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Dense Cross-Modal Correspondence Estimation
with the Deep Self-Correlation Descriptor
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and Kwanghoon Sohn, Senior Member, IEEE

Abstract—We present the deep self-correlation (DSC) descriptor for establishing dense correspondences between images taken
under different imaging modalities, such as different spectral ranges or lighting conditions. We encode local self-similar structure in a
pyramidal manner that yields both more precise localization ability and greater robustness to non-rigid image deformations.
Specifically, DSC first computes multiple self-correlation surfaces with randomly sampled patches over a local support window, and
then builds pyramidal self-correlation surfaces through average pooling on the surfaces. The feature responses on the self-correlation
surfaces are then encoded through spatial pyramid pooling in a log-polar configuration. To better handle geometric variations such as
scale and rotation, we additionally propose the geometry-invariant DSC (GI-DSC) that leverages multi-scale self-correlation
computation and canonical orientation estimation. In contrast to descriptors based on deep convolutional neural networks (CNNs),
DSC and GI-DSC are training-free (i.e., handcrafted descriptors), are robust to cross-modality, and generalize well to various modality
variations. Extensive experiments demonstrate the state-of-the-art performance of DSC and GI-DSC on challenging cases of
cross-modal image pairs having photometric and/or geometric variations.

Index Terms—Cross-modal correspondence, pyramidal structure, self-correlation, local self-similarity, non-rigid deformation
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1 INTRODUCTION

IN many computer vision and computational photography
applications, images captured under different imaging

modalities supplement the data provided in color images.
Typical examples of other imaging modalities include in-
frared [1], [2], [3] and dark flash [4] photography. More
broadly, photos taken under different imaging conditions,
such as exposure settings [5], blur levels [6], [7], and illumi-
nation [8], can also be considered as cross-modal [9], [10].

Establishing dense correspondences between such cross-
modal image pairs is essential for combining their disparate
information. However, basic visual properties, including
color or gradients, are frequently not shared across cross-
modal images, thus degrading matching by conventional
feature descriptors [11], [12]. Moreover, geometric variations
frequently appear among them taken under different view-
points or containing moving objects. Although powerful
global optimizers can help to improve the accuracy of cor-
respondence estimation to some extent [13], [14], inherent
limitations exist without suitable matching descriptors [15].
For instance, scale invariant feature transform (SIFT) [11],
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Fig. 1. Examples of matching cost profiles, computed with descriptors
such as SIFT [11], VGG-Net (conv3-4) [16], DASC [10], and DSC along
the scan lines of A, B, and C for image pairs under non-rigid deforma-
tions and illumination changes. In comparison to other handcrafted and
deep CNN-based descriptors, DSC yields more reliable global minima.

one of the most popular feature descriptors, provides rel-
atively good matching performance when there are small
photometric and geometric variations, but it frequently fails
to capture reliable matching evidence across cross-modal
images due to their different visual properties [9], [10].

Although convolutional neural network (CNN) based
features [17], [18], [19], [20], [21], [22], [23], [24] have recently
emerged as a robust alternative, they cannot satisfactorily
address severe cross-modal variations, since their shared
and fixed convolutional kernels across cross-modal images
often produce inconsistent feature maps [21], [25]. Of partic-
ular importance, there lacks a cross-modal benchmark with
dense ground-truth correspondences, making supervised
learning of CNNs less feasible for this task. In addition, a
network trained on small-scale datasets may be overfitted
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to specific modalities.
Meanwhile, to address the problem of cross-modal ap-

pearance and shape changes, feature descriptors have been
proposed to leverage local self-similarity (LSS) [26], which
is motivated by the notion that the geometric layout of
local self-similarities is relatively insensitive to visual prop-
erty variations. The descriptor, called dense adaptive self-
correlation (DASC) [10], makes use of LSS and has demon-
strated high accuracy on cross-modal image pairs. However,
DASC suffers from two significant shortcomings. One is
its limited discriminative power due to a limited set of
patch sampling patterns used for modeling internal self-
similarities. The other major shortcoming is that DASC does
not provide the flexibility to deal with non-rigid geometric
deformations, which deteriorates the matching accuracy.
More recently, a fully convolutional self-similarity (FCSS)
descriptor [24] was proposed to formulate LSS within a deep
network. However, its application to cross-modal correspon-
dence has not been studied.

In this paper, we present a descriptor, called deep self-
correlation (DSC), that overcomes the shortcomings of pre-
vious LSS-based descriptors [10], [24], [26] and provides
robust cross-modal correspondence. This work is motivated
by the observation that local self-similarity appears in a
multi-scale fashion, and thus it is formulated with a pyrami-
dal structure that enhances localization ability and robust-
ness to photometric and geometric deformations. Unlike
LSS [26] which computes self-similarity with respect to
only a central patch, and DASC [10] which selects different
patch pairs and calculates the self-similarity between them,
DSC computes self-correlation surfaces representing the
self-similarity between randomly selected patches and all
other patches, and then aggregates these responses to more
comprehensively encode structural information. This ag-
gregation of self-similarity responses is performed through
log-polar spatial pyramid pooling (L-SPP) where a support
window is partitioned into log-polar divisions from coarse
to fine levels, which yields a representation less sensitive
to non-rigid deformations. For efficient computation of
DSC over densely sampled pixels, we calculate the self-
correlation surfaces through fast edge-aware filtering.

Furthermore, to better address geometric variations, we
propose the geometry-invariant DSC descriptor, called GI-
DSC. In formulating this extension, we leverage the assump-
tion that geometric deformation fields can be approximated
locally by a similarity transformation (i.e., translation, ro-
tation, and uniform scaling). Specifically, to deal with scale
deformations, multi-scale self-correlation surfaces are first
measured on the image pyramid, and then used to en-
code maximal self-similarities across scales, which remain
consistent to scale changes. Canonical orientations are also
estimated with the maximum orientation bin weighted by
the self-correlation values.

Compared to existing CNN-based descriptors [17], [18],
[19], [20], [21], [22], [23] as well as FCSS [24], DSC re-
quires no training data and thus generalizes well to various
modality variations. Fig. 1 illustrates the robustness of DSC
for image pairs with non-rigid geometric deformations and
illumination changes in comparison to existing handcrafted
and even deep CNN-based methods [10], [11], [16].

In experimental results, we show that DSC outperforms

existing feature descriptors and similarity measures on var-
ious benchmarks containing photometric and/or geometric
variations: (1) the Middlebury stereo benchmark [27] with
illumination and exposure variations; (2) a cross-modal and
cross-spectral dataset [9], [10] including RGB and near-
infrared (NIR) images [1], [9], different exposures [5], [9],
flash-noflash images [8], blurry images [6], [7], and RGB-
depth images [9]; (3) the DaLI benchmark [28] containing
non-rigid geometric deformations; (4) the tri-modal human
body segmentation benchmark [29] including RGB, depth,
and far-infrared (FIR) images; and (5) the DIML bench-
mark [30] including RGB images with both photometric and
geometric variations.

This manuscript extends the conference version [31]
through (1) a geometry-invariant extension of DSC, called
GI-DSC; (2) an in-depth analysis of DSC and GI-DSC;
and (3) an extensive comparative study with state-of-the-
art CNN-based descriptors using various datasets. The
source code will be available online at our project webpage:
https://seungryong.github.io/DSC/.

