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ABSTRACT 

In multi-task learning (MTL) for visual scene understanding, it is 
crucial to transfer useful information between multiple tasks with 
minimal interferences. In this paper, we propose a novel archi- 
tecture that effectively transfers informative features by applying 
the attention mechanism to the multi-scale features of the tasks. 
Since applying the attention module directly to all possible features 
in terms of scale and task requires a high complexity, we propose 
to apply the attention module sequentially for the task and scale. 
The cross-task attention module (CTAM) is first applied to facil- 
itate the exchange of relevant information between the multiple 
task features of the same scale. The cross-scale attention module 
(CSAM) then aggregates useful information from feature maps at 
different resolutions in the same task. Also, we attempt to cap- 
ture long range dependencies through the self-attention module 
in the feature extraction network. Extensive experiments demon- 
strate that our method achieves state-of-the-art performance on the 
NYUD-v2 and PASCAL-Context dataset. Our code is available at 
https://github.com/kimsunkyung/SCA-MTL 

Index Terms— Multi-task learning, self-attention, cross atten- 
tion, semantic segmentation, monocular depth estimation 

 
1. INTRODUCTION 

 
Convolutional neural networks (CNN) have significantly improved 
the performance of scene understanding tasks from visual data, in- 
cluding monocular depth estimation [1, 2, 3] and semantic segmen- 
tation [4, 5]. While most approaches focus on advancing the per- 
formance of a single task, some approaches have attempted to infer 
multiple tasks within a single network [6, 7, 8]. These multi-task 
learning approaches would be essential in deploying a visual scene 
understanding system, which often requires inferring both geometric 
and semantic cues from scenes. 

The multi-task learning approaches [7, 6, 9, 10] mainly focus 
on investigating how to transfer useful information between multi- 
ple tasks. In [10], they proposed a cross stitch unit to automatically 
learn an optimal combination of shared representations over multi- 
ple tasks. The method in [9] proposed a new architecture, termed 
Multi-Task learning with Attention Network (MTAN), that forms 
task-shared and task-specific networks using a task attention module. 
However, these approaches [10, 9] may face a huge computational 
overhead issue as the sub-networks increase linearly in proportion to 
the number of tasks without sharing encoders for feature extraction. 
To alleviate this problem, some recent works [6, 7, 11] proposed 
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to share a backbone network and designed task-specific heads and 
modules with the purpose of exchanging information across tasks. 
In [6], they proposed multi-task distillation module which refines the 
features of the current task by using other task features. In [7], they 
introduced an efficient method to improve an individual task predic- 
tion by capturing cross task contexts. A modern Neural Architec- 
ture Search (NAS) method [12] was employed to automatically find 
an optimal context type from five context type candidates (global, 
local, T-label, S-label, and none). While these methods [6, 7] con- 
sider interactions between the task features within the same scale 
only, the method in [11] attempts to leverage interactions between 
the task features on multiple scales. To this end, the multi-task dis- 
tillation is applied on multiple scales by noting that each task can 
work in different receptive fields. In addition, they proposed a fea- 
ture propagation module (FPM) that propagates information among 
multi-scale feature maps. However, this method [11] does not fully 
utilize information of tasks on different scales. 

In this paper, we propose a novel architecture that effec- 
tively transfers informative features of different scales among tasks 
through the attention module. A target task feature can be augmented 
by extracting useful information on features with various resolutions 
of multiple tasks. However, since a straightforward application of 
the cross-attention module (CAM) to all possible features in terms of 
scale and task requires a prohibitively high complexity, we propose 
to apply the CAM sequentially for the scale and task. To be more 
specific, for a target task, the features extracted on the same scale 
from source tasks are used to augment the target feature using the 
cross-task attention module (CTAM). The task-augmented features 
are then progressively refined using the cross-scale attention module 
(CSAM) where the features within the same task are upsampled with 
the guidance of their fine features. Additionally, motivated by recent 
single task approaches [13, 14] that simultaneously leverage the 
convolutional layers and self-attention modules for capturing long 
range dependencies and modeling local features well, we attempt to 
boost the feature maps from convolutional backbone networks with 
the self-attention module. Our main contributions are summarized 
as follows. 

1. We propose a new method for applying the CAM to the multi- 
task learning architecture in terms of the task (CTAM) and 
scale (CSAM) for augmenting the task features by extract- 
ing useful information on features with various resolutions of 
multiple tasks. 

2. For the multi-task learning model, we are the first attempt to 
boost the convolutional features from the backbone network 
by capturing the long range dependencies through the self- 
attention module. 

