions to optimize for. As shown in
Figs. 1c, and 1d, ANNF estimated by PatchMatch [6] is very
“noisy” and dramatically inferior to the desired true flow
map. Second, their computation and memory access pat-
terns are significantly disparate. In fact, the random and
fragmented data access strategy within the cost volume
effected by PatchMatch is drastically opposed to the highly
regular and deterministic computing style of EAF methods.

Our main contribution is to propose a generic and fast
computational framework for generalmulti-labeling problems
called PatchMatch Filter (PMF). We take compact superpixels
and subimages parsimoniously containing them as the atomic
data units, and perform random search, label propagation and
efficient cost aggregation collaboratively for them. This ena-
bles the proposed PMF framework to benefit from the comple-
mentary advantages of PatchMatch and EAF while keeping
the overhead at a minimum. PMF’s run-time complexity is
independent of the aggregation kernel size and only propor-
tional to the logarithm of the search range [6]. We further pro-
pose superpixel-based efficient search strategies that
generalize and improve the original PatchMatch method [6].
Though not limited to the correspondence field estimation,
PMF’s applications in stereomatching and optical flowestima-
tion are instantiated and evaluated in this paper. The label
space considered is often huge or even infinite due to e.g., two-
dimensional motion search space, displacement in subpixel
accuracy, or over-parameterized surface or motion model-
ing [9]. Experiments show our PMF methods achieve top-tier
correspondence accuracy also with a superior advantage of
over 10-100x speedupover other competingmethods.

An early version of this work was published in
CVPR’13 [26]. The current paper presents this technique in
more depth and detail. In addition, we propose a computa-
tionally efficient cross-scale labeling consistency constraint,
which brings noticeable quality improvements for challenging
low-textured image regions whilemaintaining the advantages
of the original PMF method [26]. Furthermore, we also evalu-
ate the proposed algorithm on the challengingMPI Sintel opti-
cal flow datasets [12], and report its performance comparison
with other leadingmethods. Based on these evaluations, some
distinctive features of the PMF algorithm can be summarized.

First, PMF is able to achieve top-tier performance on a few
image matching tasks, even compared with the leading task-
specific approaches, such as DeepFlow [41] and PPM [46] for
the Sintel optical flow, and PM-Huber [18] and PM-PM [43]
for subpixel accurate stereo. Second, PMF has an easy-to-
implement workflow without involving complex energy
terms or optimization. Compared to other recent MRF infer-
ence methods [8], [39] only tested on a single matching task,
PMF shows its strong results on both continuous stereomatch-
ing and large displacement optical flow, while running two
orders ofmagnitude faster than [8], [39].

2 RELATED WORK

Here we review the work most related to our method.
Cost-Volume Filtering and EAF. Though the MRF-based

energy minimization formulation for discrete labeling prob-
lems is elegant [38], the energy minimization process is still
time-consuming even with modern global optimization
algorithms. Leveraging the significant recent advance in
edge-aware image filtering, e.g., [17], [30], [40], several
methods have been proposed for fast cost-volume filter-
ing [25], [34]. They often achieve labeling results as good as
those obtained by global energy-based approaches but at
much faster speed, with the complexity typically indepen-
dent of the filter kernel size. However, filtering each cost
slice individually, albeit allowing straightforward applica-
tion of various efficient EAF techniques, makes the runtime
scale linearly with the label space size. This makes discrete
approaches very slow in the case of large label spaces.

ANNF Computation and PatchMatch. As explained before,
computing ANNF for every patch in a given image with
another image is computationally challenging, due to the
large search space. Recent years have witnessed significant
progress in accelerating this computation, which is key to
non-parametric patch sampling used in many vision and
graphics tasks. Motivated by the coherent natural structure
in images, the PatchMatchmethod [6], [7] devised a very effi-
cient randomized search and nearest-neighbor propagation
approach, achieving substantial improvements in speed and
memory efficiency over the prior arts. Inspired by Patch-
Match, a few faster algorithms [16], [20] have been proposed
which in one way or another allow efficient propagation
from patches similar in appearance. However, with its objec-
tive to find the nearest neighbors, the computed ANNF is
very different from the true visual correspondence field
which is spatially smooth and discontinuity-preserving.

PatchMatch-Based Correspondence Field Estimation. Realiz-
ing PatchMatch’s power in efficient search, Bleyer et al. [9]
proposed to overparameterize disparity by estimating an
individual 3D plane at each pixel. They showed that this
method can deal with slanted surfaces much better than
previous methods and achieved leading subpixel disparity
accuracy. This idea has also been integrated into a global
optimization framework to accelerate the message passing
speed [8]. To handle disparity discontinuities, adaptive-
weight cost aggregation [48] in 35� 35 windows is used in
[9]. Though PatchMatch can significantly reduce the com-
plexity dependency on the label space size, such a brute-
force adaptive-weight summation has a linear complexity
dependent on the window size and it slows down the
overall runtime greatly. In addition, other challenging dense

Fig. 1. Problems with PatchMatch [6] and CostFilter [34] for correspon-
dence field estimation. (a,b) Input images. (c) ANNF of PatchMatch
(with the same color coding for optical flow). (d) Ground-truth flow [1].
(e) Flow map of CostFilter [34]. (f) Flow map of our PMF method, running
10-times faster than [34] under fair settings. Average endpoint error of
(e) 0.0837 and (f) 0.0825.
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correspondence problems such as optical flow are not
addressed in these methods [8], [9]. It is also worth noting
that the histogram-based disparity prefiltering scheme [29]
was proposed to reduce the complexity caused by large
label spaces down to processing only, e.g., 10 percent plau-
sible disparities detected for each pixel. But this reduction is
not as aggressive as in PatchMatch, and also efficient local
cost aggregation was not supported.

Since the publication of our early work [26], other inter-
esting works have also been proposed to leverage the Patch-
Match idea for visual correspondence field estimation. For
instance, Heise et al. [18] applied the Huber regularization
to the PatchMatch stereo approach [9] and solved it using a
convex optimization. Recently, Xu et al. [43] proposed a
convex formulation of the multi-label Potts Model with [9]
as well. Though both techniques demonstrated very com-
petitive results in subpixel accurate stereo reconstruction,
they are still much slower than the proposed PMF method.
It is explicitly discussed in [43] that accelerating the cost
aggregation step (e.g., using a window of 41� 41) through
a PMF-like algorithm remains as a future work. In addition
to stereo matching, PatchMatch or ANNF techniques have
also been used in recent optical flow estimation algorithms.
For instance, Chen et al. [14] designed a complex motion
segmentation pipeline together with continuous flow refine-
ment, which computes NNF to generate initial motion
matches. Though achieving a high estimation accuracy, this
method is still too slow for practical applications.
Bao et al. [5] used a local PatchMatch-like data aggregation
with a coarse-to-fine framework, but this method tends to
lose fine-grained motion details and also has difficulties in
handling large textureless regions. Based on a simple and
more general-purpose computational framework, the pro-
posed PMF algorithm demonstrates strong estimation
results and fast runtimes on both subpixel stereo matching
and large displacement optical flow benchmark datasets.