2 RELATED WORK

2.1 Handcrafted and Learned Feature Descriptors

Conventional gradient-based descriptors such as SIFT [11]
or DAISY [12], as well as intensity comparison-based bi-
nary descriptors such as BRIEF [32], have shown limited
performance for estimating dense correspondences between
cross-modal image pairs. Several attempts have been made
using machine learning algorithms to derive features from
large-scale datasets [17], [33]. Recently, for designing feature
descriptors based on a CNN architecture, intermediate acti-
vations are extracted as the descriptor [17], [18], [19], [20],
[21], [22], [23], [24], showing effectiveness for local match-
ing. However, even though CNN-based descriptors encode
a discriminative structure, they have inherent limitations
for cross-modal image correspondence because they are
derived from convolutional layers using shared kernels [21],
[25]. Furthermore, the dearth of ground-truth data for cross-
modal correspondence presents an obstacle for supervised
learning of CNNs in this context.

For cross-modal correspondence, variants of SIFT have
been developed [34], but like SIFT they maintain an in-
herent limitation in dealing with gradients that vary differ-
ently between modalities. For illumination invariant corre-
spondence, Wang et al. proposed the local intensity order
pattern (LIOP) descriptor [35], but radiometric variations
often alter the relative order of pixel intensities. Simo-
Serra et al. proposed the deformation and light invariant
(DaLI) descriptor [28] to provide high resilience to non-rigid
transformations and illumination changes, but it in practice
cannot provide dense descriptors in the image domain due
to its heavy computational load. Recently, CNN-based cross-
spectral similarity models [36], [37] have shown improved
performance on RGB-NIR correspondence, but they require
supervised learning, thus limiting its applicability to various
cross-modal correspondence tasks.

Schechtman and Irani introduced the local self-similarity
(LSS) descriptor [26] for the purpose of template matching,
and achieved impressive results. By employing LSS, many
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approaches have tried to solve for cross-modal correspon-
dence [38], [39], [40]. However, none of these approaches
scale well to dense correspondence due to limited discrim-
inative power and high complexity. Inspired by LSS, Kim
et al. proposed DASC [10] to estimate cross-modal dense
correspondences, but it is not able to handle non-rigid
deformations and has limited discriminative power due to
its fixed patch pooling scheme. More recently, FCSS [24]
formulated LSS within a fully convolutional network where
patch sampling patterns and self-similarity measure are
both learned. Although FCSS improved performance dra-
matically for semantic correspondence, it is tailored to
object-level correspondence, instead of cross-modal image
pairs at a scene level. Moreover, it cannot deal with severe
geometric variations which frequently appear across cross-
modal images.

2.2 Area-Based Similarity Measures
A popular method for medical image registration is mutual
information (MI) [41], but the variations it can reliably
handle are only of global transformations. [42] alleviates
this issue by leveraging a locally adaptive weight obtained
from SIFT matching, but its performance is still limited on
cross-modal variation [43]. Although cross-correlation based
methods such as adaptive normalized cross-correlation
(ANCC) [44] produce satisfactory results for locally linear
variations, they are less effective against more substantial
modality variations. Irani et al. employed cross-correlation
on a Laplacian energy map for measuring multi-sensor
image similarity [45], but this exhibits limited performance
in general image matching tasks. Shen et al. proposed ro-
bust selective normalized cross-correlation (RSNCC) [9] for
dense alignment between cross-modal images, but as an in-
tensity based measure it can still be sensitive to cross-modal
variations. DeepMatching [46] was proposed to compute
dense correspondences by employing a hierarchical pooling
scheme like in a CNN, but it is not designed to handle cross-
modal matching.

2.3 Geometry-Invariant Correspondence Estimation
To alleviate geometric variation problems, many methods
have been proposed based on SIFT flow (SF) [13] opti-
mization, including deformable spatial pyramid (DSP) [14],
scale-less SIFT flow (SLS) [47], scale-space SIFT flow (SSF)
[48], and generalized DSP (GDSP) [49]. However, the large
search spaces for establishing geometry-invariant dense cor-
respondence make computational complexity a critical lim-
itation of these methods. Barnes et al. proposed generalized
PatchMatch (GPM) [50] for efficient matching based on a
randomized search scheme. Yang et al. proposed DAISY
Filter Flow (DFF) [51], which utilizes the DAISY descriptor
[12] with the PatchMatch Filter (PMF) [52], to provide geo-
metric invariance. However, its weak spatial smoothness of-
ten induces mismatched results. While the aforementioned
methods have attempted to address the problem from an op-
timization perspective, various geometry-invariant descrip-
tors have also been developed for geometry-invariant cor-
respondence estimation. Kokkinos et al. proposed the scale
invariant descriptor (SID) [53] to encode geometric robust-
ness in the descriptor itself, but it does not deal with multi-
modal matching. A segmentation-aware approach [54] was

(a) (b) (c)

Fig. 2. Illustration of DSC that uses log-polar spatial pyramid pooling on
pyramidal self-similarity surfaces defined at (a) level 3, (b) level 2, and (c)
level 1. Different colors represent different patches used to reconstruct
the self-correlation surfaces while same colors represent patches in the
same set used in an aggregation procedure.

presented to provide geometric robustness for descriptors,
e.g., SIFT [11] or SID [53], but it can have a negative effect
on the discriminative power of the descriptor. More recently,
geometry-invariant DASC (GI-DASC) [30] employed DASC
in a superpixel-based representation with estimated geo-
metric fields. Although it provides improved robustness to
geometric variations, it inherits the limitations of DASC, and
its performance is sensitive to superpixel segmentation.

3 BACKGROUND AND OVERVIEW

Unlike conventional descriptors [11], [12] that rely on basic
visual properties such as color or gradients, LSS-based de-
scriptors represent local self-similar structures by recording
the similarity between certain patch pairs based on the
observation that the geometric layout of the local self-
similarities is preserved across cross-modal image pairs [10],
[24], [26]. Formally, given an image fi for pixel i, LSS de-
scriptor Di = {di(l)} is defined on a local support window
Ri for l ∈ {1, ..., L} with the feature dimension L such that

di(l) = max
t∈Ti(l)

exp(−S(si(l), t)/σc). (1)

S(s, t) is a self-similarity distance between two local patches
sampled on pixels s and t. si(l) and Ti(l) are l-th anchor
point and pooling bin, respectively. To alleviate the effects
of outliers, the self-similarity responses are encoded by non-
linear mapping with an exponential function of bandwidth
σc. For spatial invariance to the position of the sampling
pattern, the maximum self-similarity within the pooling bin
Ti(l) is computed. Based on this general framework, LSS
has been formulated in various ways, using different self-
similarity distances and different sampling strategies for the
patch pairs [10], [24], [26].