3. Extensive experiments conducted on the NYUD-v2 and Pas- 
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Fig. 1: Our network architecture. The attention-augmented feature map Fk is generated by concatenating the convolutional feature map Fk 

and the attention feature map Fk  on the scale k = 1, ..., K where K is the number of scales. Here, K is set to 4. The attention-augmented 
feature map is put into the task-specific head to obtain the task-specific feature map Fk  for i = 1, ..., M where M indicates the number of 
tasks. F!k is generated through the CTAM that applies the cross-attention between the different tasks at the same scale k. Also, a 
low-resolution scale information from the CTAM is transmitted to a high-resolution scale through the FPMA. After that, F!k is put into the 
CSAM for imposing the cross-attention across different scales, generating the final feature map F"k . 

 
cal Context datasets demonstrate significant performance 
improvement compared to the recent multi-task learning ap- 
proaches. 

 
2. PROPOSED METHODS 

2.1. Overview and architecture design 

Fig. 1 depicts the overall framework of the proposed multi-task 
learning model based on the attention modules. Multi-scale convolu- 
tional features extracted from the convolutional backbone networks 
(e.g., HRNet-18 [15]) are first passed through the self-attention mod- 
ule. To preserve the local details of the convolutional feature maps 
while capturing long range dependencies, we employ the attention 
module of swin transformer [16] designed for dense prediction tasks. 
The self-attention module is applied twice on each scale. Formally, 
the attention-augmented feature map Fk is generated by concate- 

for k = 1, . . . , 4 over all scales. 
 

2.2. Cross Task and Cross Scale Attention Modules 

The CTAM and CSAM aim to perform the cross-attention across 
tasks and scales, respectively. While the CTAM is applied to the 
feature maps of multiple tasks on the same scale, the CSAM is for 
the feature maps of the same task on multiple scales. The CTAM fa- 
cilitates the exchange of relevant information across the task features 
on the same scale, while minimizing an interference between differ- 
ent tasks. The CSAM aggregates useful information from the feature 
maps with varying resolutions due to different receptive fields in the 
same task. The two modules are performed in a similar way using 
the CAM. In this section, we first introduce the CAM and then ex- 
plain how it is applied in terms of tasks and scales. 
Cross Attention Module (CAM) The target feature tf and the 
source feature sf are first transformed to a query Qt ∈ RH×W ×dk , 

nating convolutional feature map Fk and the attention feature Fk, a key Ks ∈ RH×W×dk and a value Vs ∈ RH×W ×dv . We use 1×1 
where k represents a scale. Here, we use four different feature maps 
(1/4, 1/8, 1/16, 1/32) from the backbone networks. The attention- 
augmented feature maps, which are shared with all tasks, are then put into task-specific heads for generating the task-specific features Fk 

Conv-BN-ReLU layer lv and 1×1 Conv-BN-Softplus layer lq and lk 
for the transformation [7]: 

for 
ti 

i = 1, . . . , M where ti and M indicate a task index and the num- 
Qt = lq(tf )  Ks = lk(sf )  Vs = lv(sf ). (1) 

ber of tasks, respectively. The task-specific features on the scale k 
are augmented using the CTAM such that for target task feature Fk , 
the key and value from a source task feature Fk for j = 1, . . . , M 
(except j ̸= i) are used for performing the cross-attention. Note 

The CAM is calculated by applying the cross-attention and con- 
catenating the target feature as follows: 

 
CAM (tf , sf ) = tf ⊕ CA(tf , sf ), 

that the feature propagation module with attention (FPMA) is used 
to transfer feature information of the CTAM output feature map F!k 

:L  (Qt ·Ks )·Vs 
 

    

(2) 

for imposing the cross attention across different scales, generating a 
final feature F"k . The prediction map pt of the ith task is finally 

where L is the number of pixels and A ⊕ B means a concatenation 
operation between A and B. a and b denote pixels. Note that Qtb ∈ 

obtained via the feature aggregation that fuses the feature maps F"k
 Rdk , Ks  ∈ Rdk , and Vs  ∈ Rdv . 

L 
a=1 (Q tb ·K sa ) 

: , CAb(tf , sf ) = 



!#

"#

ti 

ti 

ti "#

ti "#

$  

�
��
#

ti ti 

Cross Task Attention Module (CTAM) The CTAM allows the ex- 
change of relevant information between tasks with minimal interfer- 
ence between them. The CAM is applied by setting task i as the 
target and the rest as the source in order to transfer useful informa- 
tion of the remaining tasks to the features of task i. On the scale k, 
this is repeatedly applied to all tasks from i = 1, ..., M as follows: 

Table 2: NYUD-v2 results for three tasks (monocular depth 
estimation and semantic segmentation, and surface normal 

estimation). 