3 COST VOLUME FILTERING

We briefly present a general framework and notations of
cost volume filtering-based methods for discrete labeling
problems, and focus particularly on visual correspondence
field estimation. As in [34], given a pair of images I and I 0,
the goal is to assign each pixel p ¼ ðxp; ypÞ a label l from the
label set L ¼ f0; 1; . . . ; L� 1g. L denotes the label space
size. For general pixel-labeling problems, the label l to be
assigned can represent different local quantity [38]. For ste-
reo and optical flow problems considered here, l ¼ ðu; vÞ,
where u and v correspond to the displacement in x and y
directions. Stereo degenerates to assigning a disparity
d ðu ¼ dÞ to pixel p, where v ¼ 0.

Unlike global optimization-based discrete methods [38],
local window-based methods stress reliable cost aggrega-
tion from the neighborhood and evaluate exhaustively
every single hypothetical label l 2 L. The final label lp for
each pixel p is decided with a Winner-Takes-All (WTA)
scheme. To achieve spatially smooth yet discontinuity-
preserving labeling results, edge-aware smoothing filters
have been adopted in the local cost aggregation step of sev-
eral leading local methods [25], [34]. Given the raw cost slice
CðlÞ computed for a label l, we denote its edge-aware

filtered output as ~CðlÞ. Then the filtered cost value at pixel p
is given as

~CpðlÞ ¼
X

q2WpðrÞ
vq;pðIÞCqðlÞ : (1)

WpðrÞ is the local aggregation window centered at p with a
filter kernel radius r. vq;pðIÞ is the normalized adaptive
weight of a support pixel q, which is defined based on the
structures of the image I. Various EAF methods [17], [25],
[30], [40] can be applied here, and they differ primarily in
the ways of defining and evaluating vq;pðIÞ.

Though EAF is very efficient, the linear complexity
dependency on the label space sizeL requires repeated filter-
ing of CðlÞ as in Eq. (1), and CðlÞ is of the same size of I. This
makes the runtime unacceptably slow when L is large. To
largely remove this complexity dependency, recent techni-
ques such as PatchMatch [6] appear helpful conceptually.
However, it can be discerned that PatchMatch’s randomized
label space visit pattern for each individual pixel p is very
incompatible with the regular image-wise cost filtering rou-
tine that is essential to the efficiency of EAF-basedmethods.

4 PATCHMATCH FILTER USING SUPERPIXELS

This section proposes a superpixel-based computational
framework for fast correspondence field estimation by
exploiting PatchMatch-like random search and EAF-based
cost aggregation synergistically. Our key motivation draws
from the observation that labeling solutions for natural
images are often spatially smooth with discontinuities
aligned with image edges, in contrast to the very “noisy”
ANNF (see Fig. 1). The very nature of spatially coherent
ground-truth labeling solutions actually advocates a collabo-
rative label search and propagation strategy for similar pixels
covered in the same compact superpixel, without necessarily
going to the pixel-wise fine granularity in PatchMatch [6].

Another key motivation from a computing perspective is
that the efficiency of EAF essentially comes from the high
computational redundancy or the vast opportunity for
shared computation reuse among neighboring pixels when
filtering an image or cost slice. However, PatchMatch pro-
cesses each pixel with its random set of label candidates
individually in raster scan order. This renders EAF techni-
ques not applicable and the cost aggregation runtime to
grow linearly with the filter kernel size m ¼ ð2rþ 1Þ2 [9],
resulting in heavy computational loads.

Based on the above analysis, we propose to partition the
input image into non-overlapping superpixels, and use
them as the basic units for performing random search, prop-
agation and subimage-based efficient cost aggregation col-
laboratively. As a spatially regularized labeling solution
is favored, such a superpixel-based strategy, adapting to
the underlying image structures, is more consistent with
the goal of correspondence field estimation than its pixel-
based counterpart. Compared to the propagation from
the immediate causal pixels [6], taking superpixels as the
basic primitive also effectively extends the propagation
range and ameliorates the issue of being trapped in local
optimum. More importantly, superpixel-based collabora-
tive processing creates desired chances for computation
reuse and speedup.
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4.1 Superpixel-Based Image Representation

As a key building block to many computer vision algo-
rithms, superpixel decomposition of a given image has been
actively studied. In this paper, we choose the recently pro-
posed SLIC superpixel algorithm [3] to decompose an input
color image I into K non-overlapping superpixels or

segments, i.e., S ¼ fSðkÞj S K
k¼1SðkÞ ¼ I and 8k 6¼ l; SðkÞ\

SðlÞ ¼ ;g. Compared to other graph-based superpixel algo-
rithms, e.g., [15], the SLIC method yields state-of-the-art
adherence to image boundaries, while having a faster run-
time linear in the number of pixels M. Another important
advantage is that SLIC superpixels are compact and of more
regular shapes and sizes (M=K on average), giving a low
overhead when their bounding-boxes are sought as dis-
cussed later. Spatial compactness also assures that the pixels
from the same superpixels are more likely to share similar
optimal labels. Fig. 2a shows SLIC superpixels generated
with different parameters. For the convenience of presenta-
tion, we also define two additional variables. As shown in
Fig. 2b, for a given segment SðkÞ, BðckÞ represents its mini-
mum bounding-box centered at pixel ck and BðckÞ 2 I. We
use RðckÞ to denote the subimage that contains BðckÞ, but
with its borders extended outwards by r pixels while being
restricted to remain within I.

4.2 PatchMatch Filter Algorithm

Now we present the PatchMatch filter—a general computa-
tional framework to efficiently address discrete labeling
problems, exploiting superpixel-based PatchMatch search
and efficient edge-aware cost filtering. The PMF framework
is general and allows the integration of various ANNF and
EAF techniques. We will present improved superpixel-
based search strategies in Section 4.3.

Unlike the regular image grid that has a default neighbor
system, an adjacency (or affinity) graph is first built for an
input image decomposed into K superpixels in a prepro-
cessing step. We use a simple graph construction scheme
here: every segment serves as a graph node, and an edge is
placed between two segments if their boundaries have an
overlap. Similar to PatchMatch [6], a random label is then
assigned to each node. After this initialization, we process
each superpixel SðkÞ roughly in scan order. The PMF algo-
rithm iterates two search strategies in an interleaved man-
ner, i.e., neighborhood propagation and random search.