As shown in Fig. 2(a), LSS [26] first computes a self-
similarity surface, discretizes the surface into log-polar bins,
and then stores the maximum value of each bin. It formally
defines si(l) as a fixed center pixel i and Ti(l) as a log-polar
bin Bi(l), defined such that {j|j ∈ Ri, ρr−1 < |i− j| ≤
ρr, φa−1 < ∠(i− j) ≤ φa} with a log radius ρr for r ∈
{1, · · · , Nρ} and a quantized angle φa for a ∈ {1, · · · , Nφ}
with ρ0 = 0 and φ0 = 0, where each pair of r and a
is associated with a unique index l. S(·, ·) is computed
using the sum of squared differences (SSD) [26]. Though LSS
provides robustness to modality variations, matching details
are not well preserved and its significant computation does
not scale well for estimating dense correspondences.
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Fig. 3. Computation of single self-correlation (SSC) descriptor for (a) a
local support window with random samples. (b) For each random patch,
it first computes the self-similarity using an adaptive self-correlation
measure, building multiple self-correlation surfaces. (c) It then encodes
responses on the surfaces through log-polar spatial pyramid pooling. (d)
The responses are concatenated into a feature vector.

DASC [10] encodes a set of the self-similarities between
patch pairs randomly sampled from a log-polar point Pi(l)
as shown in Fig. 2(b), defined such that {j|j ∈ Ri, |i− j| =
ρr,∠(i − j) = φa}, which has a higher density of points
near the center pixel, similar to DAISY [12]. DASC formally
defines si(l) as the l-th randomly sampled pixel and Ti(l)
as the l-th paired sample pixel, which is a special case of the
pooling bin with the size 1× 1. S(·, ·) is computed using an
adaptive self-correlation measure inspired by [44]. Although
the DASC descriptor provides satisfactory results for dense
cross-modal correspondence estimation, its randomized re-
ceptive field pooling has limited representation power and
does not accommodate non-rigid deformations.

Inspired by DASC [10], our DSC descriptor also utilizes
an adaptive self-correlation measure between two patches.
However, we adopt a different strategy in a manner that
builds pyramidal self-similarity surfaces through the ag-
gregation of multiple self-correlation responses on a single
level to improve localization ability and robustness to non-
rigid deformation. First of all, to compute multiple self-
similarities, we formally define the anchor point si(l) as
the l-th randomly sampled pixel and the pooling bin Ti(l)
as a log-polar pyramidal bin (Sec. 4.1). Moreover, to form
pyramidal self-similarity surfaces, we also utilize average
pooling, where the anchor point si(l) is set to multiple
points within a log-polar pyramidal point (Sec. 4.3). Finally,
we alleviate problems caused by geometric variations, i.e.,
scale and/or rotation, in building the GI-DSC descriptor
(Sec. 4.4). Fig. 2(c) illustrates the DSC descriptor, which in-
corporates log-polar spatial pyramid pooling on pyramidal
self-correlation surfaces.

4 THE DSC DESCRIPTOR

4.1 SSC: Single Self-Correlation

To overcome the limitations of self-similarity in the LSS [26]
and DASC [10] descriptors, our approach builds pyramidal
self-similarity surfaces, where feature responses are ob-
tained through log-polar spatial pyramid pooling. We start
by describing a single-scale version of DSC, which we refer
to as single self-correlation (SSC).

4.1.1 Multiple Self-Correlations
Computing the local self-similarity with a single patch as
in [26] is vulnerable to imaging deformations. To overcome
this, we build multiple self-correlation surfaces. Specifically,
we randomly select K points from a log-polar point set Pi
defined within a local support window as in Fig. 3(a). We

(a) s = 1 (b) s = 2 (c) s = 3 (b) s = 4 (e) s = 5

Fig. 4. Examples of log-polar pyramidal bins SB. The total number of
bins is NSB =

∑S
s=2 2

s + 1, where S represents the pyramid level.

then convolve a patch Fr centered at the pixel r with all of
patches Fj for j ∈ Ri as in Fig. 3(b). Similar to DASC [10],
the similarity C(r, j) between patch pairs is measured using
an adaptive self-correlation, which is known to be effective
in addressing cross-modal variations, as follows:

C(r, j) =

∑
r′,j′

ωr,r′ωj,j′(fr′ −Gr)(fj′ −Gj)√∑
r′
{ωr,r′(fr′ −Gr)}2

√∑
j′
{ωj,j′(fj′ −Gj)}2

,

(2)
where Gr =

∑
r′ ωr,r′fr′ and Gj =

∑
j′ ωj,j′fj′ repre-

sent weighted intensity averages in pixels r′ ∈ Fr and
j′ ∈ Fj , respectively. Similar to DASC [10], the weight
ωr,r′ represents how similar two pixels r and r′ are, and
the weight is normalized, i.e.,

∑
r′ ωr,r′ = 1. It may be

defined using any form of edge-aware weighting [55], [56],
which increases the precision in describing self-similarities
and boosts performance.

4.1.2 Log-polar Spatial Pyramid Pooling (L-SPP)
To encode the feature responses on the self-correlation sur-
face, we exploit spatial pyramid pooling (SPP) [25], [57],
[58], [59], [60], which has been shown to be robust to
geometric deformations. We formulate this in a log-polar
configuration, called log-polar spatial pyramid pooling (L-
SPP). Note that some other descriptors also adopt log-
polar pooling, which brings greater robustness because of
its higher pixel density near the central pixel [12], [26], [32].
We also encode more structure information with LP-SPP.

Specifically, as shown in Fig. 4, the log-polar pyramidal
bins SBi(u) are first defined from the log-polar bins Bi(l),
where u indexes all bins in all pyramidal levels s ∈ {1, ..., S}
with the number of levels S. The log-polar pyramidal bin
at the top of the pyramid, i.e., s = 1, encompasses all of
the bins Bi(l). The second level, i.e., s = 2, is defined by
dividing the top one into quadrants. For lower pyramid
levels, i.e., s > 2, they are defined differently according
to whether s is odd or even. For an odd s, the bins are
defined by dividing bins in the upper level into two parts
along the radius. For an even s, they are defined by dividing
bins in the upper level into two parts with respect to angle.
Thus, the number of log-polar pyramid bins is defined as
NSB =

∑S
s=2 2

s + 1.
As illustrated in Fig. 3(c), the feature responses are finally

max-pooled on the log-polar pyramidal bins SBi(u) of
each self-correlation surface C(r, j), yielding the following
feature response:

gi(r, u) = max
j∈SBi(u)

C(r, j). (3)

It is repeated for all r ∈ {1, ...,K} and u ∈ {1, ..., NSB},
yielding accumulated correlation responses gssci (l) =⋃
{r,u} gi(r, u) where l indexes over all r and u.
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Fig. 5. Efficient computation of multiple self-similarity surfaces in an
image: (a) An image with a doubled support window and random sam-
ples. (b) A 1-D vector representation of a self-similarity surface. (c) Self-
similarity surfaces. (d) Self-similarity responses after L-SPP. With edge-
aware filtering and response reformulation, self-similarity responses are
computed efficiently in a dense manner.

Interestingly, LSS [26] also uses a max-pooling on the
log-polar bins to mitigate the effects of non-rigid deforma-
tion. However, the max-pooling in the single self-similarity
surface of LSS [26] loses fine-scale matching details as re-
ported in [10]. By contrast, our descriptor employs log-polar
spatial pyramid pooling on multiple self-similarity surfaces
in order to provide more discriminative representation of
self-similarities, thus maintaining matching details as well
as providing robustness to non-rigid deformations.