 
 

k k M k k 
Fti = Fti + conv( F 

j=1 
j̸=i 

CAM (Fti , Ftj )), (3) 

 

where F means an operation that concatenates all elements from 1 
to M , except for j = i, and conv means 1 × 1 convolution opera- 
tion. After the convolution operation, we also add the original target 
feature as a residual to preserve the target feature information. 
Cross Scale Attention Module (CSAM) We use the CSAM to 
transfer information between different resolution features within the 
same task. The CAM is applied by setting the k-scale feature and 

 
 

2.4. Feature Aggregation 

A final feature representation for each task is computed by utilizing 
the features at multiple scales as: 

K k 
the smaller scale feature as the target and source as below: pti = conv( F U(Fti )), (5) 

k=1 
 where U means an upsampling operation to the scale of a final output 

F"k = 

 
K 
F 

l=k+1 
CAM (F!k , conv(F!l ))), k = 1, ..., K − 1 

pti . The upsampled features are concatenated, and the 1 × 1 con- 
volution operation is performed to infer the final output pti for task ��F!k , k = K i. 

(4) 
Here, we set K to 4. F means the operation that concatenates all 
elements from k + 1 to K. The coarsest feature F k is initialized 
with the CTAM output feature. The feature information smaller than 
the current scale is propagated into the current scale feature. Finally, 
we obtain F k by concatenating all the features of the l scale that 
are useful to the k scale. Unlike the CTAM, the residual layer is not 
applied as the source and target features are from the same task. 

 
2.3. Feature Propagation Module with Attention (FPMA) 

In [11], the propagation of the low-resolution feature with a larger 
receptive field into the higher scale was proven to be effective in 
enhancing a high-resolution feature. We further boost this feature 
propagation module by including the self-attention module that can 
capture the long range dependencies. Also, the output of the CTAM 
with relevant information from the other tasks are transmitted to the 
next scale using the FPMA, allowing for the propagation of the task- 
augmented features across different scales. 

 
Table 1: NYUD-v2 results for two tasks (monocular depth 

estimation and semantic segmentation). 

3. EXPERIMENTS 
 

3.1. Implementation Details and Evaluation Metrics 

We used HRNet18 [15] as the backbone network. The perfor- 
mance was measured on the NYUD-v2 [17] and Pascal-Context 
[18] datasets which are widely used in the multi-task learning. The 
NYUD-v2 dataset provides 795 training and 654 testing images of 
indoor scenes. The Pascal-Context dataset consists of 4998 training 
and 5105 testing images. During training, we resized images to a 
resolution of 640 × 480. We trained the whole network for 100 
epochs using Adam optimizer [19] with a learning rate of 10−4. 

For learning the multi-task networks, we performed the semantic 
segmentation, monocular depth estimation, and surface normal esti- 
mation on the NYUD-v2 dataset [17], and performed the semantic 
segmentation, part segmentation, and surface normal estimation on 
the Pascal-Context dataset [18], respectively. A cross entropy loss 
was used for the semantic segmentation and part segmentation, and 
L1 loss was used for the monocular depth estimation and surface nor- 
mal. For a performance evaluation, we used the mean intersection 
over union (mIoU) in the semantic segmentation and part segmen- 
tation, the root mean square error (RMSE) in the monocular depth 
estimation, and the mean angular error (Mean) for the surface normal 
estimation. 

Following [11], we measured the multi-task learning perfor- 
mance ∆m which is defined as an average drop in performance per 
task compared to a single task baseline b. If a lower value is better 
for the performance measure Mi of task i, then li = 1, and otherwise 
li = 0. The multi-task learning performance ∆m is expressed as 
follows: 

 

 
∆m = 

M 
(−1)li (Mm,i − Mb,i)/Mb,i. (6) 

M 
i=1 

1  

Model Depth ↓ SemSeg ↑ Normal ↓ ∆m ↑ RMSE mIoU Mean 
Single task baseline 0.625 37.99 20.87 +0.00 
Multi task baseline 0.646 35.55 21.99 -5.03 

PADNet [6] 0.640 35.75 21.28 -4.41 
MTINet [11] 0.598 37.17 21.28 +0.07 

ATRC [7] 0.609 37.50 20.50 +1.02 
Ours 0.584 40.50 20.59 +4.82 

 

Model Depth ↓ SemSeg ↑ ∆m ↑ RMSE mIoU 
Single task baseline 0.644 35.04 +0.00 
Multi task baseline 0.674 35.03 -2.46 

PADNet [6] 0.624 36.72 +3.94 
MTINet [11] 0.611 37.21 +5.65 

ATRC [7] 0.613 40.99 +10.89 
Ours Student 0.597 40.21 +11.02 
Ours Teacher 0.604 41.33 +12.07 

 



Table 5: Ablation study of our model on the NYUD-v2 dataset. The baseline model is MTINet [11]. CNN with attention indicates using the 
feature maps augmented by the self-attention module to capture the long-range dependencies. The FPMA denotes the feature propagation 

module with attention, the CTAM for the cross-task attention module and the CSAM for the cross-scale attention module. 
 