First, for a current segment SðkÞ, we denote its set of spa-
tially adjacent neighbors as NðkÞ ¼ fSðiÞg. A candidate pixel

t 2 SðiÞ is then randomly sampled from every neighboring
segment, totaling a number of jN ðkÞj. As a result, a set of
current best labels Lt ¼ fltg assigned to the sampled pixel
set ftg can be retrieved, and they are propagated to the
superpixel SðkÞ under consideration. Given this set of prop-
agated labels Lt, EAF-based cost aggregation in Eq. (1) is
then performed for the subimage RðckÞ defined for SðkÞ, but
the filtering result is used only for the pixels in BðckÞ. The
reason is that pixels in RðckÞnBðckÞ are not supplied with all
possible support pixels needed for a reliable full-kernel fil-
tering, and also they tend to have a lower chance of sharing
similar labels with pixels in SðkÞ. We denote such a sub-
image-based cost filtering process over a selected set of
labels with a function f, which is defined as follows,

f : C RðckÞ; fl 2 Ltgð Þ 7! ~C BðckÞ; fl 2 Ltgð Þ ; (2)

where C and ~C represent the raw and filtered cost volume of
cross-section size of jRðckÞj and jBðckÞj, respectively. For any
pixel p 2 BðckÞ, its current best label lp is updated by a new

label l 2 Lt if ~Cðp; lÞ < ~Cðp; lpÞ.
After the preceding propagation step, a center-biased

random search as in PatchMatch [6] is performed for the
current segment SðkÞ. It evaluates a sequence of random
labels Lr sampled around the current best label l� at an
exponentially decreasing distance. We set the fixed ratio a

between two consecutive search scopes [6] to 1=2. Different
ways exist to define l�. Here we randomly pick a reference
pixel s 2 SðkÞ to promote the label propagation within a seg-
ment. We set l� ¼ ls, where ls is the current best label for s.
The function f is then applied again to filter those cost subi-
mages specified by Lr by substituting for Lt in Eq. (2).

To remove unnecessary computation, a list recording the
labels that have been visited for each segment SðkÞ is main-
tained. Therefore, no subimage filtering will be needed if a
candidate label has been visited before. It is also clear from
Fig. 2b that compact superpixels SðkÞ are favored in our
PMF algorithm, as the filtering overhead incurred by the
stretched sizes of RðckÞ and BðckÞwill be kept low.

Discussion. Note that prior stereo or optical flow meth-
ods [21], [49] often take segments as the matching units and
infer a single displacement for each segment. To achieve
pixel-wise accuracy, further (continuous) optimization is
still required that makes them even slower. In contrast, our
PMF method works like other cost-volume filtering meth-
ods [34]. It directly estimates and decides the optimal label
for each pixel independently, while leveraging their shared
spatial neighbors and plausible label candidates for fast
computation. Also, the common weakness of segmentation-
based methods, i.e., they cannot recover from segmentation
errors, does not apply.

To be emphasized is that the proposed superpixel-based
PatchMatch method does not reduce the number of label
evaluations performed for each pixel per iteration, when
compared to the original pixel-based PatchMatch meth-
ods [6], [9]. The main difference is that our PMF method
performs EAF-based cost aggregation collaboratively for all
pixels contained in a superpixel together over a set of
shared label candidates, while a pixel-based PatchMatch
method [9] evaluates the label candidates generated for
each pixel individually. With our more densely connected

Fig. 2. (a) SLIC superpixels of approximate size 64, 256 and 1024 pixels.
Fig. courtesy from [3]. (b) Bounding-box BðckÞ containing the superpixel
SðkÞ centered at pixel ck and r-pixel extended subimage RðckÞ.
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graph edges (involving causal and non-causal spatial neigh-
bors plus non-local appearance neighbors to be presented
shortly), the number of label candidates attempted per
graph node (i.e., each superpixel) in one iteration actually
increases. More importantly, a superpixel-based Patch-
Match scheme can take advantage of image segmentation to
implicitly promote more (long-range) spatial regularization,
and allow plausible label candidates to be propagated over
distance effectively. The performance gain brought by our
superpixel-based algorithm over pixel-based PatchMatch
methods will be shown in Section 6.

4.3 Superpixel-Induced Efficient Search Strategies

For the clarity sake, we presented the proposed PMF frame-
work in Section 4.2 based on a baseline search and propaga-
tion strategy conceptually close to the original PatchMatch
principle [6]. We further propose some improved search
strategies induced by the superpixel-based image represen-
tation (see Fig. 3). Compared to the baseline PatchMatch
method [6], the new strategies are more effective and effi-
cient in finding and propagating plausible candidates.

Enrichment. First, we generalize the adjacency graph in
Section 4.2 to add at most k new appearance neighbors to
every node or segment. Specifically, given a segment SðkÞ,
we search within a predefined window the top k segments

N aðkÞ ¼ fSaðjÞ; j ¼ 1; 2; . . . ; kg most similar to SðkÞ. Due to
arbitrary shapes and uneven sizes of different segments, we
use a loose form to define the inter-segment similarity
HðSðkÞ; SðjÞÞ as follows,

HðSðkÞ; SðjÞÞ¼
X

s2SðkÞ;t2SðjÞ
exp � s�tk k2

s2
s

� Is�Itk k2
s2
r

 !
; (3)

s and t denote pixels randomly sampled from segment SðkÞ
and SðjÞ, respectively. We repeat this random pair sampling
for a fixed number of times, e.g., 10 percent of the average
superpixel size. ss and sr control the spatial and color simi-
larity. Picking the top k segments fSaðjÞg closest to SðkÞ and
also above a similarity threshold, N aðkÞ augments the origi-
nal spatial neighbor setNðkÞ for SðkÞ by non-local neighbors
similar in appearance. We set k ¼ 3 and ss¼1 here. This
enrichment scheme allows effective and fast propagation of
plausible label candidates from similar segments. Note that
other methods such as color histograms can also be used to
evaluate the similarity between two superpixels in Eq. (3).

Initialization. As image representation in superpixels
greatly reduces the graph complexity, this motivates us to
design a better label initialization strategy than the random
initialization [6]. The basic idea is to assign a potentially good

candidate label rather than a random label to each segment
SðkÞ. Given themaximum label search rangeW , we select for
segment SðkÞ in image I a closest segment S0ðjÞ from the tar-
get image I 0 within a slightly enlarged range. The similarity
between segments is evaluated as in Eq. (3), but with ss

decreased to 100 to favor spatially close segments. The dis-
placement vector between the centroids of SðkÞ and S0ðjÞ is
used as the initial label forSðkÞ. Such a preprocessingmethod
of low complexity makes PMF converge faster and tackles
small objects with large displacements better.