4.1.3 Non-linear Mapping and Normalization

The feature responses are passed through non-linear map-
ping and normalization to mitigate the effects of outliers.
With the accumulated correlation responses gssci (l), the SSC
descriptor Dssc

i =
⋃
ld

ssc
i (l) is computed for l ∈ {1, ..., Lssc}

through a non-linear mapping:

dssci (l) = exp(−(1− |gssci (l)|)/σc). (4)

The features obtained from the SSC descriptor are of size
Lssc = K × NSB. Finally, dssci (l) for each pixel i is normal-
ized with an L-2 norm for all l.

4.2 Efficient Computation for Dense Description

The most time-consuming part of SSC is in constructing
self-correlation surfaces for all r and j, requiring K ×M2

R
computations of (2) at each pixel i where MR ×MR is the
size of a local support windowR. Straightforward computa-
tion of a weighted summation using ω in (2) would require
considerable processing with a computational complexity of
O(IM2

FKM
2
R), where I = H ×W represents the size of an

image (height H and width W ) and MF ×MF is the size of
a patch F . To expedite processing, we pre-compute the self-
correlation surfaces within a larger local support window,
with acceleration via fast edge-aware filtering [55], [56].

First of all, we compute C(r, j) efficiently by rearrang-
ing all sampling patterns (r, j) into reference-biased pairs
(i, h) = (i, i + r − j). Similar to DASC [10], C(i, h) can be
expressed in an approximate form1 as

Ĉ(i, h) =

∑
i′,h′

ωi,i′(fi′ −Gi)(fh′ −Gih)√∑
i′
ωi,i′(fi′ −Gi)2

√ ∑
i′,h′

ωi,i′(fh′ −Gih)
2
, (5)

1. As shown in [10], there exists marginal performance difference
between the asymmetric self-correlation measure in (5) and original
one in (2).
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Fig. 6. Visualization of the SSC and DSC descriptors. Our descriptors
consist of pyramidal self-correlation computation, log-polar spatial pyra-
mid pooling, non-linear mapping, and normalization.

where Gih =
∑
i′,h′ ωi,i′fh′ . For faster computation, it can be

expressed as follows [10]:

Ĉ(i, h) = Giih −Gi ·Gih√
Gi2 − (Gi)2 ·

√
Gih2 − (Gih)

2
, (6)

where Giih =
∑
i′,h′ ωi,i′fi′fh′ , Gi2 =

∑
i′ ωi,i′f

2
i′ , and

Gih2 =
∑
i′,h′ ωi,i′f

2
h′ . It can be efficiently computed using

any form of fast edge-aware filter [55], [56] with a complex-
ity of O(IKM2

R). We then simply obtain C(r, j) from Ĉ(i, h)
by re-indexing sampling patterns [10].

Though we remove the computational dependency on
patch size MF ×MF , K ×M2

R computations of (6) are still
needed to obtain the self-correlation surfaces, where many
sampling pair computations for i and h are repeated. To
avoid such redundancy, we first compute a self-correlation
surface C(i, h) for h ∈ R∗i with a doubled local support
windowR∗i of size 2MR×2MR. The doubled local support
window is used because the minimum support window
size for R∗i to cover all samples within Ri is 2MR × 2MR
as shown in Fig. 5(a). After the self-correlation surface for
R∗i is computed once over the image domain, C(r, j) can
be extracted through an index mapping process. With this
strategy, the computational complexity of constructing self-
correlation surfaces becomes O(I4M2

R), which is smaller
than O(IKM2

R) as 4� K.

4.3 DSC: Deep Self-Correlation

So far, we have discussed how to build multiple self-
similarity surfaces at a single scale and pool the responses.
In this section, we extend this idea by encoding self-similar
structures at multiple scales. DSC is defined similarly to
SSC, except that average pooling is executed before L-SPP
(see Fig. 6). Concretely, on multiple self-correlation surfaces,
we perform the average pooling using log-polar pyramidal
point sets. In comparison to the self-correlations just from a
single patch, the aggregation of self-correlation responses is
clearly more robust, and it requires only marginal computa-
tional overhead over SSC. The strength of such a pyramidal
aggregation has also been shown in [46].

Specifically, to build the pyramidal self-correlation sur-
faces through average pooling, we first define the log-polar
pyramidal point sets SPi(v) from log-polar point sets Pi(l),
where v indexes all pyramidal levels and all points in each
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Fig. 7. Visualization of building pyramidal self-correlation surfaces. Mul-
tiple self-correlation surfaces are sequentially aggregated using average
pooling from the bottom to the top of the log-polar pyramidal point set.

level. SPi is defined similarly to SBi, but on point sets.
As shown in Fig. 7, pyramidal self-correlation surfaces are
computed by aggregating C(r, j) for all patches determined
on each SP(v) such that

C(v, j) =
∑

r∈SP(v)

C(r, j)/Nv, (7)

which is defined for all v, and Nv is the number of patches
within SP(v). The pyramidal self-correlation surfaces are
sequentially aggregated using average pooling from the
bottom to the top of the log-polar pyramidal point set.
After computing pyramidal self-correlational aggregations,
DSC employs L-SPP as well as non-linear mapping and
normalization, similar to SSC as presented in Sec. 4.1. A
pyramidal self-correlation response is computed as

hi(v, u) = max
j∈SBi(u)

C(v, j). (8)

We then build a self-correlation response from gi in (3)
and hi in (8) such that gdsci (l) =

⋃
{r,v,u}{gi(r, u), hi(v, u)}

where l indexes over all r, v, and u. Our DSC descriptor
Ddsc
i =

⋃
ld

dsc
i (l) is then built from gdsci (l) through a non-

linear mapping as in (4) for l ∈ {1, ..., Ldsc} with Ldsc =
(K+NSP)NSB. Finally, ddsci (l) for each pixel i is normalized
with an L-2 norm for all l.

4.4 Geometry-invariant DSC
It is known that LSS-based descriptors [10], [24], [26], [61]
provide geometric invariance to some extent thanks to its
log-polar pooling. However, under more significant geo-
metric variations, existing LSS-based descriptors including
DSC do not provide satisfactory performance due to the
lack of an explicit module to consider geometric variations.
To overcome this issue, we propose geometry-invariant
DSC (GI-DSC) that explicitly addresses scale and rotation
deformations. The underlying assumption is that geometric
deformation fields across cross-modal images can be locally
well approximated by a similarity transformation (i.e., trans-
lation, rotation, and uniform scale transformation).

4.4.1 Scale-Invariant Multiple Self-Similarities
Existing scale estimation technique as in SIFT [11] is sensi-
tive to cross-modal deformation as exemplified in [30]. We
observe that the maximal self-similarities across multiple
scales remains consistent with respect to scale changes, and
leverage this to provide scale invariance.