 
Model Methods Depth 

Estimation ↓ 
Semantic 

Segmentation ↑ 
 
∆m ↑ 

CNN 
with attention FPMA CTAM CSAM RMSE RMSE(log) mIoU 

MTINet [11]     0.611 0.2086 37.21 +0.00 
 !"    0.610 0.2086 38.80 +2.21 

Ours !"
!"

!"
!"

 
!"

 0.609 
0.605 

0.2085 
0.2077 

38.94 
39.14 

+2.48 
+3.08 

 !" !" !" !" 0.604 0.2064 41.33 +6.10 
 

Table 3: Pascal-Context results for two tasks (surface normal 
estimation and semantic segmentation). 

 

Model Normal ↓ SemSeg ↑ ∆m ↑ Mean mIoU 
Single task baseline 14.87 57.33 +0.00 
Multi task baseline 14.61 53.95 -3.81 

PADNet [6] 14.77 54.18 -2.39 
MTINet [11] 14.55 59.08 +2.59 

ATRC [7] 13.58 55.49 +2.73 
Ours 13.89 60.09 +5.69 

 
Table 4: Pascal-Context results for three tasks (surface normal 
estimation and semantic segmentation, and part segmentation). 

 

Model Normal Semseg Partseg ∆m ↑ Mean mIoU mIoU 
Single task 

baseline 14.87 57.33 60.08 +0.00 

Multi task 
baseline 14.95 53.79 59.45 -2.56 

PADNet [6] 15.04 55.77 59.81 -1.42 
MTINet [11] 14.94 59.04 61.56 +1.66 
ATRC [7] 13.71 57.94 58.08 +1.84 

Ours 14.71 59.10 62.47 +2.69 
 

We used Eq. (6) to compare the single task baseline, multi- 
task baseline, and the recent methods. The single task baseline 
model consists of a backbone network (HRNet-18) and a decoder. 
The multi-task baseline model also consists of a backbone network 
(HRNet-18) and multiple decoders. For a fair comparison, we re- 
trained all methods using author-provided codes under the same 
environment. Our code will be publicly available later. 

evaluated the performance for the three tasks (monocular depth esti- 
mation, semantic segmentation, and surface normal estimation). As 
shown in Table 2, we achieved the highest performance in the three 
tasks (+4.82%). The state-of-the-art performance was attained on 
the monocular depth estimation and semantic segmentation, except 
for the surface normal estimation which achieves a comparable per- 
formance. 

 

3.3. Evaluation on Pascal-Context dataset 

Table 3 shows a comparison with the recent multi-task learning ap- 
proaches on the Pascal-Context dataset for the two tasks (semantic 
segmentation and surface normal estimation). We obtained a 5.69% 
improvement in the multi-task learning performance when compared 
to the single task baseline model. In Table 2.4, we additionally com- 
pared the multi-task learning performance with the recent models for 
the three tasks (surface normal estimation, semantic segmentation, 
and part segmentation), achieving the highest performance improve- 
ment of 2.69%. 

 

3.4. Ablation Study 

In Table 5, we performed an ablation study to prove the effectiveness 
of our proposed method. The performance evaluation was conducted 
on the semantic segmentation and monocular depth estimation with 
the NYUD-v2 dataset. By using the feature maps augmented by 
the self-attention module (‘ATT’ in Fig. 1), we achieved a 2.21% 
improvement over MTINet [11]. The FPMA further improves the 
performance by 2.48%. The performance gain by the two cross at- 
tention modules (CTAM and CSAM) also indicates the effectiveness 
of the proposed method. 

 

4. CONCLUSION 

3.2. Evaluation on NYUD-v2 dataset 

In Table 1, we compared our model with the recent multi-task learn- 
ing models using the NYUD-v2 dataset for the two tasks (monocular 
depth estimation and semantic segmentation). Our model improved 
the multi-task learning performance by 12.07% over the single task 
baseline model. In addition, our model outperformed the ATRC 
[7], which is the state-of-the-art, for the multi-task learning with the 
semantic segmentation and monocular depth estimation. We also 

 
This paper proposed a novel architecture that effectively transfers 
informative features through different tasks (CTAM) and scales 
(CSAM) by applying the cross-attention sequentially for scale and 
task. Our proposed methods have achieved the significant perfor- 
mance improvement over the recent multi-task learning approaches. 
It is expected that the network design based on the NAS [20, 21] can 
contribute to improving the performance of the multi-task network. 
We reserve this as future works. 
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