4.4 Adaptive Cross-Scale Consistency Constraint

Up to this point, the PMF technique is designed as a fast label-
ing algorithm that takes advantage of EAF for cost aggrega-
tion and randomized label search and refinement. Though it
works quite well as a significantly accelerated alternative to
cost volume filtering, PMF still faces the same challenge
when dealing with large textureless regions (see Fig. 4). This
is largely due to the limited labeling regularization power
provided by local cost aggregation, where a global smooth-
ness constraint is not explicitly enforced. With the aim of
tackling this challenge in a computationally efficient way, we
propose a cost-effective approach to improve the matching
accuracy of the PMF algorithm,which is termed fPMF.

The key idea originates from a general observation that
correspondences estimated at a coarse image scale tend to
be more reliable for weakly-textured regions, where a stron-
ger regularization helps resolving ambiguous visual
matches. However, on the other hand, visual correspond-
ences estimated at a fine image scale localize and preserve
structure or motion details much better. With the goal of

Fig. 3. Generalized affinity graph and improved strategies: superpixel-
induced enrichment and initialization.

Fig. 4. Strength of the cross-scale consistency constraint in matching
large low-textured regions. (a, b) Input Baby2 stereo image pair.
(c) Ground-truth depth map. (d, e) Depth map and error map of the PMF
algorithm (without post-processing). (f) Depth map of the PMBP
method [8] with a strong regularization weight b (When b ¼ 0, the result-
ing PM-stereo method [9] struggles with the low-textured regions.).
(g, h) Depth map and error map of the fPMF algorithm (without post-
processing). (i) The binary classification map � superimposed on the left
input image (green pixels denote the classified textureless regions, oth-
erwise textured regions). It is generated to adaptively adjust the cross-
scale consistency constraint in fPMF.
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estimating a high-quality correspondence field with both
coherence and details ultimately at the full image scale, we
propose to incorporate a spatially adaptive, cross-scale con-
sistency constraint into a hierarchical image matching work-
flow. Basically, we construct an image pyramid for each
image of a given pair, and then apply a slightly modified
PMF algorithm to each image scale, allowing pixels on a
fine scale to integrate the “guidance” from the labeling
results of their parents estimated at a coarse scale.

Specifically, for a fine scale of the constructed image pyra-
mid (we empirically set the number of image scales to 2 in
this paper), an approximate texture and textureless region
classification map � is quickly computed at first. The binary

classification map � ¼ f�pg: Z2 7! f0; 1g classifies a pixel p
as either from a textured region (�p ¼ 1) or from a textureless
region (�p ¼ 0). The key motivation is that for textureless
regions, label estimation from a coarse layer should enforce a
stronger smoothness constraint over the corresponding child
nodes at an adjacent fine scale; while for the textured regions,
this constraint should be attenuated to favor detail-preserv-
ing estimation results from the fine layers.

Based on this guideline, given a pixel p and a candidate

label l,1 we slightly modify the aggregated cost ~CpðlÞ by add-
ing a cross-scale consistency cost

ĈpðlÞ ¼ ~CpðlÞ þ �p � l� l�pa

��� ���
1
; (4)

where pa denotes the pixel p’s parent node in the coarse
scale and the label assigned to it is l�pa . The weighting

parameter �p is adaptively decided as follows:

�p ¼ �p � �1 þ ð1��pÞ � �2 : (5)

The two constants �1 and �2 (with �1 � �2) are set to
control the parent-child label regularization strength
adaptively for pixels in the textured and textureless
regions, respectively. From Eq. (4), it is easy to see the

computation of ĈpðlÞ incurs only a minimal complexity

overhead over computing ~CpðlÞ, based on a precomputed
classification map �. When this cross-scale consistency
constraint is turned on, for any pixel p at a fine image

scale, the new cost ĈpðlÞ rather than ~CpðlÞ is used in the
label update process with the WTA scheme.

Now we turn to the task of precomputing the classifica-
tion map � for the input image I. In fact, it is not necessary
to compute an exact texture/textureless classification map,
because the imprecise smoothness constraint caused by
small misclassified regions is insufficient to make a wrong
label to be favored. The reason is that such misclassifications
(if any) often occur near object boundaries, where a highly

reliable aggregated cost ~CpðlÞ providing a strong discrimi-
native power is usually available. This means the side effect
of inappropriately using a soft consistency constraint is typ-
ically not on par with the strong matching evidence collec-
tively contributed by neighboring pixels within a local
support window. Moreover, our post-processing steps such
as weighted median filtering presented in Section 5 is par-
ticularly good at correcting this kind of outliers. Therefore,

we use a simple method to calculate f�pg efficiently. First,
we evaluate the density of the Canny edge pixels [13] in a
local neighborhood window (3� 3) for each pixel. A hard
thresholding is then applied to classify pixels with a high
edge density as pixels from textured regions, while the rest
of the image as textureless regions.

It is worth noting that our cross-scale consistency con-
straint differs a lot from the conventional practice of apply-
ing a coarse-to-fine estimation procedure [5], [11], [21], [24],
which has well-known issues such as loss of structure/
motion details and difficulty in capturing small objects
undergoing large displacements [42]. Instead of strictly
committing to a local neighborhood search based on label
results from a coarse level, the cross-scale constraint in
Eq. (4) actually allows for a full-range label search at a fine
scale while taking sensible consideration of the coarse-scale
label assignment. We notice such a cross-scale regulariza-
tion scheme is somewhat similar to the inter-layer motion
smoothness term used in a global optimization formula-
tion [19]. However, our cross-scale regularization constraint
is adjusted in a content-sensitive manner for different image
regions, and also it is cheap to compute and well compatible
with the fast PMF routine. We also make a distinction from
a very recent work improving EpicFlow [33] for optical flow
estimation [4], where a hierarchical correspondence search
strategy is proposed. Though their purpose [4] is to propa-
gate potentially good flow values from non-local pixels
(due to the subsampled neighborhood structures at coarse
image levels) as a data term issue, our design focuses on
improving the end labeling coherence of the proposed PMF
as a general discrete labeling approach.

4.5 Overall Algorithm and Complexity

The PMF algorithm integrated with the cross-scale consis-
tency constraint is summarized in Algorithm 1.

Next, we discuss the complexity of the single-scale PMF
algorithm. Given an image of size M, the label space size L
and the superpixel number K, we further denote the total

area size of subimages by ~R ¼PK
k¼1 jRðckÞj. Enabling the

integration of linear-time EAF techniques for cost filtering,
our PMF approach removes the complexity dependency on
the matching window size m, in contrast to the PatchMatch
methods [6], [9]. Consequently the complexity of our PMF

is OðK2 þ ~R logLÞ, with OðK2Þ accounting for the complex-
ity upper bound of the new initialization strategy in
Section 4.3. This overhead is negligible, because searching
for similar segments can be well constrained in a predefined
search window. The dominant part of PMF is then

Oð ~R log LÞ � OðM log LÞ, as ~R is larger than M by a factor
of a small leading constant. Table 1 gives the comparison,
where the log L terms (thanks to the use of PatchMatch)
were discussed in its original paper [6].