Specifically, we first build a Gaussian image pyramid
fm = f ∗ %m, where %m is the m-th Gaussian kernel for

Algorithm 1: Deep Self-Correlation (DSC) Descriptor
Input: image f , random samples r
Output: DSC descriptor Ddsc

i
Parameters: number of log-polar pyramidal bins (points) NSB(NSP )
1 : Compute Ĉ(i, h) for a doubled support window R∗i by using (6).
2 : Compute C(r, j) from Ĉ(i, h) according to the index mapping.

for v = 1 : NSP do
/∗ Pyramidal aggregation using average pooling ∗/

3 : Determine a log-polar pyramidal point SPi(v).
4 : Compute C(v, j) by using average pooling for SPi(v)

on C(r, j).
end for
for u = 1 : NSB do

/∗ Pyramidal pooling using L-SPP ∗/
5 : Determine a log-polar pyramidal bin SBi(u).
6 : Compute gi(r, u) and hi(v, u) by using L-SPP

on each SBi(u) from C(r, j) and C(v, j), respectively.
end for

7 : Build pyramidal self-correlation responses gdsci (l) from
gi(r, u) and hi(v, u).

8 : Compute a DSC descriptor Ddsc
i =

⋃
ld

dsc
i (l),

followed by L-2 normalization.

m = {1, ...,M} and M is the number of Gaussian pyramid
levels. For each image pyramid level fm, we measure the
asymmetric self-correlation Ĉm(i, h), similar to (6), such that

Ĉm(i, h) =
Gi,mih −Gmi ·G

i,m
h√

Gmi2 − (Gmi )2 ·
√
Gi,mh2 − (Gi,mh )2

, (9)

where Gi,mih , Gmi , Gi,mh , Gmi2 , and Gi,mh2 are measured for each
image pyramid level fmi . The scale-invariant self-correlation
is then computed by max-pooling as follows:

Ĉsi(i, h) = max
m∈{1,...,M}

Ĉm(i, h). (10)

4.4.2 Orientation Estimation for Rotation Invariance
Similar to scale invariance, rotation invariance can also be
achieved by applying multiple orientations to an image.
However, such a technique would dramatically increase
computational complexity as a function of the product
between the number of scales and rotations. Furthermore,
our initial experiments indicated that this degrades the lo-
calization ability of the descriptor around object boundaries
substantially. Fortunately, unlike scale, the orientation field
on each pixel can be easily determined from a maximum
among orientation histogram weighted by (pre-computed)
self-correlations. By transforming the randomly sampled
points, the log-polar pyramidal bins, and the log-polar
pyramidal points according to the estimated orientation, our
descriptor provides rotation invariance on each pixel with
only marginal computational overhead.

Specifically, an orientation θi of each pixel i is found by
constructing a histogram with angles ∠ (i− h) for h ∈ R∗i
weighted with self-correlations Ĉ(i, h) such that

lhisti (a) =
∑

h∈Hi(a)

Ĉ(i, h)/Na, (11)

where Hi(a) = {h|h ∈ R∗i , θa−1 < ∠(i− h) ≤ θa} and
a quantized angle θa for a ∈ {1, ..., Nθ}, and Na is the
number of samples in Hi(a). We then simply choose the
main orientation for each pixel corresponding to the most
heavily-weighted bin in the histogram, i.e., argmaxal

hist
i (a).

Moreover, based on the observation that the geometric
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Algorithm 2: Geometry-Invariant DSC (GI-DSC) Descriptor
Input: image f , random samples r
Output: GI-DSC descriptor Dgi−dsc

i
Parameters: number of log-polar pyramidal bins (points) NSB(NSP )

/∗ Scale-invariance ∗/
1 : Compute the Gaussian image pyramid fmi = fi ∗ %m.
2 : Compute Ĉm(i, h) for fmi using (9).
3 : Estimate Ĉsi(i, h) using max-pooling as in (10).

/∗ Rotation-invariance ∗/
4 : Construct lhisti (a) with Ĉsi(i, h) using (11).
5 : Estimate the orientation θi for each pixel i from lhisti (a).
6 : Filter out the orientation θi to provide smooth geometric fields.
7 : Transform r, SBi, and SPi according to θi.
8 : Through Step 2-8 in Algorithm 1, compute a GI-DSC descriptor

such that Dgi−dsc
i =

⋃
ld

gi−dsc
i (l).
... ... ...
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Fig. 8. Visualization of geometry-invariance in GI-DSC. To provide scale
invariance, our approach measures multi-scale self-correlation surfaces,
and fuses them by max-pooling. Moreover, canonical orientation fields
for each pixel are estimated to provide orientation invariance.

deformation fields tend to vary smoothly except at object
boundaries [24], [62], the estimated orientation θi for each
pixel i is regularized using a fast (color-guided) global
image filter [63] to correct erroneous rotation fields.

To provide rotation invariance to the DSC descriptor
in Sec. 4.3, we transform the randomly sampled points,
the log-polar pyramidal bins and the log-polar pyramidal
points according to estimated rotation θi, and then build the
DSC descriptor similarly to Fig. 6. By incorporating both
scale- and rotation-invariance within the DSC descriptor,
we obtain the GI-DSC descriptor with geometric invariance
as well as cross-modal robustness. Fig. 8 illustrates this
geometry invariance in the GI-DSC descriptor.

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Experimental Settings
In our experiments, we implemented DSC and GI-DSC in
Matlab/C++ on an Intel Core i7-3770 CPU at 3.40 GHz
with the following fixed parameter settings for all datasets:
{MR,MF , σc,K, S,Nρ, Nφ} = {9, 5, 0.5, 32, 3, 4, 16}, and
{Nθ,M} = {32, 4}. The feature dimension L of SSC and
DSC (or GI-DSC) was fixed to 416 and 585, respectively. We
choose the guided filter (GF) for edge-aware filtering in (6),
with a smoothness parameter of ε = 0.032.

In the following, DSC and GI-DSC descriptors were
compared to other handcrafted descriptors (SIFT [11],
DAISY [12], BRIEF [32], LIOP [35], DaLI [28], LSS [26],
SegSIFT [54], SegSID [54], DASC [10], and GI-DASC [30]),
recent CNN-based descriptors (MC-CNN [64], VGG2 [16],
FCSS [24], MatchNet (MatchN.) [66], Deep Compare
(DeepC.) [67], Deep Descriptor (DeepD.) [21], Learned In-
variant Feature Transform (LIFT) [22], L2-Net [23], and

2. In ‘VGG’, ImageNet pretrained VGG-Net [16] from the bottom
conv1 to the conv3-4 layer were used with L2 normalization [65].
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Fig. 9. Component analysis of DSC on the Middlebury benchmark [27]
for varying parameter values, such as (a) width (or height) MR of the
local support window, (b) number of log-polar points Nρ × Nφ, (c)
number of random samples K, and (d) level of log-polar pyramid S. In
each experiment, all other parameters are fixed to the initial values.

Quadruplet Network (Q-Net) [37]3), and area-based simi-
larity measures (ANCC [44] and RSNCC [9]). Furthermore,
to evaluate the performance gain by encoding self-similar
structures at multiple scales, we compared SSC and DSC. To
determine correspondences among the candidates, we used
various optimization techniques, such as winner-takes-all
(WTA) [64], graph-cut (GC) [68], and SIFT flow (SF) [13], for
which the code is publicly available.

5.2 Ablation Study

Fig. 9 shows the performance of DSC with varying param-
eter values, including width (or height) MR of the local
support window, number of log-polar points Nρ × Nφ,
number of random samples K, and levels of the log-polar
pyramid S. Fig. 9(c) and (d) demonstrate the effectiveness
of self-correlation surfaces and pyramidal structures. For a
quantitative analysis, we measured the average bad-pixel
error rate in non-occluded areas of disparity maps on the
Middlebury benchmark [27]. With a larger support window
MR × MR, the matching quality improves rapidly until
about 9×9.Nρ×Nφ influences the performance of log-polar
pooling, which is found to plateau at 4× 16. Using a larger
number of random samples K yields better performance
since DSC encodes more information. The number of log-
polar pyramid levels S also affects the amount of encoding.
Based on these experiments, we set K = 32 and S = 3 in
consideration of efficiency and robustness.

5.3 Middlebury Stereo Benchmark

We first evaluated SSC and DSC on the Middlebury stereo
benchmark [27], which contains illumination and exposure

3. Since MatchN. [66], DeepC. [67], DeepD. [21], LIFT [22], L2-
Net [23], and Q-Net [37] were developed for sparse correspondence,
sparse descriptors were first built by forward-propagating images
through networks and then upsampled.
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(a) image 1 (b) image 2 (c) ANCC [44] (d) SIFT [11] (e) DASC [10] (f) FCSS [24] (g) MCCNN [64] (h) DSC

Fig. 10. Comparison of disparity estimates for Moebius and Dolls image pairs on the Middlebury benchmark [27] across illumination combination
‘1/3’ and exposure combination ‘0/2’, respectively. Compared to other methods, DSC estimates more accurate and edge-preserved disparity maps.
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Fig. 11. Average bad-pixel error rate on the Middlebury benchmark [27]
with illumination and exposure variations. Optimization was done by GC
in (a), (b), and by WTA in (c), (d). SSC and DSC descriptors show the
best performance with the lowest error rate.

variations. In the experiments, the illumination (exposure)
combination ‘1/3’ indicates that two images were captured
under the 1st and 3rd illumination (exposure) conditions.
For quantitative evaluation, we measured the average bad-
pixel error rate in non-occluded areas of disparity maps [27].

Fig. 10 shows the disparity maps estimated under severe
illumination and exposure variations with WTA optimiza-
tion. Fig. 11 displays the average bad-pixel error rates of dis-
parity maps obtained under illumination or exposure varia-
tions, with GC [68] and WTA optimization. Note that since
the geometric variation across stereo images exists only in
the field of translation, GI-DSC was not evaluated in this
experiment. Area-based approaches such as ANCC [44] and
RSNCC [9] were sensitive to severe radiometric variations,
especially when local variations occur frequently. Feature
descriptor-based methods such as SIFT [11], DAISY [12],
BRIEF [32], LSS [26], and DASC [10] perform better than the
area-based approaches, but they also provide limited perfor-
mance. Although the CNN-based descriptor MC-CNN [64]
has shown good results, it exhibits limited performance in
cases of severe radiometric variation. Note that since other
state-of-the-art stereo matching methods directly estimate
disparity maps in an end-to-end manner, they were not

(a) image 1 (b) image 2 (c) SIFT [11] (d) DAISY [12]

(e) LSS [26] (f) DASC [10] (g) DeepD. [21] (h) DeepC. [67]

(i) FCSS [24] (j) SSC (k) DSC (l) GI-DSC

Fig. 12. Dense correspondence evaluations for RGB-NIR image pairs
on cross-modal and cross-spectral benchmark [10]. The source images
were warped to the target images using correspondences.

evaluated in this experiment. Our DSC achieves the best
results both quantitatively and qualitatively. Compared to
SSC, the performance of DSC is highly improved, where the
performance benefits of leveraging self-similar structures at
multiple scales are apparent.

5.4 Cross-modal and Cross-spectral Benchmark

We also evaluated DSC and GI-DSC on the cross-modal and
cross-spectral benchmark [10] containing various kinds of
image pairs, namely RGB-NIR, flash-noflash, different ex-
posures, and blurred-sharp. Sparse ground-truths for those
images were used for error measurement as done in [10].

Fig. 12, Fig. 13, Fig. 14, and Fig. 15 provide qualitative
comparisons of the DSC and GI-DSC descriptors to other
state-of-the-art approaches for RGB-NIR, flash-noflash, dif-
ferent exposures, and blurred-sharp images, respectively.
As already described in the literature [9], gradient-based
approaches such as SIFT [11] and DAISY [12] have shown
limited performance for RGB-NIR pairs where gradient re-
versals and inversions frequently appear. BRIEF [32] cannot
deal with noisy regions and modality-based appearance
differences since it is formulated on pixel differences only.
Unlike these approaches, LSS [26] and DASC [10] con-
sider local self-similarities, but LSS suffers from limited
discriminative power. DASC also exhibits limited perfor-
mance due to the sensitivity of patch-wise receptive field
pooling. State-of-the-art CNN-based descriptors such as
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TABLE 1
Average error rates on a cross-modal and cross-spectral benchmark [10]. L2-Net† denotes results of L2-Net [23] with densely sampled windows.

WTA optimization SF optimization [13]
RGB-
NIR

flash-
noflash

diff.
expo.

blur-
sharp Average RGB-

NIR
flash-

noflash
diff.

expo.
blur-
sharp Average

ANCC [44] 23.21 20.42 25.19 26.14 23.74 18.45 14.14 11.96 19.24 15.95
RSNCC [9] 27.51 25.12 18.21 27.91 24.69 13.41 15.87 9.15 18.21 14.16
SIFT [11] 24.11 18.72 19.42 27.18 22.36 18.51 11.06 14.87 20.78 16.31
DAISY [12] 27.61 26.30 20.72 27.41 25.51 20.42 10.84 12.71 22.91 16.72
BRIEF [32] 29.14 18.29 17.13 26.43 22.75 17.54 9.21 9.54 19.72 14.00
LSS [26] 27.82 19.18 18.21 26.14 22.84 16.14 11.88 9.11 18.51 13.91
LIOP [35] 24.42 16.42 14.22 20.42 18.87 15.32 11.42 10.22 17.12 13.52
DASC [10] 14.51 13.24 10.32 16.42 13.62 13.42 7.11 7.21 11.21 9.74
MatchN. [66] 19.72 16.54 20.81 27.14 21.05 17.51 10.82 11.84 12.34 13.13
DeepC. [67] 20.71 20.78 16.84 21.84 20.04 17.11 14.21 10.87 11.98 13.54
DeepD. [21] 16.72 17.81 12.72 20.71 16.99 14.87 10.88 12.87 13.93 13.14
Q-Net [37] 10.11 16.75 12.81 22.95 15.66 10.40 17.42 13.92 12.38 13.53
LIFT [22] 14.82 14.32 10.11 17.84 14.27 12.88 10.28 9.77 10.54 10.87
L2-Net [23] 13.79 13.16 9.92 19.11 13.99 11.92 15.22 11.20 11.69 12.51
L2-Net† [23] 12.61 14.22 10.22 20.54 14.40 10.51 14.66 10.90 12.17 12.06
FCSS [24] 11.87 9.84 7.99 17.64 11.84 12.10 6.28 6.11 10.84 8.83
SSC 10.12 10.12 8.22 14.22 10.67 9.12 6.18 5.22 9.12 7.41
DSC 8.12 8.22 6.72 13.28 9.09 7.62 5.12 4.72 8.01 6.37
GI-DSC 9.30 7.92 6.86 12.92 9.25 7.12 4.75 4.42 7.06 5.84