The memory complexity of the PMF method is
OðM þK log LÞ. OðMÞ is used to hold the filtered cost asso-
ciated with the current best label at each pixel. Much less
than OðMÞ, OðK log LÞ records the list of the labels that
have been visited for each segment SðkÞ. In our implementa-
tion, we pre-organize all the subimages fRðckÞg of the input
image I into an array of compact 2D buffers, which facili-
tates cost computation and filtering next.

1. For simplicity, the converted disparity is used instead of the plane
parameters for the L1 distance in Eq. (4) in our slanted-surface stereo.

LU ET AL.: PATCHMATCH FILTER: EDGE-AWARE FILTERING MEETS RANDOMIZED SEARCH FOR VISUAL CORRESPONDENCE 1871



Algorithm 1. The PMF Algorithm for a Given Scale

Input: (1) A pair of images I and I 0 for dense correspondence
estimation. (2) The label map estimated with PMF
from the immediate coarse scale, when the cross-scale
consistency constraint (Section 4.4) is turned on.

Discrete label search space L ¼ f0; 1; . . . ; L� 1g.
Output: The estimated pixel-wise label map L ¼ flðpÞg.
/* Initialization */
1: Partition I into a set of disjoint K segments
I ¼ fSðkÞ; k ¼ 1; 2; . . . ; Kg and build adjacency graph G.
2: Assign a random label lk to each segment SðkÞ. For each
pixel p 2 SðkÞ, set lp ¼ lk. (Optionally, the improved initiali-
zation scheme in Section 4.3 can be applied.)
3: if the cross-scale consistency constraint is turned on & the cur-
rent scale is not the coarsest scale then
Estimate a binary map � to classify pixels into textured or
textureless regions for I.

/* Iterative label search and optimization */
repeat
for k ¼ 1 : K do
4: Propagate a set of labels Lt randomly sampled from
neighboring segments to the segment SðkÞ. (The enrich-
ment scheme in Section 4.3 can be optionally applied
here to augment Lt with plausible label candidates.)
for l 2 Lt do
5: Evaluate the raw matching cost CqðlÞ for each pixel
q 2 RðckÞwith Eq. (7) (or Eq. (8)).
6: Compute the aggregated cost ~CpðlÞ for each pixel
p 2 BðckÞwith Eq. (1).
7: if the cross-scale consistency constraint is turned
on & the current scale is not the coarsest scale then
Compute ĈpðlÞwith Eq. (4).
~CpðlÞ �ĈpðlÞ.

8: if ~CpðlÞ < ~CpðlpÞ; 8p 2 BðckÞ then
lp �l.

9: Decide for SðkÞ a representative label l�k and generate a
set of random labels Lr around l�k.
10: Perform random label candidates evaluation and
update by following Step 5–8 for l 2 Lr.

until convergence or the maximum iteration number.

5 APPLICATIONS

We present two applications of the proposed PMF frame-
work: stereo matching and optical flow estimation. As for
the EAF techniques, we use the guided filter (GF) [17] and
the zero-order cross-based local multipoint filter (CLMF-
0) [25] in this paper, though other methods can be easily
employed in our framework as well. Both techniques have a
linear time complexity to compute Eq. (1), depending only
on the image sizeM but not on the filter kernel sizem.

5.1 Subpixel Stereo with Slanted Support Windows

We present two different PMF-based stereo methods
that model the scene disparity and parameterize the

corresponding label space differently. Like most stereo meth-
ods [25], [34], the first approach makes an assumption of
fronto-parallel local support windows, whereby pixels inside
are matched to pixels in another view at a constant (integer)
disparity. We call this method PMF-C. Similar to [9], the sec-
ond approach attempts to estimate a 3DplaneQp at each pixel
p, so pixels lying on the same slanted surfaces can then be
used for reliable cost aggregation with high subpixel preci-
sion. This method is called PMF-S. Both methods can benefit
from the PMF technique, as the disparity search range can be
quite large due to high-resolution stereo images or an infinite
number of possible 3Dplanes. Since PMF-S solves amore gen-
eralized and challenging labeling problem than PMF-C, we
focus on presenting and evaluating PMF-S.

Slanted Surface Modeling. For each pixel p, we search for
a 3D plane Qp defined by a three-parameter vector
lp ¼ ðap; bp; cpÞ. Given such a plane, a support pixel
q ¼ ðxq; yqÞ in p’s neighborhood WpðrÞ in the left view I will
be projected to q0 ¼ ðxq0 ; yq0 Þ in the right view I 0 as

xq0 ¼ xq � dq ¼ xq � lp � ðxq; yq; 1Þ> ; and yq0 ¼ yq : (6)

In Eq. (6) dq is computed from the plane equation whose
value exists in a continuous domain. This enables PMF-S to
handle slanted scene objects much better than PMF-C by
avoiding discretization of disparities.

Raw Matching Cost. For PMF-C and PMF-S, we compute
the raw matching cost between a pair of hypothetical match-
ing pixels q and q0 in the similar way as [34]

CqðlÞ ¼ ð1� bÞ �min Iq � I 0q0
��� ���; g1

� �
þ b �min rIq �rI 0q0

��� ���; g2

� �
:

(7)

For PMF-C, the label l represents a disparity candidate d,
while l corresponds to the three parameters ðap; bp; cpÞ of a
plane evaluated for the center pixel p in PMF-S. For stereo,
r evaluates only the gradient in x direction in Eq. (7). The
color and gradient dissimilarity is combined using a user-
specified parameter b. g1 and g2 are truncation thresholds.
Since q0 generally takes fractional x-coordinates in PMF-S,
linear interpolation is used to derive its color and gradient.

PMF-Based Cost Aggregation. We apply the PMF algo-
rithm described in Section 4.2 to perform superpixel-based
collaborative random search, propagation and cost sub-
image filtering. The implementation of cost aggregation for
PMF-C is straightforward, whereas more care needs to be
taken for the random plane initialization and iterative ran-
dom search steps in PMF-S.2 To this end, we adopt the
approach presented in [9], and use a random unit normal
vector ðnx; ny; nzÞ plus a random disparity value sampled
from the allowed continuous range as proxy for the plane
representation. View propagation [9] is also used in PMF-S
to propagate the plane parameters of the matching pixels.