(a) image 1 (b) image 2 (c) SIFT [11] (d) DAISY [12]

(e) LSS [26] (f) DASC [10] (g) DeepD. [21] (h) DeepC. [67]

(i) FCSS [24] (j) SSC (k) DSC (l) GI-DSC

Fig. 13. Dense correspondence evaluations for flash-noflash image
pairs on cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

(a) image 1 (b) image 2 (c) SIFT [11] (d) DAISY [12]

(e) LSS [26] (f) DASC [10] (g) DeepD. [21] (h) DeepC. [67]

(i) FCSS [24] (j) SSC (k) DSC (l) GI-DSC

Fig. 14. Dense correspondence evaluations for different exposure image
pairs on a cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

MatchN. [66], DeepC. [67], DeepD. [21], LIFT [22], L2-
Net [23], and FCSS [24], pretrained on non-cross-modal

(a) image 1 (b) image 2 (c) SIFT [11] (d) DAISY [12]

(e) LSS [26] (f) DASC [10] (g) DeepD. [21] (h) DeepC. [67]

(i) FCSS [24] (j) SSC (k) DSC (l) GI-DSC

Fig. 15. Dense correspondence evaluations for blurred-sharp image
pairs on a cross-modal and cross-spectral benchmark [10]. The source
images were warped to the target images using correspondences.

image pairs, cannot provide reliable correspondence esti-
mation performance on cross-modal matching. Even though
those methods have shown high robustness to photometric
variations, they provide limited precision in localization.
Moreover, large-scale training datasets are lacking for learn-
ing those descriptors. Q-Net [37] trained on the RGB-NIR
dataset [1] has shown limited generalization ability to the
appearance variations of various modalities such as flash-
noflash, different exposures, and blurred-sharp. Compared
to those methods, DSC displays better correspondence esti-
mation. We also performed a quantitative evaluation with
results listed in Table 1, which also clearly demonstrates
the effectiveness of DSC. Note that the geometric variation
across images provided from the cross-modal and cross-
spectral benchmark [10] is not substantial, and thus it is
relatively difficult to show the effectiveness of GI-DSC in
terms of handling geometry variation. Nevertheless, GI-
DSC demonstrates improved performance over DSC.
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(a) image 1 (b) image 2 (c) DAISY [12] (d) BRIEF [32] (e) LSS [26] (f) DaLI [28] (g) FCSS [24] (g) DSC

Fig. 16. Dense correspondence evaluations for images with different illumination conditions and non-rigid image deformations [28]. The source
images were warped to the target images using correspondences.

TABLE 2
Average error rates on the DaLI benchmark [28].

Methods deform. illum. deform./
illum. Average

DAISY [12] 43.98 42.72 43.42 43.37
BRIEF [32] 41.51 37.14 41.35 40.00
LSS [26] 40.81 39.54 40.11 40.12
LIOP [35] 28.72 31.72 30.21 30.22
DaLI [28] 27.12 27.31 27.99 27.47
DASC [10] 26.21 24.83 27.51 26.18
VGG [16] 25.72 23.41 22.51 23.88
LIFT [22] 27.42 27.11 29.28 27.94
L2-Net [23] 26.34 25.74 26.84 26.31
FCSS [24] 22.18 24.72 19.72 22.21
SSC 23.42 22.21 24.17 23.27
DSC 20.14 20.72 21.87 20.91
GI-DSC 18.47 16.25 18.24 17.65

5.5 DaLI Benchmark

We also evaluated the DSC and GI-DSC descriptors on a
publicly available dataset featuring challenging non-rigid
deformations and severe illumination changes [28]. Fig.
16 shows dense correspondence estimates for this bench-
mark [28]. A quantitative evaluation is given in Table 2 using
ground-truth feature points sparsely extracted for each im-
age. As expected, conventional gradient-based and intensity
comparison-based feature descriptors, including SIFT [11],
DAISY [12], and BRIEF [32], are relatively less effective on
such images. LSS [26] and DASC [10] exhibit relatively high
performance for illumination changes, but perform less well
on non-rigid geometric deformations. LIOP [35] provided
robustness to radiometric variations, but is sensitive to non-
rigid deformations. Although DaLI [28] estimated robust
correspondences, it requires considerable computation for
dense matching. DSC offers greater discriminative power as
well as more robustness to non-rigid deformations in com-
parison to the state-of-the-art cross-modality descriptors.
State-of-the-art deep CNN-based methods such as FCSS [24]
also show strong performance but require considerable
training time and a large number of training samples. By us-
ing explicit geometric estimation modules, GI-DSC presents
state-of-the-art performance for non-rigid deformations.

TABLE 3
Average error rates on the tri-modal human benchmark [29].

RGB-depth RGB-thermal depth-thermal
LTA IoU LTA IoU LTA IoU

DAISY [12] 45.51 0.41 36.31 0.44 53.21 0.52
BRIEF [32] 46.22 0.46 48.11 0.41 57.22 0.53
LSS [26] 49.27 0.52 49.38 0.42 51.87 0.42
LIOP [35] 41.75 0.37 48.27 0.36 50.78 0.39
DaLI [28] 40.99 0.39 48.72 0.43 53.95 0.50
DASC [10] 36.72 0.36 38.27 0.39 43.72 0.41
VGG [16] 33.16 0.39 38.11 0.42 46.72 0.38
LIFT [22] 38.72 0.47 43.51 0.49 50.84 0.53
L2-Net [23] 36.27 0.41 38.84 0.38 42.54 0.47
FCSS [24] 30.82 0.31 29.71 0.30 39.78 0.34
SSC 30.11 0.29 30.87 0.31 42.81 0.36
DSC 26.19 0.24 29.38 0.27 36.22 0.27
GI-DSC 22.63 0.19 27.42 0.24 30.82 0.21

5.6 Tri-modal Human Benchmark
We additionally evaluated our descriptors on the tri-modal
human body segmentation dataset [29] which includes RGB-
Depth-FIR pairs. The dataset contains 11,537 frames divided
into three indoor scenes and among them, 5,724 frames have
human body annotations. To quantitatively measure the
estimated correspondence quality, we use the label transfer
accuracy (LTA) [13], [30] and intersection over union (IoU)
metrics [14], [24] with ground-truth annotation maps, a
practical alternative when no ground-truth correspondence
is available.

Fig. 17 and Fig. 18 display qualitative comparisons
for RGB-Depth and RGB-FIR pairs, respectively. Table 3
presents a quantitative evaluation in terms of LTA and
IoU. In comparison to the experiments of previous sections,
this experiment uses RGB-Depth, RGB-FIR, and Depth-
FIR pairs with more severe cross-modal variations. Simi-
lar to the previous experiments, conventional handcrafted
descriptors such as DASC [10] show limited performance.
Although state-of-the-art CNN-based methods produce im-
provements, they cannot deal with non-rigid deformations
or severe appearance variations across cross-modal images.