Post-Processing. After deciding an initial disparity map
using a WTA strategy, we detect unreliable disparity esti-
mates by conducting a left-right cross-checking. Then, these
unreliable pixels are filled by background disparity exten-
sion [34] in PMF-C, and plane extrapolation [9] in PMF-S.

TABLE 1
Complexity Comparison of Three Different Techniques

CostFilter [34] PatchMatch [9] PMF

Complexity OðMLÞ OðmM logLÞ OðM logLÞ
Memory OðMÞ OðMÞ OðMÞ

2. Our improved strategies are not used for fair comparison with [9].
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Finally, a weighted median filter is applied to refine the
resulting disparity map.

5.2 Optical Flow

We now present a PMF-based optical flow method named
PMF-OF. Its main work flow closely resembles that of PMF-
C, but a label l represents a displacement vector ðu; vÞ in x
and y directions. The label space for optical flow is therefore
often much larger than typical label spaces tackled in stereo
matching. Based on a discrete labeling formulation, PMF-
OF solves for subpixel accurate flow vectors by upscaling
the label dimension to allow fractional displacements along
both x and y directions. As in [34], an upscaling factor of 8 is
used in this paper, and the pixel colors at subpixel locations
are obtained from bicubic interpolation. To tackle more
challenging photometric variations and large occlusion
regions between the two given images seen in the MPI Sin-
tel datasets [12], we present additional improvements for
the raw cost evaluation, cost aggregation, and post-process-
ing modules, respectively.

Raw Matching Cost. Given a candidate label l, a pixel q in
image I is matched to the pixel q0 ¼qþðu; vÞ in the second
image I 0. We compute the raw matching cost between two
pixels q and q0 using both an absolute distance (AD) and
Census transform [27] as

CqðlÞ ¼ rðCAD
q ðlÞ; tadÞ þ rðCcensus

q ðlÞ; tcsÞ : (8)

rðC; tÞ ¼ 1� expð�C=tÞ is a robust function. In our experi-
ments, we set tad ¼ 60 and tcs ¼ 30. The window used in
the Census transform is 11� 11.

PMF-Based Cost Aggregation. The PMF-based label search
and cost filtering algorithm is then applied in a manner sim-
ilar to PMF-C, but PMF-OF includes the improved strategies
presented in Section 4.3 to more effectively tackle the huge
motion search space.

Quadratic Optimization-Based Post-Processing. After esti-
mating the bidirectional flow fields between two images
with a WTA strategy, we detect occluded regions through
the cross-checking [34] between two fields. A simple extrap-
olation used in PMF-C and PMF-S is not so effective when
the occluded region is big due to a large displacement opti-
cal flow. Thus, we proposed to perform a post-processing
step based on a quadratic optimization, in which an objec-
tive is defined using reliable estimates and is then efficiently
minimized by a sparse matrix solver (e.g., [28]). Interest-
ingly, this method is also similar to the non-local disparity
refinement used in [47] in spirit, though more principled.

We define an objective function consisting of the data
term Ep and the smoothness term Epq as follows,

E ¼
X
p

EpðlpÞ þ
X
p

X
q2N p

Epqðlp; lqÞ ; (9)

where N p represents a set of pairwise neighbors for pixel p.
Similar to [31], [47], we define the data term using the initial
flow vector l�p and the occlusion map computed from the

cross-checking technique:

EpðlpÞ ¼ klp � l�pk22; p is visible,
0; otherwise:

�
(10)

When the pixel p is occluded, the cost value EpðlpÞ is always
zero. Thus, its output is determined by flow vectors of reli-
able neighboring pixels by taking into account the following
smoothness term:

Epqðlp; lqÞ ¼ upqklp � lqk22 ; (11)

where upq is an adaptive weight defined by the color similar-
ity between neighboring pixels p and q. The objective func-
tion E holds a quadratic form, and its solution is easily
obtained by solving a linear system based on a large sparse
matrix. We perform this post-processing independently for
u and v. Solving the linear system can help propagate the
flow vectors from visible pixels to occluded pixels depend-
ing on their color similarities.

6 EXPERIMENTAL RESULTS

We implemented the PMF algorithm in C++, and GF [17]
and CLMF-0 [25] used for EAF in Eq. (1). The following
same parameter settings are used across all stereo and opti-
cal flow datasets: fr; sr;b; g1g ¼ f9; 0:1; 0:9; 0:039g. As [34],
g2 ¼ 0:008 ð0:016Þ in Eq. (7) is used for stereo (optical flow).

We set the smoothness parameter � ¼ 0:012 in GF, and the
inlier threshold t ¼ 0:1 in CLMF-0. The segment number
K is set to 500.

When the cross-scale consistency constraint is enabled,
we set �1 ¼ 0:01 and �2 ¼ 0:1 in Eq. (5). We also fix the num-
ber of image scales to 2 in our experiments. The coarse scale
image is downscaled from the original images (fine scale)
by reducing each side length by half. For the coarse scale
correspondence estimation, the number of superpixels used
and the search range along each spatial axis are also
reduced by half, while all the other parameters are kept the
same. All of our experiments were run on an Intel Core i5
2.5 GHz CPU with a single-core implementation.

6.1 Time-Accuracy Trade-Off Evaluation of PMF

First, we present a time-accuracy trade-off study of our PMF
approaches in Fig. 5. Two test image pairs RubberWhale and
Reindeer from the Middlebury optical flow/stereo data-
sets [1], [2] are used to evaluate the PMF-OF and PMF-S
methods (using CLMF-0), respectively. It can be observed
that for a reasonable range of K settings, optical flow or

Fig. 5. Time-accuracy trade-off study of PMF methods.
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stereo results have almost always converged after 8-10 itera-
tions. This also holds true for other images tested with GF
not shown here. Fig. 6 shows the optical flow estimation
results after each iteration (without applying any post-proc-
essing) for a pair of RubberWhale images. In addition,
Fig. 5a1 shows that our improved search strategies in
Section 4.3 lead to a faster convergence speed than the base-
line method, especially for the first few iterations. For the
same iteration number, choosing a larger K (namely a
smaller superpixel size) gives a better gain in accuracy on
optical flow estimation than stereo, due to intrinsically
more complex 2D motions. However, this is at a price of a
longer runtime per iteration caused by the increased adja-
cency graph size and increased subimage processing over-
head. In general, we find that K ¼ 500 gives a good balance
between the complexity of each iteration and the iteration
number for a target accuracy level.

6.2 Sub-Pixel Stereo Reconstruction Results

We first focus on evaluating the proposed PMF-S stereo
method combined with the GF filtering technique [17], using
the Middlebury standard stereo benchmark [2] in Table 2.
(GF is found to perform slightly better than CLMF-0 [25] in
the subpixel-accurate stereo task in [26]). For this evaluation,
we report those leading stereo algorithms designed specifi-
cally to tackle slanted surfaces with subpixel precision, and
set the Middlebury error threshold to 0.5. Table 2 shows that

our PMF-S method performs better than PatchMatch ste-
reo [9] and PMBP [8], while the latter uses belief propagation
for global optimization. The performance of PMF-S is also
close to that of recent PatchMatch-based stereo methods, i.e.,
PM-PM [43] and PM-Huber [18]. In particular, our PMF-S
methods ranks high in performance on the more complex
datasets of Teddy and Cones among all topMiddlebury stereo
methods as shown in Table 3.

In terms of runtime speed, Table 2 shows that PMF-S
achieves about 50� 100 times speedup over PatchMatch
stereo [9] and PMBP [8], when measured on the same CPU.
PMF-S is also much faster than other top algorithms [18],
[39], [43] which use GPUs for acceleration. For visual exami-
nation, Fig. 7 shows the disparity maps estimated by our
PMF-S methods, which preserve depth discontinuities
while generating spatially smooth disparities with high sub-
pixel accuracy. Compared to the fronto-parallel version i.e.,
PMF-C, PMF-S reconstructs the slanted surfaces at much
higher quality, as shown by the rendered novel views.

Next, we use some Middlebury 2006 stereo datasets to
demonstrate the effectiveness of integrating the cross-scale
consistency constraint presented in Section 4.4, our new
strategy called fPMF-S in dealing with large textureless
regions. Table 4 shows the numerical comparisons of Patch-
Match Stereo (PM) [9], PMBP [8], PMF-S [26], and fPMF-S.
The comparisons are done by setting the disparity error
threshold to 0.5 and evaluating the results without post-
processing. Overall, fPMF-S obtains the lowest average ste-
reo estimation error among all the four methods. Particu-
larly, it shows better performance over PMF-S on the

Fig. 6. After applying PMF for a few iterations, optical flow estimation for the RubberWhale images quickly converges.

TABLE 2
Middlebury Stereo Evaluation [2] for Error Threshold = 0.5.

Algorithm Avg. Rank Avg. Error Runtime (s)

GC+LSL [39] 6.2 6.63 400�
PM-PM [43] 8.5 7.58 34�
PM-Huber [18] 8.6 7.33 52�
PMF-S 12.5 7.69 20
PMBP [8] 19.8 8.77 3100o

PatchMatch [9] 28.4 9.91 1005o

� Use GPU. o We Used the Source C++ Code Provided by the Authors of [8].
For [9], we report the runtime after setting the regularization weight to zero in
PMBP [8]. [captured on 29/07/2015].

TABLE 3
Stereo Evaluation Results for Teddy and Cones when

Error Threshold = 0.5 [Captured on 29/07/2015]

Algorithm Teddy Cones

nocc all disc nocc all disc

GC+LSL [39] 4:201 7:122 12:93 3:778 9:169 10:412
PM-PM [43] 5:216 11:911 15:98 3:517 8:867 9:587
PM-Huber [18] 5:538 9:365 15:99 2:701 7:902 7:771
PMF-S 4:453 9:447 13:74 2:892 8:313 8:222
PMBP [8] 5:609 12:012 15:56 3:486 8:888 9:416
PatchMatch [9] 5:6610 11:810 16:510 3:809 10:211 10:210

Fig. 7. Visual results. Top row (left to right): Segmented Teddy image,
PMF-S (w/ CLMF-0) result and close-up comparison. Middle row (left to
right): Segmented Cones image, PMF-S (w/ GF) result and close-up
comparison. Bottom row (left to right): Synthesized novel-view images
with PMF-C and PMF-S.
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datasets containing large textureless regions. The visual
comparisons of two such examples (Baby2 and Bowling2) are
shown in Fig. 8. Note that the single-scale, local aggregation-
basedmethods i.e., PM and PMF-S struggle at flat regions on
Baby2’s book and Bowling2’s ball while fPMF-S can overcome
this limitation. Our fPMF-S also performs better than the
global belief propagation based method PMBP [8]. As we
will show later, the computational overhead of fPMF over
PMF is veryminor.

6.3 Optical Flow Results on the Middlebury
Datasets

We first evaluate our PMF-OF methods (with GF filtering)
using the Middlebury flow benchmark [1]. In the following
tests, we have fixed the motion search range to ½�40; 40	2�82
(about 410,000 labels) and the number of iterations to 10.
Following [26], [34], the raw matching cost is computed as
given in Eq. (7). Table 5 lists the average ranks of a few
competing methods also based on discrete optimization as
well as the top-performing MDP-Flow2 [42] and NN-
Field [14] measured in the average endpoint error (AEE).
PMF-OF, though simple and free of a large number of
parameters, has a very competitive ranking out of over 110
methods. In particular, it outperforms CostFilter [34] (see
also Fig. 1), even though image-wise cost filtering has been
exhaustively performed for every single label in [34]. This
very fact of a label space subsampling method giving bet-
ter results was also observed and explained from the infor-
mation representation perspective in [29]. Also, using
compact superpixels as the atomic units tends to have bet-
ter spatial regularization than [34], without compromising
the accuracy along motion discontinuities. Table 5 shows

that PMF-OF performs quite well for the three challenging
scenes with fine details and strong motion discontinuities.
In Fig. 9, we compare visually the flow maps estimated by
PMF-OF and other competing methods. Our method pre-
serves fine motion details and strong discontinuities, and
handles nonrigid large-displacement flow without chang-
ing any parameters. Fig. 10 verifies the strength of our
superpixel-induced initialization and search strategies
over the baseline approach.

As shown in Table 5, our PMF method has a significant
runtime advantage and often gives an order of magnitude
speedup over the previous methods. Tested on the same
CPU, PMF-OF runs even over 30-times faster than CostFil-
ter [34] on the Urban sequence, thanks to slashing the com-
plexity dependency on the huge label space size.

6.4 Optical Flow Results on the MPI Sintel Datasets

Now we focus on evaluating large-displacement optical
flow estimation results obtained by the proposed algorithms
including PMF-OF, fPMF-OF, and fPMF-OF (with global
post-processing) on the MPI Sintel dataset [12], a modern
and challenging optical flow evaluation benchmark contain-
ing large displacement flow vectors and more complex non-
rigid motions. Note that in this section we compute the raw
matching cost by using ADCensus in Eq. (8) in all our meth-
ods in Table 6, and we use CLMF-0 [25] for cost aggregation,
which is found to provide the optimal accuracy-complexity
trade-off on the Sintel’s resolution. The prefix ’f’ indicates
the cross-scale smoothness constraint presented in Sec-
tion 4.4 is used. We fixed the search range of flow vectors to

½�200; 200	2. The floating precision of flow vectors was set

to 1
8 for both x and y directions. This results in a huge label

space with over 10 million labels.