5.7 DIML Cross-modal Benchmark
We further evaluated the DSC and GI-DSC descriptors on
the DIML cross-modal benchmark [30] with both photomet-
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(a) Image pairs (b) SIFT [11] (c) DASC [10] (d) LSS [26] (e) VGG [16] (f) FCSS [24] (g) DSC (h) GI-DSC

Fig. 17. Qualitative comparisons on the RGB-depth human benchmark [29]. The results consist of warped color images and warped ground-truth
human annotations.

(a) Image pairs (b) SIFT (c) DASC [10] (d) LSS [26] (e) LIFT [22] (f) FCSS [24] (g) DSC (h) GI-DSC

Fig. 18. Qualitative comparisons on the RGB-thermal human benchmark [29]. The results consist of warped color images and warped ground-truth
human annotations.

ric and geometric variations. In the benchmark, 10 geometry
image sets were captured with geometric variations that
arise from a combination of viewpoint, scale, and rotation
differences, and each image set consists of images taken
under 5 different photometric variation pairs including
illumination, exposure, flash-noflash, blur, and noise. The
DIML cross-modal benchmark thus consists of 100 images,
of size 1200×800. For quantitative evaluation, we used LTA
and IoU, similar to Sec. 5.6. Note that different from LTA,
IoU isolates the matching quality for foreground objects,
separate from irrelevant background pixels.

In Fig. 19 and Fig. 20, we followed the experimental
configuration in [30], where for an image from a reference
geometry set, we estimate visual correspondence maps with
images from other geometry sets, and measure LTA. Fur-
thermore, visual correspondence maps are estimated for
each photometric pair. In addition, in Table 4, we measured
the average LTA and IoU for all possible photometric varia-

tion pairs with fixed geometry (denoted by photometry) and
all possible geometric variation pairs with fixed photometry
(denoted by geometry), respectively, and all possible geomet-
ric and photometric variations (denoted by all) 4

As expected, conventional gradient-based and intensity
comparison-based feature descriptors, including SIFT [11],
DAISY [12], and BRIEF [32], provided weaker correspon-
dence performance. LSS [26] and DASC [10] exhibited
relatively high performance for illumination changes, but
are limited on non-rigid deformations. LIOP [35] provided
robustness to radiometric variations, but is sensitive to
non-rigid deformations. Although DaLI [28] yielded ro-
bust correspondences, it requires considerable computation

4. Specifically, for photometry results, we sampled image pairs among
5 photometric variations for 10 geometric variations, i.e., the number
of image pairs is 5C2 × 10. For geometry results, we sampled image
pairs among 10 geometric variations for 5 geometric variations, i.e.,
the number of image pairs is 10C2 × 5. For all results, we sampled all
possible combinations, i.e., the number of image pairs is 50C2.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on June 01,2020 at 05:54:45 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.2965528, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019 12

(a) Image pairs (b) DAISY (c) Seg-SIFT [54] (d) Seg-SID [54] (e) DASC [10] (f) GI-DASC [30] (g) DSC (h) GI-DSC

Fig. 19. Qualitative comparisons on the DIML cross-modal benchmark [69]. The results consist of warped color images and warped ground-truth
annotations.
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Fig. 20. Quantitative comparisons on the DIML cross-modal bench-
mark [69]. Each result represents the LTA for geometric (x-axis) and
photometric (y-axis) variations, respectively.

for dense matching. State-of-the-art CNN-based descriptors
such as LIFT [22] and FCSS [24] cannot deal with photo-
metric and geometric variations simultaneously, resulting
in limited performance. DSC offers greater discriminative
power as well as more robustness to non-rigid deforma-
tion in comparison to the state-of-the-art cross-modality
descriptors, but it remains vulnerable to severe geometric
variations. Unlike these, GI-DSC shows robustness to both
photometric and geometric variations.

TABLE 4
Average error rates on the DIML cross-modal benchmark [69].

photometry geometry all
LTA IoU LTA IoU LTA IoU

DAISY [12] 36.42 0.42 48.42 0.51 48.25 0.52
BRIEF [32] 40.51 0.50 47.21 0.54 49.02 0.57
LSS [26] 38.51 0.42 47.80 0.43 47.22 0.48
LIOP [35] 26.71 0.36 52.03 0.41 42.22 0.49
DaLI [28] 34.71 0.34 49.82 0.39 52.11 0.42
Seg-SIFT [54] 28.99 0.38 39.02 0.33 46.42 0.48
Seg-SID [54] 32.76 0.29 51.22 0.40 52.68 0.45
DASC [10] 20.41 0.31 30.81 0.33 32.53 0.38
GI-DASC [24] 21.92 0.32 21.84 0.26 27.11 0.31
VGG [16] 22.07 0.29 41.11 0.27 39.62 0.30
LIFT [22] 23.11 0.30 42.02 0.31 35.00 0.38
L2-Net [23] 26.75 0.35 38.74 0.45 36.92 0.42
FCSS [24] 18.72 0.27 31.80 0.24 30.11 0.29
SSC 19.78 0.29 31.71 0.28 31.62 0.30
DSC 16.72 0.24 26.11 0.25 24.12 0.27
GI-DSC 14.70 0.19 16.27 0.20 19.84 0.23

5.8 Computational Speed
In Fig. 21, we compare the computation speed of DSC and
GI-DSC to the state-of-the-art descriptors. Although deep
CNN-based descriptors such as LIFT [22] and FCSS [24] are
efficient at testing time compared to handcrafted descriptors
such as DaLI [28], SIFT [11], and LSS [26], they entail a large
computational burden at training time and require a large
number of training samples. Compared to the brute-force
implementation of DSC, the efficient implementation of DSC
greatly reduces computation time. Moreover, compared to
DSC, GI-DSC needs only marginal additional computation
while providing high geometric invariance. Even though
the DSC and GI-DSC descriptors need more computation
compared to some previous dense descriptors, they provide
significantly improved matching performance as described
previously and are training-free.

6 CONCLUSION

In this paper, we showed recent state-of-the-art CNN-based
descriptors even cannot provide satisfactory performances
for establishing dense correspondences between images
taken under different imaging modalities, and further pro-
posed DSC and GI-DSC descriptors as alternatives. Their
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Fig. 21. Computation speed of DSC and GI-DSC descriptors and other
state-of-the-art descriptors. The brute-force and efficient implementa-
tions of DSC are denoted by * and †, respectively.

high performance in comparison to state-of-the-art descrip-
tors can be attributed to greater robustness to non-rigid
deformations because of their effective pooling scheme, and
more importantly their heightened discriminative power
from a more comprehensive representation of self-similar
structure and their formulation in a pyramidal manner.
Over an extensive set of experiments that cover a broad
range of cross-modal differences, DSC and GI-DSC were val-
idated by their higher performance in comparison to exist-
ing handcrafted and deep CNN-based descriptors. Thanks
to their robustness to non-rigid deformations and high
discriminative power, DSC and GI-DSC can potentially be
used to benefit object detection and semantic segmentation
in future work.
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