TABLE 4
Quantitative Stereo Result Evaluation (w/o Post-Processing) on

Seven Middleburry 2006 Datasets with Error Threshold 0.5

Dataset PM [9] PMBP [8] PMF-S fPMF-S

Baby2 18.80 16.85 12.42 8.94
Books 31.52 27.58 21.17 20.31
Bowling2 15.01 15.10 11.41 10.86
Lampshade1 31.67 30.22 27.46 28.60
Laundry 31.97 33.90 24.86 22.44
Moebius 22.92 25.08 20.35 18.28
Reindeer 21.54 21.57 14.29 15.18

Mean 24.78 24.33 18.85 17.80

Fig. 8. Visual comparison of the stereo results estimated by PatchMatch Stereo (PM) [9], PMBP [8], PMF-S [26], and fPMF-S for Bowling2 (top) and
Baby2 (bottom) that contain large textureless regions.

TABLE 5
Middlebury Quantitative Flow Evaluation Results Measured with
Average Endpoint Error (AEE) for Three Challenging Scenes

Algorithm mRank Schefflera Grove Teddy sec

MDP-Flow2 [42] 9.7 (5,5,2) (19,19,20) (6,5,6) 342
NN-Field [14] 10.3 (3,4,7) (1,1,1) (3,8,1) 362
PMF-OF 34.2 (11,11,14) (11,11,5) (7,3,13) 35
EPPM [5] 39.6 (29,34,14) (19,19,9) (15,18,18) 2.5�
CostFilter [34] 41.7 (10,10,14) (13,16,7) (17,30,15) 55�
DPOF [21] 51.8 (14,12,46) (25,29,16) (32,30,9) 287

In brackets are the ranks for (all, disc, untext). Runtime is given for the Urban
sequence. �use GPU. [captured on 01/08/2015].
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Table 6 shows the comparison of the three PMF-based
methods on the Sintel training set. It is clear that our new strat-
egy with the cross-scale constraint (i.e., fPMF-OF) obtains
lower optical flow estimation errors than the original single-
scale PMF-OF method, incurring only a relatively marginal
runtime overhead. Our global optimization based post-proc-
essing (i.e., fPMF-OF (w/ QO)) leads to further accuracy
improvements. Fig. 11 shows two example cases in the Sintel
training set. Compared to PMF-OF and fPMF-OF, fPMF-
OF (w/ QO) handles large motion and large occlusions better
both visually and quantitatively. Therefore, in the rest of this
section, we use fPMF-OF to simply denote our best PMF vari-
ant with the quadratic optimization-based post-processing.

Next, we move on to test on the MPI Sintel test dataset.
Table 7 shows the quantitative comparison of several pub-
lished optical flow methods with our fPMF-OF method.
Without being specially tailored for this correspondence
task, the proposed fPMF-OF achieves a very competitive
standing on the MPI Sintel benchmark evaluation. The
visual comparison of our fPMF-OF with other popular opti-
cal flow methods (using the authors’ public source code) is
provided in Fig. 12. Our results are visually close to the
results of EpicFlow [33], a leading optical flow method on
the MPI Sintel benchmark, while others have problems in
handling large motions. Note that EpicFlow is a specially
designed, multi-pass method for optical flow that involves

both dense interpolation and variational energy minimiza-
tion, while our PMF is based on a general framework for
discrete labeling problems. The advantage of fPMF-OF over
EPPM [5] is also quite obvious: though EPPM uses a local
PatchMatch-like data aggregation with a coarse-to-fine
framework, it tends to lose fine-grained motion details and
still has difficulties in handling large textureless regions.

7 CONCLUSIONS AND FUTURE WORK

This paper proposed a generic PMF framework of solving
discrete multi-labeling problems efficiently. We have partic-
ularly demonstrated its effectiveness in estimating smoothly
varying yet discontinuity-preserving subpixel-accurate

Fig. 9. Results on Schefflera, Teddy and HumanEva by a) PMF-OF b) CostFilter [34] c) DPOF [21] d) MDP-Flow2 [42].

Fig. 10. Advantages of our improved search strategies proposed in
Secttion 4.3. a) Better initialization. b) Non-local neighbor propagation
(# iteration = 3).

TABLE 6
Evaluation of Different PMF-Based Approaches

on the MPI Sintel Training Dataset

Algorithm PMF-OF fPMF-OF fPMF-OF(w/QO)

Clean pass 3.373 3.094 2.728
Final pass 4.768 4.739 4.210
Runtime(s) 29 37 39

Average end point errors (EPE) are reported. “QO” indicates the
quadratic optimization presented in Section 5.2 is applied.

Fig. 11. Visual and EPE comparison of the optical flow results by PMF-
OF, fPMF-OF, and fPMF-OF (w/ QO).

TABLE 7
Optical Flow Performance on the MPI Sintel Dataset

Method Clean Final Runtime(s)

EpicFlow [33] 4.115 6.285 17
PH-Flow [46] 4.388 7.423 800
DeepFlow [41] 5.377 7.212 19
fPMF-OF 5.378 7.630 39
LocalLayering [36] 5.820 8.043 -
MDP-Flow2 [42] 5.837 8.445 754
EPPM [5] 6.494 8.377 0.95*
S2D-Matching [22] 6.510 7.872 2000
Classic+NLP [37] 6.731 8.291 688
Channel-Flow [35] 7.023 8.835 > 10000
LDOF [10] 7.563 9.116 30

For those methods without providing public code, we report their time on
KITTI. *use GPU. [captured on 12/08/2015].
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stereo and optical flow maps. Additionally, we proposed a
hierarchical matching scheme to extend the PMF approach,
which incorporates a cross-scale consistency constraint in a
spatially adaptive manner. We justified its effectiveness in
handling large textureless regions, while keeping the
strength of the original single-scale PMF that effectively
captures fine-grained details.

Future work broadly include the following aspects. First,
a theoretic study on approximate inference techniques for
continuous MRFs either with a local or global optimization
approach [8], [23], to best exploit particle sampling and cost
aggregation, is very interesting. Second, we plan to apply
and optimize the PMF algorithm also for other tasks or data-
sets, such as the KITTI dataset featuring more structured
rigid road scenes. Yamaguchi et al. [44] presented a well-
designed pipeline specifically for this dataset and achieved

excellent results. It will be interesting to evaluate whether
MotionSLIC proposed in [44] can be used similarly to ini-
tialize our label estimates. In addition, our recent work [45]
based on the PMF framework shows some initial success in
tackling general scene matching. Lastly, optimizing the
PMF algorithm on GPUs or a multi-core CPU for further
speedups will be helpful, for which several acceleration
possibilities exist [6], [7], [32].
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and our fPMF-OF.
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